1
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Torres Cadenas L, Weisz CJC. Fast Inhibition Slows and Desynchronizes Mouse Auditory Efferent Neuron Activity. J Neurosci 2024; 44:e0382242024. [PMID: 38937103 PMCID: PMC11326868 DOI: 10.1523/jneurosci.0382-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that reduce MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ("wedge-slice"). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The "in vivo-like" timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hypersuppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Hui Cheng
- NIDCD Data Science Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Aldahabi M, Neher E, Nusser Z. Different states of synaptic vesicle priming explain target cell type-dependent differences in neurotransmitter release. Proc Natl Acad Sci U S A 2024; 121:e2322550121. [PMID: 38657053 PMCID: PMC11067035 DOI: 10.1073/pnas.2322550121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Pronounced differences in neurotransmitter release from a given presynaptic neuron, depending on the synaptic target, are among the most intriguing features of cortical networks. Hippocampal pyramidal cells (PCs) release glutamate with low probability to somatostatin expressing oriens-lacunosum-moleculare (O-LM) interneurons (INs), and the postsynaptic responses show robust short-term facilitation, whereas the release from the same presynaptic axons onto fast-spiking INs (FSINs) is ~10-fold higher and the excitatory postsynaptic currents (EPSCs) display depression. The mechanisms underlying these vastly different synaptic behaviors have not been conclusively identified. Here, we applied a combined functional, pharmacological, and modeling approach to address whether the main difference lies in the action potential-evoked fusion or else in upstream priming processes of synaptic vesicles (SVs). A sequential two-step SV priming model was fitted to the peak amplitudes of unitary EPSCs recorded in response to complex trains of presynaptic stimuli in acute hippocampal slices of adult mice. At PC-FSIN connections, the fusion probability (Pfusion) of well-primed SVs is 0.6, and 44% of docked SVs are in a fusion-competent state. At PC-O-LM synapses, Pfusion is only 40% lower (0.36), whereas the fraction of well-primed SVs is 6.5-fold smaller. Pharmacological enhancement of fusion by 4-AP and priming by PDBU was recaptured by the model with a selective increase of Pfusion and the fraction of well-primed SVs, respectively. Our results demonstrate that the low fidelity of transmission at PC-O-LM synapses can be explained by a low occupancy of the release sites by well-primed SVs.
Collapse
Affiliation(s)
- Mohammad Aldahabi
- Laboratory of Cellular Neurophysiology, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest1085, Hungary
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| |
Collapse
|
3
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Cadenas LT, Weisz CJ. Fast inhibition slows and desynchronizes mouse auditory efferent neuron activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572886. [PMID: 38313270 PMCID: PMC10836066 DOI: 10.1101/2023.12.21.572886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that restrict MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ('wedge-slice'). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The 'in vivo-like' timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hyper-suppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Lafayette College, Neuroscience Program, Easton, PA 18042, USA
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: The University of Texas at Austin Dell Medical School, Austin, TX 78712, USA
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
5
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
6
|
Li X, Chien C, Han Y, Sun Z, Chen X, Dickman D. Autocrine inhibition by a glutamate-gated chloride channel mediates presynaptic homeostatic depression. SCIENCE ADVANCES 2021; 7:eabj1215. [PMID: 34851664 PMCID: PMC8635443 DOI: 10.1126/sciadv.abj1215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Homeostatic modulation of presynaptic neurotransmitter release is a fundamental form of plasticity that stabilizes neural activity, where presynaptic homeostatic depression (PHD) can adaptively diminish synaptic strength. PHD has been proposed to operate through an autocrine mechanism to homeostatically depress release probability in response to excess glutamate release at the Drosophila neuromuscular junction. This model implies the existence of a presynaptic glutamate autoreceptor. We systematically screened all neuronal glutamate receptors in the fly genome and identified the glutamate-gated chloride channel (GluClα) to be required for the expression of PHD. Pharmacological, genetic, and Ca2+ imaging experiments demonstrate that GluClα acts locally at axonal terminals to drive PHD. Unexpectedly, GluClα localizes and traffics with synaptic vesicles to drive presynaptic inhibition through an activity-dependent anionic conductance. Thus, GluClα operates as both a sensor and effector of PHD to adaptively depress neurotransmitter release through an elegant autocrine inhibitory signaling mechanism at presynaptic terminals.
Collapse
Affiliation(s)
- Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA, 90089, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA, 90089, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA, 90089, USA
| | - Zihan Sun
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xun Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA, 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Dora S, Bohte SM, Pennartz CMA. Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Front Comput Neurosci 2021; 15:666131. [PMID: 34393744 PMCID: PMC8355371 DOI: 10.3389/fncom.2021.666131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Predictive coding provides a computational paradigm for modeling perceptual processing as the construction of representations accounting for causes of sensory inputs. Here, we developed a scalable, deep network architecture for predictive coding that is trained using a gated Hebbian learning rule and mimics the feedforward and feedback connectivity of the cortex. After training on image datasets, the models formed latent representations in higher areas that allowed reconstruction of the original images. We analyzed low- and high-level properties such as orientation selectivity, object selectivity and sparseness of neuronal populations in the model. As reported experimentally, image selectivity increased systematically across ascending areas in the model hierarchy. Depending on the strength of regularization factors, sparseness also increased from lower to higher areas. The results suggest a rationale as to why experimental results on sparseness across the cortical hierarchy have been inconsistent. Finally, representations for different object classes became more distinguishable from lower to higher areas. Thus, deep neural networks trained using a gated Hebbian formulation of predictive coding can reproduce several properties associated with neuronal responses along the visual cortical hierarchy.
Collapse
Affiliation(s)
- Shirin Dora
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Intelligent Systems Research Centre, Ulster University, Londonderry, United Kingdom
| | - Sander M Bohte
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Machine Learning Group, Centre of Mathematics and Computer Science, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Gurma M, Yang YM, Wang LY. Developmental plasticity of NMDA receptors at the calyx of Held synapse. Neuropharmacology 2021; 196:108697. [PMID: 34242682 DOI: 10.1016/j.neuropharm.2021.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Excitatory synaptic transmission is largely mediated by glutamate receptors in central synapses, such as the calyx of Held synapse in the auditory brainstem. This synapse is best known for undergoing extensive morphological and functional changes throughout early development and thereby has served as a prominent model system to study presynaptic mechanisms of neurotransmitter release. However, the pivotal roles of N-methyl-d-aspartate receptors (NMDARs) in gating acute forms of activity-dependent, persistent plasticity in vitro and chronic developmental remodeling in vivo are hardly noted. This article will provide a retrospective review of key experimental evidence to conceptualize the impact of a transient abundance of NMDARs during the early postnatal stage on the functionality of fast-spiking central synapses while raising a series of outstanding questions that are of general significance for understanding the developing brain in health and diseases. This article is part of the special Issue on "Glutamate Receptors - NMDA receptors".
Collapse
Affiliation(s)
- Maria Gurma
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota, Duluth MN, 55812, USA
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
9
|
Vandael D, Okamoto Y, Jonas P. Transsynaptic modulation of presynaptic short-term plasticity in hippocampal mossy fiber synapses. Nat Commun 2021; 12:2912. [PMID: 34006874 PMCID: PMC8131630 DOI: 10.1038/s41467-021-23153-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The hippocampal mossy fiber synapse is a key synapse of the trisynaptic circuit. Post-tetanic potentiation (PTP) is the most powerful form of plasticity at this synaptic connection. It is widely believed that mossy fiber PTP is an entirely presynaptic phenomenon, implying that PTP induction is input-specific, and requires neither activity of multiple inputs nor stimulation of postsynaptic neurons. To directly test cooperativity and associativity, we made paired recordings between single mossy fiber terminals and postsynaptic CA3 pyramidal neurons in rat brain slices. By stimulating non-overlapping mossy fiber inputs converging onto single CA3 neurons, we confirm that PTP is input-specific and non-cooperative. Unexpectedly, mossy fiber PTP exhibits anti-associative induction properties. EPSCs show only minimal PTP after combined pre- and postsynaptic high-frequency stimulation with intact postsynaptic Ca2+ signaling, but marked PTP in the absence of postsynaptic spiking and after suppression of postsynaptic Ca2+ signaling (10 mM EGTA). PTP is largely recovered by inhibitors of voltage-gated R- and L-type Ca2+ channels, group II mGluRs, and vacuolar-type H+-ATPase, suggesting the involvement of retrograde vesicular glutamate signaling. Transsynaptic regulation of PTP extends the repertoire of synaptic computations, implementing a brake on mossy fiber detonation and a "smart teacher" function of hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- David Vandael
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.
- Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands.
| | - Yuji Okamoto
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Peter Jonas
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.
| |
Collapse
|
10
|
Wang X, Wang M, Wang W, Liu Z, Xu J, Jia Z, Chen H, Qiu L, Lv Z, Wang L, Song L. Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO 2-driven acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140177. [PMID: 32570066 DOI: 10.1016/j.scitotenv.2020.140177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
There is increasing evidence that ocean acidification (OA) has a significant impact on marine organisms. However, the ability of most marine organisms to acclimate to OA and the underlying mechanisms are still not well understood. In the present study, whole transcriptome analysis was performed to compare the impacts of short- (7 days, named as short group) and long- (60 days, named as long group) term CO2 exposure (pH 7.50) on Pacific oyster Crassostrea gigas. The responses of C. gigas to short- and long-term CO2 exposure shared common mechanisms in metabolism, membrane-associated transportation and binding processes. Long-term CO2 exposure induced significant expression of genes involved in DNA or RNA binding, indicating the activated transcription after long-term CO2 exposure. Oysters in the short-term group underwent significant intracellular calcium variation and oxidative stress. In contrast, the intracellular calcium, ROS level in hemocytes and H2O2 in serum recovered to normal levels after long-term CO2 exposure, suggesting the compensation of physiological status and mutual interplay between calcium and oxidative level. The compensation was supported by the up-regulation of a series of calcium binding proteins (CBPs) and calmodulins (CaMs) related signal pathway. The results provided valuable information to understand the molecular mechanism underlying the responses of Pacific oyster to the acidified ocean and might have implications for predicting the possible effects of global climate changes on oyster aquaculture.
Collapse
Affiliation(s)
- Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Takahashi T. Presynaptic Black Box Opened by Pioneers at Biophysics Department in University College London. Neuroscience 2020; 439:10-21. [DOI: 10.1016/j.neuroscience.2019.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/15/2022]
|
12
|
Ikarashi K, Iguchi K, Yamazaki Y, Yamashiro K, Baba Y, Sato D. Influence of Menstrual Cycle Phases on Neural Excitability in the Primary Somatosensory Cortex and Ankle Joint Position Sense. WOMEN'S HEALTH REPORTS 2020; 1:167-178. [PMID: 33786480 PMCID: PMC7784724 DOI: 10.1089/whr.2020.0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Ankle sprain (AS) is one of the most common injuries among women engaged in competitive sports and recreational activities. Many studies have shown that several factors contributing to AS are influenced by the menstrual cycle. Despite the finding that abnormal joint position sense (JPS) is one of the major risk factors of AS, the alteration of the JPS throughout the menstrual cycle and its associated neural mechanisms remain unclear. Objective: This study aimed to examine whether the menstrual cycle phases affect neural excitability in the primary somatosensory cortex (S1) and JPS. Methods: Fourteen right-footed women participated in this study. Somatosensory-evoked potential and paired-pulse inhibition (PPI) were measured to assess S1 excitatory and inhibitory functions. Ankle JPS was measured using an active joint position matching method. Menstrual syndrome was evaluated using the menstrual distress questionnaire. All assessments were conducted in the follicular, ovulatory, and luteal phases. Results: The two main findings of this study were as follows: First, PPI decreased in the ovulatory phase than in the follicular phase. This may have been the reason for estrogen altering the neural inhibition and facilitation balance throughout the menstrual cycle. Second, JPS was not changed during the menstrual cycle. Conclusion: In conclusion, phases of the menstrual cycle affect the neural excitability in S1 as shown by the decreased PPI in the ovulatory phase, and the ankle JPS was unchanged throughout the menstrual cycle.
Collapse
Affiliation(s)
- Koyuki Ikarashi
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Kaho Iguchi
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Yudai Yamazaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| |
Collapse
|
13
|
Functional Postnatal Maturation of the Medial Olivocochlear Efferent-Outer Hair Cell Synapse. J Neurosci 2020; 40:4842-4857. [PMID: 32430293 DOI: 10.1523/jneurosci.2409-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers. The functional characteristics of the MOC-OHC synapse during maturation were assessed by electrophysiological and pharmacological methods in mouse organs of Corti at postnatal day 11 (P11)-P13, hearing onset in altricial rodents, and at P20-P22 when the OHCs are morphologically and functionally mature. Synaptic currents were recorded in whole-cell voltage-clamped OHCs while electrically stimulating the MOC fibers. A progressive increase in the number of functional MOC-OHC synapses, as well as in their strength and efficacy, was observed between P11-13 and P20-22. At hearing onset, the MOC-OHC synapse presented facilitation during MOC fibers high-frequency stimulation that disappeared at mature stages. In addition, important changes were found in the VGCC that are coupled to transmitter release. Ca2+ flowing in through L-type VGCCs contribute to trigger ACh release together with P/Q- and R-type VGCCs at P11-P13, but not at P20-P22. Interestingly, N-type VGCCs were found to be involved in this process at P20-P22, but not at hearing onset. Moreover, the degree of compartmentalization of calcium channels with respect to BK channels and presynaptic release components significantly increased from P11-P13 to P20-P22. These results suggest that the MOC-OHC synapse is immature at the onset of hearing.SIGNIFICANCE STATEMENT The functional expression of both VGCCs and BK channels, as well as their localization with respect to the presynaptic components involved in transmitter release, are key elements in determining synaptic efficacy. In this work, we show dynamic changes in the expression of VGCCs and Ca2+-dependent BK K+ channels coupled to ACh release at the MOC-OHC synapse and their shift in compartmentalization during postnatal maturation. These processes most likely set the short-term plasticity pattern and reliability of the MOC-OHC synapse on high-frequency activity.
Collapse
|
14
|
Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms. J Neurosci 2020; 40:4103-4115. [PMID: 32327530 PMCID: PMC7244188 DOI: 10.1523/jneurosci.2946-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. SIGNIFICANCE STATEMENT Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca2+ channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.
Collapse
|
15
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts JDB, Wagner K, Joshi A, Klausberger T, Rockland KS, Somogyi P. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct 2020; 225:705-734. [PMID: 32016558 PMCID: PMC7046583 DOI: 10.1007/s00429-020-02029-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
In the hippocampal CA1 area, the GABAergic trilaminar cells have their axon distributed locally in three layers and also innervate the subiculum. Trilaminar cells have a high level of somato-dendritic muscarinic M2 acetylcholine receptor, lack somatostatin expression and their presynaptic inputs are enriched in mGluR8a. But the origin of their inputs and their behaviour-dependent activity remain to be characterised. Here we demonstrate that (1) GABAergic neurons with the molecular features of trilaminar cells are present in CA1 and CA3 in both rats and mice. (2) Trilaminar cells receive mGluR8a-enriched GABAergic inputs, e.g. from the medial septum, which are probably susceptible to hetero-synaptic modulation of neurotransmitter release by group III mGluRs. (3) An electron microscopic analysis identifies trilaminar cell output synapses with specialised postsynaptic densities and a strong bias towards interneurons as targets, including parvalbumin-expressing cells in the CA1 area. (4) Recordings in freely moving rats revealed the network state-dependent segregation of trilaminar cell activity, with reduced firing during movement, but substantial increase in activity with prolonged burst firing (> 200 Hz) during slow wave sleep. We predict that the behaviour-dependent temporal dynamics of trilaminar cell firing are regulated by their specialised inhibitory inputs. Trilaminar cells might support glutamatergic principal cells by disinhibition and mediate the binding of neuronal assemblies between the hippocampus and the subiculum via the transient inhibition of local interneurons.
Collapse
Affiliation(s)
- Linda Katona
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Katja Hartwich
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ryohei Tomioka
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jozsef Somogyi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - J David B Roberts
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Kristina Wagner
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Department of Physiology, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kathleen S Rockland
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
17
|
Dos Santos E Alhadas É, Correa AMB, Naves LA, Kushmerick C. Mechanisms and functional impact of Group I metabotropic glutamate receptor modulation of excitability in mouse MNTB neurons. Synapse 2019; 74:e22137. [PMID: 31584700 DOI: 10.1002/syn.22137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
We examined effects of Group I metabotropic glutamate receptors on the excitability of mouse medial nucleus of the trapezoid body (MNTB) neurons. The selective agonist, S-3,5-dihydroxyphenylglycine (DHPG), evoked a dose-dependent depolarization of the resting potential, increased membrane resistance, increased sag depolarization, and promoted rebound action potential firing. Under voltage-clamp, DHPG evoked an inward current, referred to as IDHPG , which was developmentally stable through postnatal day P56. IDHPG had low temperature dependence in the range 25-34°C, consistent with a channel mechanism. However, the I-V relationship took the form of an inverted U that did not reverse at the calculated Nernst potential for K+ or Cl- . Thus, it is likely that more than one ion type contributes to IDHPG and the mix may be voltage dependent. IDHPG was resistant to the Na+ channel blockers tetrodotoxin and amiloride, and to inhibitors of iGluR (CNQX and MK801). IDHPG was inhibited 21% by Ba2+ (500 μM), 60% by ZD7288 (100 μM) and 73% when the two antagonists were applied together, suggesting that KIR channels and HCN channels contribute to the current. Voltage clamp measurements of IH indicated a small (6%) increase in Gmax by DHPG with no change in the voltage dependence. DHPG reduced action potential rheobase and reduced the number of post-synaptic AP failures during high frequency stimulation of the calyx of Held. Thus, activation of post-synaptic Group I mGlu receptors modifies the excitability of MNTB neurons and contributes to the reliability of high frequency firing in this auditory relay nucleus.
Collapse
Affiliation(s)
- Éverton Dos Santos E Alhadas
- Graduate Program in Physiology and Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bernal Correa
- Graduate Program in Physiology and Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ligia Araújo Naves
- Department of Physiology and Biophysics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Department of Physiology and Biophysics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Presynaptic Calcium Channels. Int J Mol Sci 2019; 20:ijms20092217. [PMID: 31064106 PMCID: PMC6539076 DOI: 10.3390/ijms20092217] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
20
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Midorikawa M. Real-time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Neurosci Res 2018; 136:1-5. [DOI: 10.1016/j.neures.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
|
22
|
Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. J Neurosci 2018; 38:8187-8199. [PMID: 30093538 DOI: 10.1523/jneurosci.0603-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromodulation mediated by metabotropic glutamate receptors (mGluRs) regulates many brain functions. However, the functions of mGluRs in the auditory system under normal and diseased states are not well understood. The medial nucleus of the trapezoid body (MNTB) is a critical nucleus in the auditory brainstem nuclei involved in sound localization. In addition to the classical calyx excitatory inputs, MNTB neurons also receive synaptic inhibition and it remains entirely unknown how this inhibition is regulated. Here, using whole-cell voltage clamp in brain slices, we investigated group I mGluR (mGluR I)-mediated modulation of the glycinergic and GABAergic inputs to MNTB neurons in both WT mice and a fragile X syndrome (FXS) mouse model (both sexes) in which the fragile X mental retardation gene 1 is knocked out (Fmr1 KO), causing exaggerated activity of mGluR I and behavioral phenotypes. Activation of mGluR I by (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) increased the frequency and amplitude of glycinergic spontaneous IPSCs (sIPSCs) in both WT and Fmr1 KO neurons in a voltage-gated sodium channel-dependent fashion, but did not modulate glycinergic evoked IPSCs (eIPSCs). In contrast, 3,5-DHPG did not affect GABAergic sIPSCs, but did suppress eIPSCs in WT neurons via endocannabinoid signaling. In the KO, the effect of 3,5-DHPG on GABAergic eIPSCs was highly variable, which supports the notion of impaired GABAergic signaling in the FXS model. The differential modulation of sIPSC and eIPSC and differential modulation of glycinergic and GABAergic transmission suggest distinct mechanisms responsible for spontaneous and evoked release of inhibitory transmitters and their modulation through the mGluR I signaling pathway.SIGNIFICANCE STATEMENT Neurons communicate with each other through the release of neurotransmitters, which assumes two basic modes, spontaneous and evoked release. These two release modes are believed to function using the same vesicle pool and machinery. Recent works have challenged this dogma, pointing to distinct vesicle release mechanisms underlying the two release modes. Here, we provide the first evidence in the central auditory system supporting this novel concept. We discovered neural-transmitter- and release-mode-specific neuromodulation of inhibitory transmission by metabotropic glutamate receptors and revealed part of the signaling pathways underlying this differential modulation. The results establish the foundation for a multitude of directions to study physiological significance of different release modes in auditory processing.
Collapse
|
23
|
Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Curr Biol 2018; 28:2527-2535.e8. [PMID: 30078569 DOI: 10.1016/j.cub.2018.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Trevor S Smith
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
|
25
|
Oshima-Takago T, Takago H. NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups. Open Biol 2018; 7:rsob.170032. [PMID: 28747405 PMCID: PMC5541344 DOI: 10.1098/rsob.170032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
N-Methyl-d-aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic transmission remain largely unknown. In the present study, we demonstrated that activation of NMDARs in a nerve terminal at a central glutamatergic synapse inhibits presynaptic Ca2+ currents (ICa) in a GluN2C/2D subunit-dependent manner, thereby decreasing nerve-evoked excitatory postsynaptic currents. Neither presynaptically loaded fast Ca2+ chelator BAPTA nor non-hydrolysable GTP analogue GTPγS affected NMDAR-mediated ICa inhibition. In the presence of a glutamate uptake blocker, the decline in ICa amplitude evoked by repetitive depolarizing pulses at 20 Hz was attenuated by an NMDAR competitive antagonist, suggesting that endogenous glutamate has a potential to activate presynaptic NMDARs. Moreover, NMDA-induced inward currents at a negative holding potential (−80 mV) were abolished by intra-terminal loading of the NMDAR open channel blocker MK-801, indicating functional expression of presynaptic NMDARs. We conclude that presynaptic NMDARs can attenuate glutamate release by inhibiting voltage-gated Ca2+ channels at a relay synapse in the immature rat auditory brainstem.
Collapse
Affiliation(s)
- Tomoko Oshima-Takago
- Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan.,Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hideki Takago
- Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan .,Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan.,Department of Otolaryngology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| |
Collapse
|
26
|
Presynaptic calcium channels. Neurosci Res 2018; 127:33-44. [DOI: 10.1016/j.neures.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
27
|
SAKABA T. Kinetics of transmitter release at the calyx of Held synapse. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:139-152. [PMID: 29526973 PMCID: PMC5909059 DOI: 10.2183/pjab.94.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 08/01/2023]
Abstract
Synaptic contacts mediate information transfer between neurons. The calyx of Held, a large synapse in the mammalian auditory brainstem, has been used as a model system for the mechanism of transmitter release from the presynaptic terminal for the last 20 years. By applying simultaneous recordings from pre- and postsynaptic compartments, the calcium-dependence of the kinetics of transmitter release has been quantified. A single pool of readily releasable vesicles cannot explain the time course of release during repetitive activity. Rather, multiple pools of vesicles have to be postulated that are replenished with distinct kinetics after depletion. The physical identity of vesicle replenishment has been unknown. Recently, it has become possible to apply total internal reflection fluorescent microscopy to the calyx terminal. This technique allowed the visualization of the dynamics of individual synaptic vesicles. Rather than recruitment of vesicles to the transmitter release sites, priming of tethered vesicles in the total internal reflection fluorescent field limited the number of readily releasable vesicles during sustained activity.
Collapse
Affiliation(s)
- Takeshi SAKABA
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
28
|
Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses. Methods Mol Biol 2017. [PMID: 29222783 DOI: 10.1007/978-1-4939-7571-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals.
Collapse
|
29
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
30
|
|
31
|
A Presynaptic Group III mGluR Recruits Gβγ/SNARE Interactions to Inhibit Synaptic Transmission by Cone Photoreceptors in the Vertebrate Retina. J Neurosci 2017; 37:4618-4634. [PMID: 28363980 DOI: 10.1523/jneurosci.2948-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission.SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system.
Collapse
|
32
|
Jensen TP, Zheng K, Tyurikova O, Reynolds JP, Rusakov DA. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue. Cell Calcium 2017; 64:102-108. [PMID: 28465084 DOI: 10.1016/j.ceca.2017.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain function relies in large part on Ca2+-dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca2+ dynamics and transmitter release in an intact brain at the level of individual synapses.
Collapse
Affiliation(s)
- Thomas P Jensen
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Kaiyu Zheng
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - James P Reynolds
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
33
|
Target Cell Type-Dependent Differences in Ca 2+ Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals. J Neurosci 2017; 37:1910-1924. [PMID: 28115484 DOI: 10.1523/jneurosci.2024-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/24/2022] Open
Abstract
Target cell type-dependent differences in presynaptic release probability (Pr ) and short-term plasticity are intriguing features of cortical microcircuits that increase the computational power of neuronal networks. Here, we tested the hypothesis that different voltage-gated Ca2+ channel densities in presynaptic active zones (AZs) underlie different Pr values. Two-photon Ca2+ imaging, triple immunofluorescent labeling, and 3D electron microscopic (EM) reconstruction of rat CA3 pyramidal cell axon terminals revealed ∼1.7-1.9 times higher Ca2+ inflow per AZ area in high Pr boutons synapsing onto parvalbumin-positive interneurons (INs) than in low Pr boutons synapsing onto mGluR1α-positive INs. EM replica immunogold labeling, however, demonstrated only 1.15 times larger Cav2.1 and Cav2.2 subunit densities in high Pr AZs. Our results indicate target cell type-specific modulation of voltage-gated Ca2+ channel function or different subunit composition as possible mechanisms underlying the functional differences. In addition, high Pr synapses are also characterized by a higher density of docked vesicles, suggesting that a concerted action of these mechanisms underlies the functional differences.SIGNIFICANCE STATEMENT Target cell type-dependent variability in presynaptic properties is an intriguing feature of cortical synapses. When a single cortical pyramidal cell establishes a synapse onto a somatostatin-expressing interneuron (IN), the synapse releases glutamate with low probability, whereas the next bouton of the same axon has high release probability when its postsynaptic target is a parvalbumin-expressing IN. Here, we used combined molecular, imaging, and anatomical approaches to investigate the mechanisms underlying these differences. Our functional experiments implied an approximately twofold larger Ca2+ channel density in high release probability boutons, whereas freeze-fracture immunolocalization demonstrated only a 15% difference in Ca2+ channel subunit densities. Our results point toward a postsynaptic target cell type-dependent regulation of Ca2+ channel function or different subunit composition as the underlying mechanism.
Collapse
|
34
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr Neuropharmacol 2017; 14:504-13. [PMID: 27306064 PMCID: PMC4983754 DOI: 10.2174/1570159x13666150716165323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7's presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N`-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug's apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7's effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
35
|
Reconstitution of Giant Mammalian Synapses in Culture for Molecular Functional and Imaging Studies. J Neurosci 2016; 36:3600-10. [PMID: 27013688 DOI: 10.1523/jneurosci.3869-15.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Giant presynaptic terminal brain slice preparations have allowed intracellular recording of electrical signals and molecular loading, elucidating cellular and molecular mechanisms underlying neurotransmission and modulation. However, molecular genetic manipulation or optical imaging in these preparations is hampered by factors, such as tissue longevity and background fluorescence. To overcome these difficulties, we developed a giant presynaptic terminal culture preparation, which allows genetic manipulation and enables optical measurements of synaptic vesicle dynamics, simultaneously with presynaptic electrical signal recordings. This giant synapse reconstructed from dissociated mouse brainstem neurons resembles the development of native calyceal giant synapses in several respects. Thus, this novel preparation constitutes a powerful tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development. SIGNIFICANCE STATEMENT We have developed a novel culture preparation of giant mammalian synapses. These presynaptic terminals make it possible to perform optical imaging simultaneously with presynaptic electrophysiological recording. We demonstrate that this enables one to dissect endocytic and acidification times of synaptic vesicles. In addition, developmental elimination and functional maturation in this cultured preparation provide a useful model for studying presynaptic development. Because this giant synapse preparation allows molecular genetic manipulations, it constitutes a powerful new tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development.
Collapse
|
36
|
Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 2016; 113:E4548-57. [PMID: 27432975 DOI: 10.1073/pnas.1606383113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C-diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of "superprimed" synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems.
Collapse
|
37
|
Rehmann R, Sczesny-Kaiser M, Lenz M, Gucia T, Schliesing A, Schwenkreis P, Tegenthoff M, Höffken O. Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans. Front Hum Neurosci 2016; 10:208. [PMID: 27242473 PMCID: PMC4860403 DOI: 10.3389/fnhum.2016.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | | | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Tomasz Gucia
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Annika Schliesing
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| |
Collapse
|
38
|
Stude P, Lenz M, Höffken O, Tegenthoff M, Dinse H. A single dose of lorazepam reduces paired-pulse suppression of median nerve evoked somatosensory evoked potentials. Eur J Neurosci 2016; 43:1156-60. [PMID: 26929110 DOI: 10.1111/ejn.13224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Paired-pulse behaviour in the somatosensory cortex is an approach to obtain insights into cortical processing modes and to obtain markers of changes of cortical excitability attributable to learning or pathological states. Numerous studies have demonstrated suppression of the response to the stimulus that follows a first one after a short interval, but the underlying mechanisms remain elusive, although there is agreement that GABAergic mechanisms seem to play a crucial role. We therefore aimed to explore the influence of the GABAA agonist lorazepam on paired-pulse somatosensory evoked potentials (SEPs). We recorded and analysed SEPs after paired median nerve stimulation in healthy individuals before and after they had received a single dose of 2.5 mg of lorazepam as compared with a control group receiving placebo. Paired-pulse suppression was expressed as a ratio of the amplitudes of the second and the first peaks. We found that, after lorazepam application, paired-pulse suppression of the cortical N20 component remained unchanged, but suppression of the N20-P25 complex was significantly reduced, indicative of GABAergic involvement in intracortical processing. Our data suggest that lorazepam most likely enhances inhibition within the cortical network of interneurons responsible for creating paired-pulse suppression, leading to reduced inhibitory drive with a subsequently reduced amount of suppression. The results provide further evidence that GABAA -mediated mechanisms are involved in the generation of median nerve evoked paired-pulse suppression.
Collapse
Affiliation(s)
- Philipp Stude
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Hubert Dinse
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.,Neural Plasticity Laboratory, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| |
Collapse
|
39
|
Stanley EF. The Nanophysiology of Fast Transmitter Release. Trends Neurosci 2016; 39:183-197. [PMID: 26896416 DOI: 10.1016/j.tins.2016.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 01/26/2023]
Abstract
Action potentials invading the presynaptic terminal trigger discharge of docked synaptic vesicles (SVs) by opening voltage-dependent calcium channels (CaVs) and admitting calcium ions (Ca(2+)), which diffuse to, and activate, SV sensors. At most synapses, SV sensors and CaVs are sufficiently close that release is gated by individual CaV Ca(2+) nanodomains centered on the channel mouth. Other synapses gate SV release with extensive Ca(2+) microdomains summed from many, more distant CaVs. We review the experimental preparations, theories, and methods that provided principles of release nanophysiology and highlight expansion of the field into synaptic diversity and modifications of release gating for specific synaptic demands. Specializations in domain gating may adapt the terminal for roles in development, transmission of rapid impulse frequencies, and modulation of synaptic strength.
Collapse
Affiliation(s)
- Elise F Stanley
- Laboratory of Synaptic Transmission, KD 7-418, The Krembil Institute, 60 Leonard Street, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
40
|
Slater CR. The functional organization of motor nerve terminals. Prog Neurobiol 2015; 134:55-103. [DOI: 10.1016/j.pneurobio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/28/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
|
41
|
Koukouli F, Maskos U. The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem Pharmacol 2015. [PMID: 26206184 DOI: 10.1016/j.bcp.2015.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) play an important role in a variety of modulatory and regulatory processes including neurotransmitter release and synaptic transmission in various brain regions of the central nervous system (CNS). Glutamate is the principal excitatory neurotransmitter in the brain and the glutamatergic system participates in the pathophysiology of several neuropsychiatric disorders. Underpinning the importance of nAChRs, many studies demonstrated that nAChRs containing the α7 subunit facilitate glutamate release. Here, we review the currently available body of experimental evidence pertaining to α7 subunit containing nAChRs in their contribution to the modulation of glutamatergic neurotransmission, and we highlight the role of α7 in synaptic plasticity, the morphological and functional maturation of the glutamatergic system and therefore its important contribution in the modulation of neural circuits of the CNS.
Collapse
Affiliation(s)
- Fani Koukouli
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
42
|
Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330:178-90. [PMID: 26188105 DOI: 10.1016/j.heares.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
Abstract
Hearing impairment is the most common human sensory deficit. Considering the sophisticated anatomy and physiology of the auditory system, disease-related failures frequently occur. To meet the demands of the neuronal circuits responsible for processing auditory information, the synapses of the lower auditory pathway are anatomically and functionally specialized to process acoustic information indefatigably with utmost temporal precision. Despite sharing some functional properties, the afferent synapses of the cochlea and of auditory brainstem differ greatly in their morphology and employ distinct molecular mechanisms for regulating synaptic vesicle release. Calyceal synapses of the endbulb of Held and the calyx of Held profit from a large number of release sites that project onto one principal cell. Cochlear inner hair cell ribbon synapses exhibit a unique one-to-one relation of the presynaptic active zone to the postsynaptic cell and use hair-cell-specific proteins such as otoferlin for vesicle release. The understanding of the molecular physiology of the hair cell ribbon synapse has been advanced by human genetics studies of sensorineural hearing impairment, revealing human auditory synaptopathy as a new nosological entity.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience & InnerEarLab, University Medical Center, Göttingen, Germany.
| |
Collapse
|
43
|
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 2015; 18:935-41. [DOI: 10.1038/nn.4044] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022]
|
44
|
Kupferschmidt DA, Lovinger DM. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABA(B) and mGlu2/3 receptors. J Physiol 2015; 593:2295-310. [PMID: 25781000 DOI: 10.1113/jp270045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/06/2015] [Indexed: 01/30/2023] Open
Abstract
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABA(B) and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca(2+) ) indicator GCaMP6 to assess presynaptic Ca(2+) in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca(2+) and striatal field potential recordings, we report that relative to P/Q-type Ca(2+) channels, N-type channels preferentially contributed to evoked presynaptic Ca(2+) influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABA(B) or mGlu2/3 receptors inhibited both evoked presynaptic Ca(2+) transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca(2+) channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Section on Synaptic Pharmacology & In Vivo Neural Function, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology & In Vivo Neural Function, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
45
|
TAKAHASHI T. Strength and precision of neurotransmission at mammalian presynaptic terminals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:305-320. [PMID: 26194855 PMCID: PMC4631896 DOI: 10.2183/pjab.91.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 05/30/2023]
Abstract
Classically, the basic concept of chemical synaptic transmission was established at the frog neuromuscular junction, and direct intracellular recordings from presynaptic terminals at the squid giant presynaptic terminal have further clarified principles of neurotransmitter release. More recently, whole-cell patch-camp recordings from the calyx of Held in rodent brainstem slices have extended the classical concept to mammalian synapses providing new insights into the mechanisms underlying strength and precision of neurotransmission and developmental changes therein. This review summarizes findings from our laboratory and others on these subjects, mainly at the calyx of Held, with a particular focus on precise, high-fidelity, fast neurotransmission. The mechanisms by which presynaptic terminals acquire strong, precise neurotransmission during postnatal development are also discussed.
Collapse
Affiliation(s)
- Tomoyuki TAKAHASHI
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
46
|
Inchauspe CG, Pilati N, Di Guilmi MN, Urbano FJ, Ferrari MD, van den Maagdenberg AMJM, Forsythe ID, Uchitel OD. Familial hemiplegic migraine type-1 mutated cav2.1 calcium channels alter inhibitory and excitatory synaptic transmission in the lateral superior olive of mice. Hear Res 2014; 319:56-68. [PMID: 25481823 DOI: 10.1016/j.heares.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM pathology.
Collapse
Affiliation(s)
- Carlota González Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | - Nadia Pilati
- Dept Cell Physiology & Pharmacology, University of Leicester, LE1 9HN, UK.
| | - Mariano N Di Guilmi
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Francisco J Urbano
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ian D Forsythe
- Dept Cell Physiology & Pharmacology, University of Leicester, LE1 9HN, UK
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
47
|
Mercier MS, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014; 39:1876-94. [PMID: 25146900 DOI: 10.1007/s11064-014-1415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023]
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
Collapse
Affiliation(s)
- Marion S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK,
| | | |
Collapse
|
48
|
Uchitel OD, González Inchauspe C, Di Guilmi MN. Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models. Biophys Rev 2014; 6:15-26. [PMID: 28509957 DOI: 10.1007/s12551-013-0126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina.
| | - Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | - Mariano N Di Guilmi
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| |
Collapse
|
49
|
Caulder EH, Riegle MA, Godwin DW. Activation of group 2 metabotropic glutamate receptors reduces behavioral and electrographic correlates of pilocarpine induced status epilepticus. Epilepsy Res 2013; 108:171-81. [PMID: 24305700 DOI: 10.1016/j.eplepsyres.2013.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022]
Abstract
Novel treatments for epilepsy are necessary because many epilepsy patients are resistant to medication. Metabotropic glutamate receptors (mGluRs), specifically mGluR 2 and 3, may serve as antiepileptic drug targets because of their role in controlling synaptic release. In this study, we administered a Group 2 mGluR agonist, LY379268, one of two mGluR2-specific positive allosteric modulators, BINA or CBiPES, or a cocktail of both BINA and LY379268 in a series of experiments using the pilocarpine model of SE. In one study, groups received treatments 15 min prior to pilocarpine, while in a second study groups received treatments after SE had been initiated to determine whether the drugs could reduce development and progression of SE. We measured bouts of stage 5 seizures, latency to the first seizure, and the maximum Racine score to characterize the seizure severity. We analyzed mouse EEG with implanted electrodes using a power analysis. We found that pretreatment and posttreatment with LY379268 was effective at reducing both behavioral correlates and power in EEG bandwidths associated with seizure, while CBiPES was less effective and BINA was ineffective. These data generally support continued development of mGluR2 pharmacology for novel antiepileptic drugs, though further study with additional drugs and concentrations will be necessary.
Collapse
Affiliation(s)
- Erin H Caulder
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Melissa A Riegle
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA; Wake Forest University Graduate School of Arts and Sciences, Neuroscience Program, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Dwayne W Godwin
- Wake Forest University Graduate School of Arts and Sciences, Department of Neurobiology and Anatomy, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA; Wake Forest University Graduate School of Arts and Sciences, Neuroscience Program, 1 Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
50
|
Hennig MH. Theoretical models of synaptic short term plasticity. Front Comput Neurosci 2013; 7:45. [PMID: 23626536 PMCID: PMC3630333 DOI: 10.3389/fncom.2013.00045] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/04/2013] [Indexed: 11/13/2022] Open
Abstract
Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors.
Collapse
Affiliation(s)
- Matthias H Hennig
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK
| |
Collapse
|