1
|
Tenjo-Castaño F, Rout SS, Dey S, Montoya G. Unlocking the potential of CRISPR-associated transposons: from structural to functional insights. Trends Genet 2025:S0168-9525(25)00080-0. [PMID: 40393858 DOI: 10.1016/j.tig.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sweta Suman Rout
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sanjay Dey
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Hsieh SC, Fülöp M, Schargel R, Petassi MT, Barabas O, Peters JE. Telomeric transposons are pervasive in linear bacterial genomes. Science 2025; 387:eadp1973. [PMID: 40048552 DOI: 10.1126/science.adp1973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/12/2024] [Accepted: 12/31/2024] [Indexed: 03/12/2025]
Abstract
Eukaryotes have linear DNA, and their telomeres are hotspots for transposons, which in some cases took over telomere maintenance. We identified several families of independently evolved telomeric transposons in linear chromosomes and plasmids of cyanobacteria and Streptomyces. Although these elements have one specific transposon end sequence, with the second boundary being the telomere, we can show that they move using two transposon ends, likely when transiently bridged by the telomere maintenance systems. Mobilization of the element and the associated telomere allows replacement of native telomeres, making the host cell dependent on the new transposon telomere system for genome maintenance. This work indicates how telomeric transposons can promote gene transfer both between and within genomes, substantially influencing the evolutionary dynamics of linear genomes.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Máté Fülöp
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | | | | | - Orsolya Barabas
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Chacon Machado L, Peters JE. A family of Tn7-like transposons evolved to target CRISPR repeats. Mob DNA 2025; 16:5. [PMID: 39966887 PMCID: PMC11837452 DOI: 10.1186/s13100-025-00344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Tn7 family transposons are mobile genetic elements known for precise target site selection, with some co-opting CRISPR-Cas systems for RNA-guided transposition. We identified a novel group of Tn7-like transposons in Cyanobacteria that preferentially target CRISPR arrays, suggesting a new functional interaction between these elements and CRISPR-Cas systems. Using bioinformatics tools, we characterized their phylogeny, target specificity, and sub-specialization. The array-targeting elements are phylogenetically close to tRNA-targeting elements. The distinct target preference coincides with loss of a C-terminal region in the TnsD protein which is responsible for recognizing target sites when compared to closely related elements. Notably, elements are found integrated into a fixed position within CRISPR spacer regions, a behavior that might minimize negative impacts on the host defense system. These transposons were identified in both plasmid and genomic CRISPR arrays, indicating that their preferred target provides a means for both safe insertion in the host chromosome and a mechanism for dissemination. Attempts to reconstitute these elements in E. coli were unsuccessful, indicating possible dependence on native host factors. Our findings expand the diversity of interactions between Tn7-like transposons and CRISPR systems.
Collapse
Affiliation(s)
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Wang S, Siddique R, Hall MC, Rice PA, Chang L. Structure of TnsABCD transpososome reveals mechanisms of targeted DNA transposition. Cell 2024; 187:6865-6881.e16. [PMID: 39383864 PMCID: PMC11606762 DOI: 10.1016/j.cell.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Bacon EE, Tran JS, Nadig N, Peters JM. Modular, inducible, and titratable expression systems for Escherichia coli and Acinetobacter baumannii. Microbiol Spectr 2024; 12:e0130624. [PMID: 39302127 PMCID: PMC11536989 DOI: 10.1128/spectrum.01306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. In this study, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, PabstBR, that induces to a high level but is less leaky than the commonly used trc promoter. We show that PabstBR is titratable at both the population and single-cell levels, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers who study the fundamental biology of E. coli and A. baumannii.IMPORTANCEAcinetobacter baumannii is a multidrug-resistant, hospital-acquired pathogen with the ability to cause severe infections. Understanding the unique biology of this non-model bacterium may lead to the discovery of new weaknesses that can be targeted to treat antibiotic-resistant infections. In this study, we provide expression tools that can be used to study the gene function in A. baumannii, including in drug-resistant clinical isolates. These tools are also compatible with the model bacterium, Escherichia coli, enabling cross-species comparisons of gene function. We anticipate that the use of these tools by the scientific community will accelerate our understanding of Acinetobacter biology.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer S. Tran
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Hsieh SC, Peters JE. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons. Annu Rev Biochem 2024; 93:139-161. [PMID: 38598855 PMCID: PMC11406308 DOI: 10.1146/annurev-biochem-030122-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
7
|
Song B, Bae S. Genome editing using CRISPR, CAST, and Fanzor systems. Mol Cells 2024; 47:100086. [PMID: 38909984 PMCID: PMC11278801 DOI: 10.1016/j.mocell.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
Genetic engineering technologies are essential not only for basic science but also for generating animal models for therapeutic applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system, derived from adapted prokaryotic immune responses, has led to unprecedented advancements in the field of genome editing because of its ability to precisely target and edit genes in a guide RNA-dependent manner. The discovery of various types of CRISPR-Cas systems, such as CRISPR-associated transposons (CASTs), has resulted in the development of novel genome editing tools. Recently, research has expanded to systems associated with obligate mobile element guided activity (OMEGA) RNAs, including ancestral CRISPR-Cas and eukaryotic Fanzor systems, which are expected to complement the conventional CRISPR-Cas systems. In this review, we briefly introduce the features of various CRISPR-Cas systems and their application in diverse animal models.
Collapse
Affiliation(s)
- Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea.
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Tenjo-Castaño F, Sofos N, Stutzke LS, Temperini P, Fuglsang A, Pape T, Mesa P, Montoya G. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly. Mol Cell 2024; 84:2353-2367.e5. [PMID: 38834066 DOI: 10.1016/j.molcel.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Luisa S Stutzke
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Piero Temperini
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences University of Copenhagen; Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Pablo Mesa
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Correa A, Shehreen S, Machado LC, Thesier J, Cunic L, Petassi M, Chu J, Kapili B, Jia Y, England K, Peters J. Novel mechanisms of diversity generation in Acinetobacter baumannii resistance islands driven by Tn7-like elements. Nucleic Acids Res 2024; 52:3180-3198. [PMID: 38407477 PMCID: PMC11014353 DOI: 10.1093/nar/gkae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Mobile genetic elements play an important role in the acquisition of antibiotic and biocide resistance, especially through the formation of resistance islands in bacterial chromosomes. We analyzed the contribution of Tn7-like transposons to island formation and diversification in the nosocomial pathogen Acinetobacter baumannii and identified four separate families that recognize different integration sites. One integration site is within the comM gene and coincides with the previously described Tn6022 elements suggested to account for the AbaR resistance island. We established Tn6022 in a heterologous E. coli host and confirmed basic features of transposition into the comM attachment site and the use of a novel transposition protein. By analyzing population features within Tn6022 elements we identified two potential novel transposon-encoded diversification mechanisms with this dynamic genetic island. The activities of these diversification features were confirmed in E. coli. One was a novel natural gain-of-activity allele that could function to broaden transposition targeting. The second was a transposon-encoded hybrid dif-like site that parasitizes the host dimer chromosome resolution system to function with its own tyrosine recombinase. This work establishes a highly active Tn7-like transposon that harnesses novel features allowing the spread and diversification of genetic islands in pathogenic bacteria.
Collapse
Affiliation(s)
- Alberto Correa
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | | - Jordan Thesier
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Lille M Cunic
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Yu Jia
- College of Life Sciences and Engineering Research Center of Bioreactor and Pharmaceutical Development (Ministry of Education), Jilin Agricultural University, Changchun City, Jilin Province, China
| | - Kevin A England
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Ross K, Zerillo MM, Chandler M, Varani AM. Annotation and Comparative Genomics of Prokaryotic Transposable Elements. Methods Mol Biol 2024; 2802:189-213. [PMID: 38819561 DOI: 10.1007/978-1-0716-3838-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The data generated in nearly 30 years of bacterial genome sequencing has revealed the abundance of transposable elements (TE) and their importance in genome and transcript remodeling through the mediation of DNA insertions and deletions, structural rearrangements, and regulation of gene expression. Furthermore, what we have learned from studying transposition mechanisms and their regulation in bacterial TE is fundamental to our current understanding of TE in other organisms because much of what has been observed in bacteria is conserved in all domains of life. However, unlike eukaryotic TE, prokaryotic TE sequester and transmit important classes of genes that impact host fitness, such as resistance to antibiotics and heavy metals and virulence factors affecting animals and plants, among other acquired traits. This provides dynamism and plasticity to bacteria, which would otherwise be propagated clonally. The insertion sequences (IS), the simplest form of prokaryotic TE, are autonomous and compact mobile genetic elements. These can be organized into compound transposons, in which two similar IS can flank any DNA segment and render it transposable. Other more complex structures, called unit transposons, can be grouped into four major families (Tn3, Tn7, Tn402, Tn554) with specific genetic characteristics. This chapter will revisit the prominent structural features of these elements, focusing on a genomic annotation framework and comparative analysis. Relevant aspects of TE will also be presented, stressing their key position in genome impact and evolution, especially in the emergence of antimicrobial resistance and other adaptive traits.
Collapse
Affiliation(s)
- Karen Ross
- Protein Information Resource, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Mick Chandler
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Alessandro M Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, Unesp - São Paulo State University, Jaboticabal, Brazil.
| |
Collapse
|
11
|
Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio 2024; 14:13-22. [PMID: 38041553 PMCID: PMC10761935 DOI: 10.1002/2211-5463.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
Transposons are mobile genetic elements that have invaded all domains of life by moving between and within their host genomes. Due to their mobility (or transposition), transposons facilitate horizontal gene transfer in bacteria and foster the evolution of new molecular functions in prokaryotes and eukaryotes. As transposition can lead to detrimental genomic rearrangements, organisms have evolved a multitude of molecular strategies to control transposons, including genome defense mechanisms provided by CRISPR-Cas systems. Apart from their biological impacts on genomes, DNA transposons have been leveraged as efficient gene insertion vectors in basic research, transgenesis and gene therapy. However, the close to random insertion profile of transposon-based tools limits their programmability and safety. Despite recent advances brought by the development of CRISPR-associated genome editing nucleases, a strategy for efficient insertion of large, multi-kilobase transgenes at user-defined genomic sites is currently challenging. The discovery and experimental characterization of bacterial CRISPR-associated transposons (CASTs) led to the attractive hypothesis that these systems could be repurposed as programmable, site-specific gene integration technologies. Here, we provide a broad overview of the molecular mechanisms underpinning DNA transposition and of its biological and technological impact. The second focus of the article is to describe recent mechanistic and functional analyses of CAST transposition. Finally, current challenges and desired future advances of CAST-based genome engineering applications are briefly discussed.
Collapse
Affiliation(s)
| | - Irma Querques
- Department of BiochemistryUniversity of ZurichSwitzerland
- Max Perutz Labs, Vienna Biocenter Campus (VBC)Austria
- Department of Structural and Computational Biology, Center for Molecular BiologyUniversity of ViennaAustria
| |
Collapse
|
12
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
13
|
Wang S, Gabel C, Siddique R, Klose T, Chang L. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Cell 2023; 186:4204-4215.e19. [PMID: 37557170 PMCID: PMC11027886 DOI: 10.1016/j.cell.2023.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Trujillo Rodríguez L, Ellington AJ, Reisch CR, Chevrette MG. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria. ACS Synth Biol 2023. [PMID: 37368499 PMCID: PMC10367135 DOI: 10.1021/acssynbio.3c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Genome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.e., those with modifications at a genetic locus of interest) can be laborious, often requiring one to sift through hundreds or thousands of mutants. Programmable, site-specific targeting of transposons became possible with recently described CRISPR-associated transposase (CASTs) systems, allowing the streamlined recovery of desired mutants in a single step. Like other CRISPR-derived systems, CASTs can be programmed by guide-RNA that is transcribed from short DNA sequence(s). Here, we describe a CAST system and demonstrate its function in bacteria from three classes of Proteobacteria. A dual plasmid strategy is demonstrated: (i) CAST genes are expressed from a broad-host-range replicative plasmid and (ii) guide-RNA and transposon are encoded on a high-copy, suicidal pUC plasmid. Using our CAST system, single-gene disruptions were performed with on-target efficiencies approaching 100% in Beta- and Gammaproteobacteria (Burkholderia thailandensis and Pseudomonas putida, respectively). We also report a peak efficiency of 45% in the Alphaproteobacterium Agrobacterium fabrum. In B. thailandensis, we performed simultaneous co-integration of transposons at two different target sites, demonstrating CAST's utility in multilocus strategies. The CAST system is also capable of high-efficiency large transposon insertion totaling over 11 kbp in all three bacteria tested. Lastly, the dual plasmid system allowed for iterative transposon mutagenesis in all three bacteria without loss of efficiency. Given these iterative capabilities and large payload capacity, this system will be helpful for genome engineering experiments across several fields of research.
Collapse
Affiliation(s)
- Lidimarie Trujillo Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Adam J Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher R Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Alalmaie A, Diaf S, Khashan R. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. J Genet Eng Biotechnol 2023; 21:60. [PMID: 37191877 DOI: 10.1186/s43141-023-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
Collapse
Affiliation(s)
- Amnah Alalmaie
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Saousen Diaf
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Raed Khashan
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
16
|
Hsieh SC, Peters JE. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Res 2023; 51:765-782. [PMID: 36537206 PMCID: PMC9881144 DOI: 10.1093/nar/gkac1216] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas defense systems have been naturally coopted for guide RNA-directed transposition by Tn7 family bacterial transposons. We find cyanobacterial genomes are rich in Tn7-like elements, including most of the known guide RNA-directed transposons, the type V-K, I-B1, and I-B2 CRISPR-Cas based systems. We discovered and characterized an example of a type I-D CRISPR-Cas system which was naturally coopted for guide RNA-directed transposition. Multiple novel adaptations were found specific to the I-D subtype, including natural inactivation of the Cas10 nuclease. The type I-D CRISPR-Cas transposition system showed flexibility in guide RNA length requirements and could be engineered to function with ribozyme-based self-processing guide RNAs removing the requirement for Cas6 in the heterologous system. The type I-D CRISPR-Cas transposon also has naturally fused transposase proteins that are functional for cut-and-paste transposition. Multiple attributes of the type I-D system offer unique possibilities for future work in gene editing. Our bioinformatic analysis also revealed a broader understanding of the evolution of Tn7-like elements. Extensive swapping of targeting systems was identified among Tn7-like elements in cyanobacteria and multiple examples of convergent evolution, including systems targeting integration into genes required for natural transformation.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
17
|
Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat Biotechnol 2023:10.1038/s41587-022-01574-x. [PMID: 36593413 DOI: 10.1038/s41587-022-01574-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. However, the utility of type V-K CASTs is hindered by high off-target integration and a transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid cointegrate products. Here we overcome both limitations by engineering new CASTs with improved integration product purity and genome-wide specificity. To do so, we engineered a nicking homing endonuclease fusion to TnsB (named HELIX) to restore the 5' nicking capability needed for cargo excision on the DNA donor. HELIX enables cut-and-paste DNA insertion with up to 99.4% simple insertion product purity, while retaining robust integration efficiencies on genomic targets. HELIX has substantially higher on-target specificity than canonical CASTs, and we identify several novel factors that further regulate targeted and genome-wide integration. Finally, we extend HELIX to other type V-K orthologs and demonstrate the feasibility of HELIX-mediated integration in human cell contexts.
Collapse
|
18
|
Park JU, Tsai AWL, Chen TH, Peters JE, Kellogg EH. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proc Natl Acad Sci U S A 2022; 119:e2202590119. [PMID: 35914146 PMCID: PMC9371665 DOI: 10.1073/pnas.2202590119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tiffany H Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
19
|
Kaczmarska Z, Czarnocki-Cieciura M, Górecka-Minakowska KM, Wingo RJ, Jackiewicz J, Zajko W, Poznański JT, Rawski M, Grant T, Peters JE, Nowotny M. Structural basis of transposon end recognition explains central features of Tn7 transposition systems. Mol Cell 2022; 82:2618-2632.e7. [PMID: 35654042 PMCID: PMC9308760 DOI: 10.1016/j.molcel.2022.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.
Collapse
Affiliation(s)
- Zuzanna Kaczmarska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Robert J Wingo
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Justyna Jackiewicz
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jarosław T Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Timothy Grant
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
20
|
Shen Y, Gomez-Blanco J, Petassi MT, Peters JE, Ortega J, Guarné A. Structural basis for DNA targeting by the Tn7 transposon. Nat Struct Mol Biol 2022; 29:143-151. [PMID: 35173349 DOI: 10.1038/s41594-022-00724-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Tn7 transposable elements are unique for their highly specific, and sometimes programmable, target-site selection mechanisms and precise insertions. All the elements in the Tn7 family utilize an AAA+ adaptor (TnsC) to coordinate target-site selection with transpososome assembly and to prevent insertions at sites already containing a Tn7 element. Owing to its multiple functions, TnsC is considered the linchpin in the Tn7 element. Here we present the high-resolution cryo-EM structure of TnsC bound to DNA using a gain-of-function variant of the protein and a DNA substrate that together recapitulate the recruitment to a specific DNA target site. TnsC forms an asymmetric ring on target DNA that segregates target-site selection and interaction with the paired-end complex to opposite faces of the ring. Unlike most AAA+ ATPases, TnsC uses a DNA distortion to find the target site but does not remodel DNA to activate transposition. By recognizing pre-distorted substrates, TnsC creates a built-in regulatory mechanism where ATP hydrolysis abolishes ring formation proximal to an existing element. This work unveils how Tn7 and Tn7-like elements determine the strict spacing between the target and integration sites.
Collapse
Affiliation(s)
- Yao Shen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Josue Gomez-Blanco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | | | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University Montreal, Montreal, Quebec, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Cargo Genes of Tn 7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio 2021; 12:e0293821. [PMID: 34872347 PMCID: PMC8649781 DOI: 10.1128/mbio.02938-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition.
Collapse
|
22
|
Querques I, Schmitz M, Oberli S, Chanez C, Jinek M. Target site selection and remodelling by type V CRISPR-transposon systems. Nature 2021; 599:497-502. [PMID: 34759315 PMCID: PMC7613401 DOI: 10.1038/s41586-021-04030-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.
Collapse
Affiliation(s)
- Irma Querques
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Seraina Oberli
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Vo PLH, Acree C, Smith ML, Sternberg SH. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob DNA 2021; 12:13. [PMID: 34103093 PMCID: PMC8188705 DOI: 10.1186/s13100-021-00242-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial transposons propagate through either non-replicative (cut-and-paste) or replicative (copy-and-paste) pathways, depending on how the mobile element is excised from its donor source. In the well-characterized E. coli transposon Tn7, a heteromeric TnsA-TnsB transposase directs cut-and-paste transposition by cleaving both strands at each transposon end during the excision step. Whether a similar pathway is involved for RNA-guided transposons, in which CRISPR-Cas systems confer DNA target specificity, has not been determined. Here, we apply long-read, population-based whole-genome sequencing (WGS) to unambiguously resolve transposition products for two evolutionarily distinct transposon types that employ either Cascade or Cas12k for RNA-guided DNA integration. Our results show that RNA-guided transposon systems lacking functional TnsA primarily undergo copy-and-paste transposition, generating cointegrate products that comprise duplicated transposon copies and genomic insertion of the vector backbone. Finally, we report natural and engineered transposon variants encoding a TnsAB fusion protein, revealing a novel strategy for achieving RNA-guided transposition with fewer molecular components.
Collapse
Affiliation(s)
- Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1374] [Impact Index Per Article: 274.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Rice PA, Craig NL, Dyda F. Comment on "RNA-guided DNA insertion with CRISPR-associated transposases". Science 2020; 368:368/6495/eabb2022. [PMID: 32499410 DOI: 10.1126/science.abb2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Strecker et al (Research Articles, 5 July 2019, p. 48) described a system for exploiting a Tn7-type transposon-encoded CRISPR-Cas system to make RNA-guided, programmable insertions. Although this system has great promise, we note that the well-established biochemistry of Tn7 suggests that the particular system used may insert not only the transposon but also the entire donor plasmid.
Collapse
Affiliation(s)
- Phoebe A Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Nancy L Craig
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
26
|
Peters JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol Microbiol 2019; 112:1635-1644. [PMID: 31502713 PMCID: PMC6904524 DOI: 10.1111/mmi.14383] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Transposon Tn7 is notable for the control it exercises over where transposition events are directed. One Tn7 integration pathways recognizes a highly conserved attachment (att) site in the chromosome, while a second pathway specifically recognizes mobile plasmids that facilitate transfer of the element to new hosts. In this review, I discuss newly discovered families of Tn7-like elements with different targeting pathways. Perhaps the most exciting examples are multiple instances where Tn7-like elements have repurposed CRISPR/Cas systems. In these cases, the CRISPR/Cas systems have lost their canonical defensive function to destroy incoming mobile elements; instead, the systems have been naturally adapted to use guide RNAs to specifically direct transposition into these mobile elements. The new families of Tn7-like elements also include a variety of novel att sites in bacterial chromosomes where genome islands can form. Interesting families have also been revealed where proteins described in the prototypic Tn7 element are fused or otherwise repurposed for the new dual activities. This expanded understanding of Tn7-like elements broadens our view of how genetic systems are repurposed and provides potentially exciting new tools for genome modification and genomics. Future opportunities and challenges to understanding the impact of the new families of Tn7-like elements are discussed.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
27
|
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 2019; 571:219-225. [PMID: 31189177 DOI: 10.1038/s41586-019-1323-z] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022]
Abstract
Conventional CRISPR-Cas systems maintain genomic integrity by leveraging guide RNAs for the nuclease-dependent degradation of mobile genetic elements, including plasmids and viruses. Here we describe a notable inversion of this paradigm, in which bacterial Tn7-like transposons have co-opted nuclease-deficient CRISPR-Cas systems to catalyse RNA-guided integration of mobile genetic elements into the genome. Programmable transposition of Vibrio cholerae Tn6677 in Escherichia coli requires CRISPR- and transposon-associated molecular machineries, including a co-complex between the DNA-targeting complex Cascade and the transposition protein TniQ. Integration of donor DNA occurs in one of two possible orientations at a fixed distance downstream of target DNA sequences, and can accommodate variable length genetic payloads. Deep-sequencing experiments reveal highly specific, genome-wide DNA insertion across dozens of unique target sites. This discovery of a fully programmable, RNA-guided integrase lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc L H Vo
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
28
|
Peters JE, Makarova KS, Shmakov S, Koonin EV. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc Natl Acad Sci U S A 2017; 114:E7358-E7366. [PMID: 28811374 PMCID: PMC5584455 DOI: 10.1073/pnas.1709035114] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A survey of bacterial and archaeal genomes shows that many Tn7-like transposons contain minimal type I-F CRISPR-Cas systems that consist of fused cas8f and cas5f, cas7f, and cas6f genes and a short CRISPR array. Several small groups of Tn7-like transposons encompass similarly truncated type I-B CRISPR-Cas. This minimal gene complement of the transposon-associated CRISPR-Cas systems implies that they are competent for pre-CRISPR RNA (precrRNA) processing yielding mature crRNAs and target binding but not target cleavage that is required for interference. Phylogenetic analysis demonstrates that evolution of the CRISPR-Cas-containing transposons included a single, ancestral capture of a type I-F locus and two independent instances of type I-B loci capture. We show that the transposon-associated CRISPR arrays contain spacers homologous to plasmid and temperate phage sequences and, in some cases, chromosomal sequences adjacent to the transposon. We hypothesize that the transposon-encoded CRISPR-Cas systems generate displacement (R-loops) in the cognate DNA sites, targeting the transposon to these sites and thus facilitating their spread via plasmids and phages. These findings suggest the existence of RNA-guided transposition and fit the guns-for-hire concept whereby mobile genetic elements capture host defense systems and repurpose them for different stages in the life cycle of the element.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894;
| |
Collapse
|
29
|
Siguier P, Gourbeyre E, Chandler M. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition. Curr Opin Microbiol 2017; 38:171-180. [PMID: 28683354 DOI: 10.1016/j.mib.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Although the phenomenon of transposition has been known for over 60 years, its overarching importance in modifying and streamlining genomes took some time to recognize. In spite of a robust understanding of transposition of some TE, there remain a number of important TE groups with potential high genome impact and unknown transposition mechanisms and yet others, only recently identified by bioinformatics, yet to be formally confirmed as mobile. Here, we point to some areas of limited understanding concerning well established important TE groups with DDE Tpases, to address central gaps in our knowledge of characterised Tn with other types of Tpases and finally, to highlight new potentially mobile DNA species. It is not exhaustive. Examples have been chosen to provide encouragement in the continued exploration of the considerable prokaryotic mobilome especially in light of the current threat to public health posed by the spread of multiple AbR.
Collapse
Affiliation(s)
- Patricia Siguier
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Edith Gourbeyre
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Michael Chandler
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France; Department of Biochem., Mol. and Cell. Biol. Georgetown University Medical Center, 3900 Reservoir Rd., Washington, DC 20057-1455, USA.
| |
Collapse
|
30
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Zhang D, Burroughs AM, Vidal ND, Iyer LM, Aravind L. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Res 2016; 44:3513-33. [PMID: 27060143 PMCID: PMC4857004 DOI: 10.1093/nar/gkw221] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/22/2016] [Indexed: 01/13/2023] Open
Abstract
Enzymatic effectors targeting nucleic acids, proteins and other cellular components are the mainstay of conflicts across life forms. Using comparative genomics we identify a large class of eukaryotic proteins, which include effectors from oomycetes, fungi and other parasites. The majority of these proteins have a characteristic domain architecture with one of several N-terminal 'Header' domains, which are predicted to play a role in trafficking of these effectors, including a novel version of the Ubiquitin fold. The Headers are followed by one or more diverse C-terminal domains, such as restriction endonuclease (REase), protein kinase, HNH endonuclease, LK-nuclease (a RNase) and multiple distinct peptidase domains, which are predicted to carry their toxicity determinants. The most common types of these proteins appear to have originated from prokaryotic transposases (e.g. TN7 and Mu) and combine a CDC6/ORC1-STAND clade NTPase domain with a C-terminal REase domain. Other than the so-called Crinkler effectors of oomycetes and fungi, these effectors are encoded by other eukaryotic parasites such as trypanosomatids (the RHS proteins) and the rhizarian Plasmodiophora, and symbionts like Capsaspora Remarkably, we also find these proteins in free-living eukaryotes, including several viridiplantae, fungi, amoebozoans and animals. These versions might either still be transposons or function in other poorly understood eukaryote-specific inter-organismal and inter-genomic conflicts. These include the Medea1 selfish element of Tribolium that spreads via post-zygotic killing. We present a unified mechanism for the recombination-dependent diversification and action of this widespread class of molecular weaponry deployed across diverse conflicts ranging from parasitic to free-living forms.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Newton D Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
32
|
Hickman AB, Dyda F. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications. Nucleic Acids Res 2015; 43:10576-87. [PMID: 26573596 PMCID: PMC4678821 DOI: 10.1093/nar/gkv1180] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/22/2015] [Indexed: 01/06/2023] Open
Abstract
Many archaea and bacteria have an adaptive immune system known as CRISPR which allows them to recognize and destroy foreign nucleic acid that they have previously encountered. Two CRISPR-associated proteins, Cas1 and Cas2, are required for the acquisition step of adaptation, in which fragments of foreign DNA are incorporated into the host CRISPR locus. Cas1 genes have also been found scattered in several archaeal and bacterial genomes, unassociated with CRISPR loci or other cas proteins. Rather, they are flanked by nearly identical inverted repeats and enclosed within direct repeats, suggesting that these genetic regions might be mobile elements (‘casposons’). To investigate this possibility, we have characterized the in vitro activities of the putative Cas1 transposase (‘casposase’) from Aciduliprofundum boonei. The purified Cas1 casposase can integrate both short oligonucleotides with inverted repeat sequences and a 2.8 kb excised mini-casposon into target DNA. Casposon integration occurs without target specificity and generates 14–15 basepair target site duplications, consistent with those found in casposon host genomes. Thus, Cas1 casposases carry out similar biochemical reactions as the CRISPR Cas1-Cas2 complex but with opposite substrate specificities: casposases integrate specific sequences into random target sites, whereas CRISPR Cas1-Cas2 integrates essentially random sequences into a specific site in the CRISPR locus.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Abstract
ABSTRACT
The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (
attTn7
), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein–DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.
Collapse
|
35
|
Peters JE, Fricker AD, Kapili BJ, Petassi MT. Heteromeric transposase elements: generators of genomic islands across diverse bacteria. Mol Microbiol 2014; 93:1084-92. [PMID: 25091064 DOI: 10.1111/mmi.12740] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7-like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon-encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022-like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022-like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
36
|
The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc Natl Acad Sci U S A 2014; 111:E2858-65. [PMID: 24982178 DOI: 10.1073/pnas.1409869111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The excision of transposon Tn7 from a donor site and its insertion into its preferred target site, attachment site attTn7, is mediated by four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC, and TnsD. Transposition requires the assembly of a nucleoprotein complex containing all four Tns proteins and the DNA substrates, the donor site containing Tn7, and the preferred target site attTn7. TnsA and TnsB together form the heteromeric Tn7 transposase, and TnsD is a target-selecting protein that binds specifically to attTn7. TnsC is the key regulator of transposition, interacting with both the TnsAB transposase and TnsD-attTn7. We show here that TnsC interacts directly with TnsB, and identify the specific region of TnsC involved in the TnsB-TnsC interaction during transposition. We also show that a TnsC mutant defective in interaction with TnsB is defective for Tn7 transposition both in vitro and in vivo. Tn7 displays cis-acting target immunity, which blocks Tn7 insertion into a target DNA that already contains Tn7. We provide evidence that the direct TnsB-TnsC interaction that we have identified also mediates cis-acting Tn7 target immunity. We also show that TnsC interacts directly with the target selector protein TnsD.
Collapse
|
37
|
Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci U S A 2013; 110:E2038-45. [PMID: 23674682 DOI: 10.1073/pnas.1305716110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transposon Tn7 transposase that recognizes the transposon ends and mediates breakage and joining is heteromeric. It contains the Tn7-encoded proteins TnsB, which binds specifically to the transposon ends and carries out breakage and joining at the 3' ends, and TnsA, which carries out breakage at the 5' ends of Tn7. TnsA apparently does not bind specifically to DNA, and we have hypothesized that it is recruited to the ends by interaction with TnsB. In this work, we show that TnsA and TnsB interact directly and identify several TnsA and TnsB amino acids involved in this interaction. We also show that TnsA can stimulate two key activities of TnsB, specific binding to the ends and pairing of the Tn7 ends. The ends of Tn7 are structurally asymmetric (i.e., contain different numbers of TnsB-binding sites), and Tn7 also is functionally asymmetric, inserting into its specific target site, attachment site attTn7 (attTn7) in a single orientation. Moreover, Tn7 elements containing two Tn7 right ends can transpose, but elements with two Tn7 left ends cannot. We show here that TnsA + TnsB are unable to pair the ends of a Tn7 element containing two Tn7 left ends. This pairing defect likely contributes to the inability of Tn7 elements with two Tn7 left ends to transpose.
Collapse
|
38
|
Bao W, Jurka J. Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements. Mob DNA 2013; 4:12. [PMID: 23548000 PMCID: PMC3627910 DOI: 10.1186/1759-8753-4-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/20/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial insertion sequences (IS) of IS200/IS605 and IS607 family often encode a transposase (TnpA) and a protein of unknown function, TnpB. RESULTS Here we report two groups of TnpB-like proteins (Fanzor1 and Fanzor2) that are widespread in diverse eukaryotic transposable elements (TEs), and in large double-stranded DNA (dsDNA) viruses infecting eukaryotes. Fanzor and TnpB proteins share the same conserved amino acid motif in their C-terminal half regions: D-X(125, 275)-[TS]-[TS]-X-X-[C4 zinc finger]-X(5,50)-RD, but are highly variable in their N-terminal regions. Fanzor1 proteins are frequently captured by DNA transposons from different superfamilies including Helitron, Mariner, IS4-like, Sola and MuDr. In contrast, Fanzor2 proteins appear only in some IS607-type elements. We also analyze a new Helitron2 group from the Helitron superfamily, which contains elements with hairpin structures on both ends. Non-autonomous Helitron2 elements (CRe-1, 2, 3) in the genome of green alga Chlamydomonas reinhardtii are flanked by target site duplications (TSDs) of variable length (approximately 7 to 19 bp). CONCLUSIONS The phylogeny and distribution of the TnpB/Fanzor proteins indicate that they may be disseminated among eukaryotic species by viruses. We hypothesize that TnpB/Fanzor proteins may act as methyltransferases.
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA, 94043, USA.
| | | |
Collapse
|
39
|
González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013; 31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
Site-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs. Members of the HUH protein family cleave single-stranded (ss)DNA, but can mediate site-specific integration with the aid of the host replication machinery. Adeno-associated virus (AAV) Rep remains the only known example to support site-specific integration in human cells, and AAV is an excellent gene delivery vector that can be targeted to specific cells and organelles. Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to human cells covalently linked to DNA, offering attractive new features for targeted genome modification.
Collapse
Affiliation(s)
- Coral González-Prieto
- Departamento de Biología Molecular (Universidad de Cantabria) and IBBTEC (UC, CSIC, SODERCAN), Santander, Spain
| | | | | | | |
Collapse
|
40
|
Toussaint A, Chandler M. Prokaryote genome fluidity: toward a system approach of the mobilome. Methods Mol Biol 2012; 804:57-80. [PMID: 22144148 DOI: 10.1007/978-1-61779-361-5_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by "classical" phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.
Collapse
Affiliation(s)
- Ariane Toussaint
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, Bruxelles, Belgium.
| | | |
Collapse
|
41
|
Holder JW, Craig NL. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol 2010; 401:167-81. [PMID: 20538004 PMCID: PMC2927125 DOI: 10.1016/j.jmb.2010.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 11/20/2022]
Abstract
Four transposition proteins encoded by the bacterial transposon Tn7, TnsA, TnsB, TnsC, and TnsD, mediate its site- and orientation-specific insertion into the chromosomal site attTn7. To establish which Tns proteins are actually present in the transpososome that executes DNA breakage and joining, we have determined the proteins present in the nucleoprotein product of transposition, the posttransposition complex (PTC), using fluorescently labeled Tns proteins. All four required Tns proteins are present in the PTC in which we also find that the Tn7 ends are paired by protein-protein contacts between Tns proteins bound to the ends. Quantification of the relative amounts of the fluorescent Tns proteins in the PTC indicates that oligomers of TnsA, TnsB, and TnsC mediate Tn7 transposition. High-resolution DNA footprinting of the DNA product of transposition attTn7Colon, two colonsTn7 revealed that about 350 bp of DNA on the transposon ends and on attTn7 contact the Tns proteins. All seven binding sites for TnsB, the component of the transposase that specifically binds the ends and mediates 3' end breakage and joining, are occupied in the PTC. However, the protection pattern of the sites closest to the Tn7 ends in the PTC are different from that observed with TnsB alone, likely reflecting the pairing of the ends and their interaction with the target nucleoprotein complex necessary for activation of the breakage and joining steps. We also observe extensive protection of the attTn7 sequences in the PTC and that alternative DNA structures in substrate attTn7 that are imposed by TnsD are maintained in the PTC.
Collapse
Affiliation(s)
| | - Nancy L. Craig
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 502 PCTB, Baltimore MD 21205
| |
Collapse
|
42
|
Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mob DNA 2010; 1:18. [PMID: 20653944 PMCID: PMC2918618 DOI: 10.1186/1759-8753-1-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/23/2010] [Indexed: 11/10/2022] Open
Abstract
The bacterial transposon Tn7 is distinguished by its ability to recognize a specific site called attTn7, and insert just downstream of the highly conserved chromosomal glmS gene. TnsD is one of four transposon-encoded polypeptides (TnsABC+D) required for site-specific insertion of Tn7 into attTn7, and is the target site-selector that binds to a highly conserved sequence in the end of the glmS protein coding region. In this study, we identified important nucleotides within this region that are crucial for TnsD-attTn7 interaction. We also probed the regions of TnsD that interact with attTn7 and found that there are important DNA-binding determinants throughout the entire length of the protein, including an amino-terminal CCCH zinc-finger motif. A key role of TnsD is to recruit the non-sequence specific DNA-binding protein TnsC to attTn7; TnsC also interacts with and controls both the TnsA and TnsB subunits of the Tn7 transposase. TnsC stimulates the binding of TnsD to attTn7 in vivo, and TnsCD and TnsD can also interact in the absence of DNA and localize their interaction domains to the N-terminal region of each protein.
Collapse
Affiliation(s)
- Rupak Mitra
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Gregory J McKenzie
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Verenium Corporation. 4955 Directors Place, San Diego, CA 92121, USA
| | - Liang Yi
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Laboratory of Host Defense, NIAID/NIH, Bethesda, MD 20892, USA
| | - Cherline A Lee
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA.,Current Address: Mayo Clinic, 417 Guggenheim Bldg, 200 First St. SW, Rochester, MN 55905, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
43
|
Abstract
Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent--as widely believed--but could represent alternate outcomes of a common transpositional pathway.
Collapse
Affiliation(s)
- Asad Ahmed
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
44
|
Parks AR, Peters JE. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 2009; 61:1-14. [PMID: 18951916 PMCID: PMC2614081 DOI: 10.1016/j.plasmid.2008.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 11/18/2022]
Abstract
The bacterial transposon Tn7 maintains two distinct lifestyles, one in horizontally transferred DNA and the other in bacterial chromosomes. Access to these two DNA pools is mediated by two separate target selection pathways. The proteins involved in these pathways have evolved to specifically activate transposition into their cognate target-sites using entirely different recognition mechanisms, but the same core transposition machinery. In this review we discuss how the molecular mechanisms of Tn7-like elements contribute to their diversification and how they affect the evolution of their host genomes. The analysis of over 50 Tn7-like elements provides insight into the evolution of Tn7 and Tn7 relatives. In addition to the genes required for transposition, Tn7-like elements transport a wide variety of genes that contribute to the success of diverse organisms. We propose that by decisively moving between mobile and stationary DNA pools, Tn7-like elements accumulate a broad range of genetic material, providing a selective advantage for diverse host bacteria.
Collapse
|
45
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Bordi C, Butcher BG, Shi Q, Hachmann AB, Peters JE, Helmann JD. In vitro mutagenesis of Bacillus subtilis by using a modified Tn7 transposon with an outward-facing inducible promoter. Appl Environ Microbiol 2008; 74:3419-25. [PMID: 18408063 PMCID: PMC2423030 DOI: 10.1128/aem.00476-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/04/2008] [Indexed: 12/21/2022] Open
Abstract
A Tn7 donor plasmid, pTn7SX, was constructed for use with the model gram-positive bacterium Bacillus subtilis. This new mini-Tn7, mTn7SX, contains a spectinomycin resistance cassette and an outward-facing, xylose-inducible promoter, thereby allowing for the regulated expression of genes downstream of the transposon. We demonstrate that mTn7SX inserts are obtained at a high frequency and occur randomly throughout the B. subtilis genome. The utility of this system was demonstrated by the selection of mutants with increased resistance to the antibiotic fosfomycin or duramycin.
Collapse
Affiliation(s)
- Christophe Bordi
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Rates of Mu transposon insertions and excisions are both high in late somatic cells of maize. In contrast, although high rates of insertions are observed in germinal cells, germinal excisions are recovered only rarely. Plants doubly homozygous for deletion alleles of rad51A1 and rad51A2 do not encode functional RAD51 protein (RAD51-). Approximately 1% of the gametes from RAD51+ plants that carry the MuDR-insertion allele a1-m5216 include at least partial deletions of MuDR and the a1 gene. The structures of these deletions suggest they arise via the repair of MuDR-induced double-strand breaks via nonhomologous end joining. In RAD51- plants these germinal deletions are recovered at rates that are at least 40-fold higher. These rates are not substantially affected by the presence or absence of an a1-containing homolog. Together, these findings indicate that in RAD51+ germinal cells MuDR-induced double-strand breaks (DSBs) are efficiently repaired via RAD51-directed homologous recombination with the sister chromatid. This suggests that RAD51- plants may offer an efficient means to generate deletion alleles for functional genomic studies. Additionally, the high proportion of Mu-active, RAD51- plants that exhibit severe developmental defects suggest that RAD51 plays a critical role in the repair of MuDR-induced DSBs early in vegetative development.
Collapse
|
48
|
Chen CC, Hu ST. Two Frameshift Products Involved in the Transposition of Bacterial Insertion Sequence IS629. J Biol Chem 2006; 281:21617-21628. [PMID: 16731525 DOI: 10.1074/jbc.m602437200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IS629 is 1,310 bp in length with a pair of 25-bp imperfect inverted repeats at its termini. Two partially overlapping open reading frames, orfA and orfB, are present in IS629, and two putative translational frameshift signals, TTTTG (T4G) and AAAAT (A4T), are located near the 3'-end of orfA. With the lacZ gene as the reporter, both T4G and A4T motifs are determined to be a -1 frameshift signal. Two peptides representing the two transframe products designated OrfAB' and OrfAB, are identified by a liquid chromatography-tandem mass spectrometric approach. Results of transposition assays show that OrfAB' is the transposase and that OrfAB aids in the transposition of IS629. Pulse-chase experiments and Escherichia coli two-hybrid assays demonstrate that OrfAB binds to and stabilizes OrfAB', thus increasing the transposition activity of IS629. This is the first transposable element in the IS3 family shown to have two functional frameshifted products involved in transposition and to use a transframe product to regulate transposition.
Collapse
Affiliation(s)
- Chang-Chieh Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Shih-Pai, Taipei 112, Taiwan
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Shih-Pai, Taipei 112, Taiwan; Department of Microbiology, School of Medicine, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Shih-Pai, Taipei 112, Taiwan.
| |
Collapse
|
49
|
Lang DM. Imperfect DNA mirror repeats in E. coli TnsA and other protein-coding DNA. Biosystems 2005; 81:183-207. [PMID: 15967569 DOI: 10.1016/j.biosystems.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 03/27/2005] [Accepted: 03/29/2005] [Indexed: 11/19/2022]
Abstract
DNA imperfect mirror repeats (DNA-IMRs) are ubiquitous in protein-coding DNA. However, they overlap and often have different centers of symmetry, making it difficult to evaluate their relationship to each other and to specific DNA and protein motifs and structures. This paper describes a systematic method of determining a hierarchy for DNA-IMRs and evaluates their relationship to protein structural elements (PSEs)--helices, turns and beta-sheets. DNA-IMRs are identifed by two different methods--DNA-IMRs terminated by reverse dinucleotides (rd-IMRs) and DNA-IMRs terminated by a single (mono) matching nucleotide (m-IMRs). Both rd-IMRs and m-IMRs are evaluated in 17 proteins, and illustrated in detail for TnsA. For each of the proteins, Fisher's exact test (FET) is used to measure the coincidence between the terminal dinucleotides of rd-IMRs and the terminal amino acids of individual PSEs. A significant correlation over a span of about 3 nt was found for each protein. The correlation is robust and for most genes, all rd-IMRs<or=13 nt can be removed without the loss of statistical significance. In TnsA, the protein intervals translated by rd-IMRs>16 nt contain approximately 88% of the potential functional motifs. The protein translation of the longest rd- and m-IMRs span sequences important to the protein's structure and function. In all 17 proteins studied, the population of rd-IMRs is substantially less than the expected number and the population of m-IMRs greater than the expected number, indicating strong selective pressures. The association of rd-IMRs with PSEs restricts their spatial distribution, and therefore, their number. The greater than predicted number of m-IMRs indicates that DNA symmetry exists throughout the entire protein-coding region and may stabilize the sequence.
Collapse
Affiliation(s)
- Dorothy M Lang
- School of Contemporary Sciences, University of Abertay-Dundee, Bell Street, Dundee DD1 1HG, Scotland, UK.
| |
Collapse
|
50
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|