1
|
Zhao Y, Lu J, Wang Y, Hao K, Liu Z, Hui G, Sun T. Bioinformatics Analysis of the Panax ginseng Cyclophilin Gene and Its Anti- Phytophthora cactorum Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2731. [PMID: 39409601 PMCID: PMC11478562 DOI: 10.3390/plants13192731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein encoded by the PgCyP gene contains the active site of PPIase (R62, F67, and H133) and a binding site for cyclosporine A (W128). The relative molecular weight of PgCyP is 187.11 bp; its theoretical isoelectric point is 7.67, and it encodes 174 amino acids. The promoter region of PgCyP mainly contains the low-temperature environmental stress response (LTR) element, abscisic acid-responsive cis-acting element (ABRE), and light-responsive cis-acting element (G-Box). PgCyP includes a total of nine phosphorylation sites, comprising four serine phosphorylation sites, three threonine phosphorylation sites, and two tyrosine phosphorylation sites. PgCyP was recombined and expressed in vitro, and its recombinant expression was investigated. Furthermore, it was found that the recombinant PgCyP protein could effectively inhibit the germination of Phytophthora cactorum spores and the normal growth of Phytophthora cactorum mycelia in vitro. Further experiments on the roots of susceptible Arabidopsis thaliana showed that the PgCyP protein could improve the resistance of arabidopsis to Phytophthora cactorum. The findings of this study provide a basis for the use of the PgCyP protein as a new type of green biopesticide.
Collapse
Affiliation(s)
| | | | | | | | | | - Ge Hui
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (Y.W.); (K.H.); (Z.L.)
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (Y.W.); (K.H.); (Z.L.)
| |
Collapse
|
2
|
Rios EI, Hunsberger IL, Johnson JL. Insights into Hsp90 mechanism and in vivo functions learned from studies in the yeast, Saccharomyces cerevisiae. Front Mol Biosci 2024; 11:1325590. [PMID: 38389899 PMCID: PMC10881880 DOI: 10.3389/fmolb.2024.1325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular chaperone Hsp90 (Heat shock protein, 90 kDa) is an abundant and essential cytosolic protein required for the stability and/or folding of hundreds of client proteins. Hsp90, along with helper cochaperone proteins, assists client protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist, in collaboration with other researchers, was the first to establish the yeast Saccharomyces cerevisiae as a model organism to study the functional interaction between Hsp90 and clients. Important insights from studies in her lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone interactions are highly conserved between yeast and mammalian cells. Here, we describe key mechanistic insights into the Hsp90 folding cycle that were obtained using the yeast system. We highlight the early contributions of the laboratory of Susan Lindquist and extend our analysis into the broader use of the yeast system to analyze the understanding of the conformational cycle of Hsp90 and the impact of altered Hsp90 function on the proteome.
Collapse
Affiliation(s)
| | | | - Jill L. Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Singh M, Singh H, Kaur K, Shubhankar S, Singh S, Kaur A, Singh P. Characterization and regulation of salt upregulated cyclophilin from a halotolerant strain of Penicillium oxalicum. Sci Rep 2023; 13:17433. [PMID: 37833355 PMCID: PMC10575979 DOI: 10.1038/s41598-023-44606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.
Collapse
Affiliation(s)
- Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, 144008, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shubhankar Shubhankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Aranda-Caño L, Valderrama R, Pedrajas JR, Begara-Morales JC, Chaki M, Padilla MN, Melguizo M, López-Jaramillo FJ, Barroso JB. Nitro-Oleic Acid-Mediated Nitroalkylation Modulates the Antioxidant Function of Cytosolic Peroxiredoxin Tsa1 during Heat Stress in Saccharomyces cerevisiae. Antioxidants (Basel) 2022; 11:antiox11050972. [PMID: 35624836 PMCID: PMC9137801 DOI: 10.3390/antiox11050972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Heat stress is one of the abiotic stresses that leads to oxidative stress. To protect themselves, yeast cells activate the antioxidant response, in which cytosolic peroxiredoxin Tsa1 plays an important role in hydrogen peroxide removal. Concomitantly, the activation of the heat shock response (HSR) is also triggered. Nitro-fatty acids are signaling molecules generated by the interaction of reactive nitrogen species with unsaturated fatty acids. These molecules have been detected in animals and plants. They exert their signaling function mainly through a post-translational modification called nitroalkylation. In addition, these molecules are closely related to the induction of the HSR. In this work, the endogenous presence of nitro-oleic acid (NO2-OA) in Saccharomyces cerevisiae is identified for the first time by LC-MS/MS. Both hydrogen peroxide levels and Tsa1 activity increased after heat stress with no change in protein content. The nitroalkylation of recombinant Tsa1 with NO2-OA was also observed. It is important to point out that cysteine 47 (peroxidatic) and cysteine 171 (resolving) are the main residues responsible for protein activity. Moreover, the in vivo nitroalkylation of Tsa1 peroxidatic cysteine disappeared during heat stress as the hydrogen peroxide generated in this situation caused the rupture of the NO2-OA binding to the protein and, thus, restored Tsa1 activity. Finally, the amino acid targets susceptible to nitroalkylation and the modulatory effect of this PTM on the enzymatic activity of Tsa1 are also shown in vitro and in vivo. This mechanism of response was faster than that involving the induction of genes and the synthesis of new proteins and could be considered as a key element in the fine-tuning regulation of defence mechanisms against oxidative stress in yeast.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - José Rafael Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - María N. Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain;
| | | | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, Campus Las Lagunillas, University of Jaén, E-23071 Jaén, Spain; (L.A.-C.); (R.V.); (J.R.P.); (J.C.B.-M.); (M.C.); (M.N.P.)
- Correspondence:
| |
Collapse
|
5
|
Saccharomyces cerevisiae Fpr1 functions as a chaperone to inhibit protein aggregation. Int J Biol Macromol 2021; 191:40-50. [PMID: 34534579 DOI: 10.1016/j.ijbiomac.2021.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Peptidyl prolyl isomerases (PPIases) accelerate the rate limiting step of protein folding by catalyzing cis/trans isomerization of peptidyl prolyl bonds. The larger PPIases have been shown to be multi-domain proteins, with functions other than isomerization of the proline-containing peptide bond. Recently, a few smaller PPIases have also been described for their ability to stabilize folding intermediates. The yeast Fpr1 (FK506-sensitive proline rotamase) is a homologue of the mammalian prolyl isomerase FKBP12 (FK506-binding protein of 12 kDa). Its ability to stabilize stressed cellular proteins has not been reported yet. We had earlier reported upregulation of Fpr1 in yeast cells exposed to proteotoxic stress conditions. In this work, we show that yeast Fpr1 exhibits characteristics typical of a general chaperone of the proteostasis network. Aggregation of mutant huntingtin fragment was higher in Fpr1-deleted as compared to parental yeast cells. Overexpression of Fpr1 led to reduced protein aggregation by decreasing the amount of oligomers and diverting the aggregation pathway towards the formation of detergent-soluble species. This correlated well with higher survival of these cells. Purified and enzymatically active yeast Fpr1 was able to inhibit aggregation of mutant huntingtin fragment and luciferase in vitro in a concentration-dependent manner; suggesting a direct action for aggregation inhibitory action of Fpr1. Overexpression of yeast Fpr1 was able to protect E. coli cells against thermal shock. This work establishes the role of Fpr1 in the protein folding network and will be used for the identification of novel pharmacological leads in disease conditions.
Collapse
|
6
|
Biebl MM, Riedl M, Buchner J. Hsp90 Co-chaperones Form Plastic Genetic Networks Adapted to Client Maturation. Cell Rep 2021; 32:108063. [PMID: 32846121 DOI: 10.1016/j.celrep.2020.108063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone regulating the activity of diverse client proteins together with a plethora of different co-chaperones. Whether these functionally cooperate has remained enigmatic. We analyze all double mutants of 11 Saccharomyces cerevisiae Hsp90 co-chaperones in vivo concerning effects on cell physiology and the activation of specific client proteins. We find that client activation is supported by a genetic network with weak epistasis between most co-chaperones and a few modules with strong genetic interactions. These include an epistatic module regulating protein translation and dedicated epistatic networks for specific clients. For kinases, the bridging of Hsp70 and Hsp90 by Sti1/Hop is essential for activation, whereas for steroid hormone receptors, an epistatic module regulating their dwell time on Hsp90 is crucial, highlighting the specific needs of different clients. Thus, the Hsp90 system is characterized by plastic co-chaperone networks fine-tuning the conformational processing in a client-specific manner.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Maximilian Riedl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
7
|
The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo. Sci Rep 2021; 11:6152. [PMID: 33731782 PMCID: PMC7969970 DOI: 10.1038/s41598-021-85753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.
Collapse
|
8
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
9
|
The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Genetics 2020; 215:683-698. [PMID: 32299842 DOI: 10.1534/genetics.120.303190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Heat-shock protein (Hsp) 90 assists in the folding of diverse sets of client proteins including kinases and growth hormone receptors. Hsp70 plays a major role in many Hsp90 functions by interacting and modulating conformation of its substrates before being transferred to Hsp90s for final maturation. Each eukaryote contains multiple members of the Hsp70 family. However, the role of different Hsp70 isoforms in Hsp90 chaperoning actions remains unknown. Using v-Src as an Hsp90 substrate, we examined the role of each of the four yeast cytosolic Ssa Hsp70s in regulating Hsp90 functions. We show that the strain expressing stress-inducible Ssa3 or Ssa4, and the not constitutively expressed Ssa1 or Ssa2, as the sole Ssa Hsp70 isoform reduces v-Src-mediated growth defects. The study shows that although different Hsp70 isoforms interact similarly with Hsp90s, v-Src maturation is less efficient in strains expressing Ssa4 as the sole Hsp70. We further show that the functional distinction between Ssa2 and Ssa4 is regulated by its C-terminal domain. Further studies reveal that Ydj1, which is known to assist substrate transfer to Hsp70s, interacts relatively weakly with Ssa4 compared with Ssa2, which could be the basis for poor maturation of the Hsp90 client in cells expressing stress-inducible Ssa4 as the sole Ssa Hsp70. The study thus reveals a novel role of Ydj1 in determining the functional distinction among Hsp70 isoforms with respect to the Hsp90 chaperoning action.
Collapse
|
10
|
Genome-Wide Identification and Characterization of the Cyclophilin Gene Family in the Nematophagous Fungus Purpureocillium lilacinum. Int J Mol Sci 2019; 20:ijms20122978. [PMID: 31216716 PMCID: PMC6627767 DOI: 10.3390/ijms20122978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
Purpureocillium lilacinum has been widely used as a commercial biocontrol agent for the control of plant parasitic nematodes. Whole genome analysis promotes the identification of functional genes and the exploration of their molecular mechanisms. The Cyclophilin (CYP) gene family belongs to the immunophillin superfamily, and has a conserved cyclophilin-like domain (CLD). CYPs are widely identified in prokaryotes and eukaryotes, and can be divided into single- and multi-domain proteins. In the present study, 10 CYP genes possessing the CLD, named PlCYP1-P10, were identified from the genome of P. lilacinum strain 36-1. Those 10 PlCYPs were predicted to have different cellular localizations in P. lilacinum. Phylogenetic and gene structure analysis revealed the evolutionary differentiation of CYPs between Ascomycotina and Saccharomycotina fungi, but conservation within the Ascomycotina fungi. Motif and gene structure distributions further support the result of phylogenetic analysis. Each PlCYP gene had a specific expression pattern in different development stages of P. lilacinum and its parasitism stage on eggs of Meloidogyne incognita. In addition, the 10 PlCYP genes exhibited different expression abundances in response to abiotic stresses, among which PlCYP4 was highly expressed at a high temperature (35 °C), while PlCYP6 was up-regulated under 5 mM of H2O2 stress. Furthermore, the heterologous expression of PlCYP4 and PlCYP6 in Escherichia coli enhanced the cellular tolerance against a high temperature and H2O2. In summary, our study indicates the potential functions of PlCYPs in virulence and the stress response, and also provides a frame for further analysis of the CYP gene family in Ascomycotina fungi.
Collapse
|
11
|
Lee SH, Kim YH, Lee K, Im H. Peptidyl-Prolyl Isomerase Cpr7p of Yeast Prevents Protein Aggregation Upon Freezing. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung Hyun Lee
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| | - Kyunghee Lee
- Department of Chemistry; Sejong University; Seoul 05006 Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| |
Collapse
|
12
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
13
|
Watashi K, Shimotohno K. Cyclophilin and Viruses: Cyclophilin as a Cofactor for Viral Infection and Possible Anti-Viral Target. Drug Target Insights 2017. [DOI: 10.1177/117739280700200017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Koichi Watashi
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kunitada Shimotohno
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Skagia A, Vezyri E, Grados K, Venieraki A, Karpusas M, Katinakis P, Dimou M. Structure-Function Analysis of the Periplasmic Escherichia coli Cyclophilin PpiA in Relation to Biofilm Formation. J Mol Microbiol Biotechnol 2017; 27:228-236. [PMID: 28889121 DOI: 10.1159/000478858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8) in all domains of life indicates their biological importance. Cyclophilin PpiA, present in the periplasm of gram-negative bacteria, possesses PPIase activity but its physiological functions are still not clearly defined. Here, we demonstrate that the ΔppiA deletion strain from Escherichia coli exhibits an increased ability for biofilm formation and enhanced swimming motility compared to the wild-type strain. To identify structural features of PpiA which are necessary for the negative modulation of biofilm formation, we constructed a series of mutant PpiA proteins using a combination of error-prone and site-directed mutagenesis approaches. We show that the negative effect of PpiA on biofilm formation is not dependent on its PPIase activity, since PpiA mutants with a reduced PPIase activity are able to complement the ΔppiA strain during biofilm growth.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Mol Cell 2017; 67:947-961.e5. [PMID: 28890336 DOI: 10.1016/j.molcel.2017.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/10/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.
Collapse
Affiliation(s)
- Priyanka Sahasrabudhe
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Julia Rohrberg
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Maximillian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
16
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
17
|
Vital role for cyclophilin B (CypB) in asexual development, dimorphic transition and virulence of Beauveria bassiana. Fungal Genet Biol 2017; 105:8-15. [PMID: 28552321 DOI: 10.1016/j.fgb.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
Abstract
Cyclophilin B (CypB) was previously revealed as one of many putative secretory proteins in the transcriptome of Beauveria bassiana infection to a lepidopteran pest. Here we show a main localization of CypB in hyphal cell walls and septa and its essential role in the in vitro and in vivo asexual cycles of the fungal insect pathogen. Deletion of cypB reduced colony growth by 16-42% on two rich media and 30 scant media with different carbon or nitrogen sources. The deletion mutant suffered a delayed conidiation on a standard medium and a final 47% reduction in conidial yield, accompanied with drastic transcript depression of several key genes required for conidiation and conidial maturation. The mutant conidia required 10h longer to germinate 50% at optimal 25°C than wild-type conidia. Intriguingly, cultivation of the mutant conidia in a trehalose-peptone broth mimic to insect hemolymph resulted in 83% reduction in blastospore yield but only slight decrease in biomass level, indicating severe defects in transition of hyphae to blastospores. LT50 for the deletion mutant against Galleria mellonella larvae through normal cuticle infection was prolonged to 7.4d from a wild-type estimate of 4.7d. During colony growth, additionally, the deletion mutant displayed hypersensitivity to Congo red, menadione, H2O2 and heat shock but increased tolerance to cyclosporine A and rapamycin. All of changes were restored by targeted gene complementation. Altogether, CypB takes part in sustaining normal growth, aerial conidiation, conidial germination, dimorphic transition, stress tolerance and pathogenicity in B. bassiana.
Collapse
|
18
|
Skagia A, Zografou C, Vezyri E, Venieraki A, Katinakis P, Dimou M. Cyclophilin PpiB is involved in motility and biofilm formation via its functional association with certain proteins. Genes Cells 2016; 21:833-51. [PMID: 27306110 DOI: 10.1111/gtc.12383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
PpiB belongs to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), which catalyze the rate-limiting protein folding step at peptidyl-prolyl bonds and control several biological processes. In this study, we show that PpiB acts as a negative effector of motility and biofilm formation ability of Escherichia coli. We identify multicopy suppressors of each ΔppiB phenotype among putative PpiB prey proteins which upon deletion are often characterized by analogous phenotypes. Many putative preys show similar gene expression in wild-type and ΔppiB genetic backgrounds implying possible post-translational modifications by PpiB. We further conducted in vivo and in vitro interaction screens to determine which of them represent true preys. For DnaK, acetyl-CoA carboxylase, biotin carboxylase subunit (AccC) and phosphate acetyltransferase (Pta) we also showed a direct role of PpiB in the functional control of these proteins because it increased the measured enzyme activity of each protein and further interfered with DnaK localization and the correct folding of AccC. Taken together, these results indicate that PpiB is involved in diverse regulatory mechanisms to negatively modulate motility and biofilm formation via its functional association with certain protein substrates.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Eleni Vezyri
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
19
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
20
|
Garbaisz D, Turoczi Z, Aranyi P, Fulop A, Rosero O, Hermesz E, Ferencz A, Lotz G, Harsanyi L, Szijarto A. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811. PLoS One 2014; 9:e101067. [PMID: 24968303 PMCID: PMC4072765 DOI: 10.1371/journal.pone.0101067] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/02/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Objectives Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Materials and methods Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Results Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. Conclusion NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury.
Collapse
Affiliation(s)
- David Garbaisz
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
- * E-mail:
| | - Zsolt Turoczi
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| | - Peter Aranyi
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| | - Andras Fulop
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| | - Oliver Rosero
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| | - Edit Hermesz
- University of Szeged, Department of Biochemistry and Molecular Biology, Szeged, Hungary
| | - Agnes Ferencz
- University of Szeged, Department of Biochemistry and Molecular Biology, Szeged, Hungary
| | - Gabor Lotz
- Semmelweis University, 2 Department of Pathology, Budapest, Hungary
| | - Laszlo Harsanyi
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| | - Attila Szijarto
- Semmelweis University, 1 Department of Surgery, Budapest, Hungary
| |
Collapse
|
21
|
Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones. Curr Genet 2014; 60:265-76. [DOI: 10.1007/s00294-014-0432-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/14/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022]
|
22
|
The ribosomal biogenesis protein Utp21 interacts with Hsp90 and has differing requirements for Hsp90-associated proteins. PLoS One 2014; 9:e92569. [PMID: 24647762 PMCID: PMC3960262 DOI: 10.1371/journal.pone.0092569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/24/2014] [Indexed: 01/11/2023] Open
Abstract
The molecular chaperone Hsp90 buffers the effects of genetic variation by assisting the stabilization and folding of multiple clients critical for cell signaling and growth. We identified an interaction of Hsp90 and associated proteins with the essential nucleolar protein, Utp21, part of a large complex required for biogenesis of the small ribosomal subunit. The utp21-S602F mutation, which causes minor defects in otherwise wild-type yeast, exhibited severe or lethal growth defects when combined with mutations in Hsp90 or co-chaperones. WT Utp21 and Utp21-S602F exhibited similar interactions with Hsp90, and steady-state levels of WT Utp21 were reduced upon Hsp90 mutation or inhibition. Mutations in the human homolog of UTP21, WDR36, have been associated with adult-onset primary open-angle glaucoma, a leading cause of blindness worldwide. Three different mutant forms of Utp21 analogous to glaucoma-associated WDR36 mutations exhibit reduced levels in yeast cells expressing mutations in Hsp90 or associated chaperones, suggesting that Hsp90 and co-chaperones buffer the effects of those mutations.
Collapse
|
23
|
Trivedi DK, Ansari MW, Dutta T, Singh P, Tuteja N. Molecular characterization of cyclophilin A-like protein from Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. BMC Res Notes 2013; 6:555. [PMID: 24365575 PMCID: PMC3878271 DOI: 10.1186/1756-0500-6-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022] Open
Abstract
Background Cyclophilins (CyP), conserved in all genera, are known to have regulatory responses of various cellular processes including stress tolerance. Interestingly, CyP has a crucial role as peptidyl-prolyl cis–trans isomerases (PPIases). Our earlier in silico based approach resulted into the identification of cyclophilin family from rice, Arabidopsis and yeast. In our recent report, we discovered a new OsCYP-25 from rice. Here, we identified a novel cyclophylin A-like protein (PiCyP) from Piriformospora indica which is responsible for abiotic stress tolerance in E. coli. Results Cyclophylin A-like protein (CyPA) (accession number GQ214003) was selected from cDNA library. The genomic organization CyPA revealed a 1304 bp of CyPA in P. indica genome, showing 10 exons and 9 introns. Further, CyPA was evident in PCR with gDNA and cDNA and Southern blot analysis. The phylogenetic examination of CyPA of P. indica showed that it is closed to human cyclophilin. The uniqueness of PiCyPA protein was apparent in western blot study. Kinetics of purified PiCyPA protein for its PPIas activity was determined via first order rate constant (0.104 s-1) in the presence of 1 μg of PiCyPA, with increasing PiCyPA concentration, in the presence of cyclosporin A (CsA) and the inhibition constant (4.435 nM) of CsA for inhibition of PiCyPA. The differential response of E. coli harbouring pET28a-PiCypA was observed for their different degree of tolerance to different abiotic stresses as compared to empty pET28a vector. Conclusions Overexpression of PiCyPA protein E. coli cells confer enhanced tolerance to wide range of abiotic stresses. Thus, this study provides the significance of PiCypA as a molecular chaperone which advanced cellular stress responses of E. coli cells under adverse conditions, and it, furthermore, confirms the mounting the sustainability of E. coli for exploitation in recombinant proteins production. Additionally, the PiCyPA gene cooperates substantial functions in cellular network of stress tolerance mechanism, essentially required for various developmental stages, and might be a potential paramount candidate for crop improvement and its sustainable production under adverse conditions.
Collapse
Affiliation(s)
| | | | | | | | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
24
|
Zuehlke AD, Wren N, Tenge V, Johnson JL. Interaction of heat shock protein 90 and the co-chaperone Cpr6 with Ura2, a bifunctional enzyme required for pyrimidine biosynthesis. J Biol Chem 2013; 288:27406-27414. [PMID: 23926110 PMCID: PMC3779735 DOI: 10.1074/jbc.m113.504142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/06/2013] [Indexed: 01/16/2023] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is an essential protein required for the activity and stability of multiple proteins termed clients. Hsp90 cooperates with a set of co-chaperone proteins that modulate Hsp90 activity and/or target clients to Hsp90 for folding. Many of the Hsp90 co-chaperones, including Cpr6 and Cpr7, contain tetratricopeptide repeat (TPR) domains that bind a common acceptor site at the carboxyl terminus of Hsp90. We found that Cpr6 and Hsp90 interacted with Ura2, a protein critical for pyrimidine biosynthesis. Mutation or inhibition of Hsp90 resulted in decreased accumulation of Ura2, indicating it is an Hsp90 client. Cpr6 interacted with Ura2 in the absence of stable Cpr6-Hsp90 interaction, suggesting a direct interaction. However, loss of Cpr6 did not alter the Ura2-Hsp90 interaction or Ura2 accumulation. The TPR domain of Cpr6 was required for Ura2 interaction, but other TPR containing co-chaperones, including Cpr7, failed to interact with Ura2 or rescue CPR6-dependent growth defects. Further analysis suggests that the carboxyl-terminal 100 amino acids of Cpr6 and Cpr7 are critical for specifying their unique functions, providing new information about this important class of Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Nicholas Wren
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Victoria Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844.
| |
Collapse
|
25
|
Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:403-410. [PMID: 23831950 DOI: 10.1016/j.plaphy.2013.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.
Collapse
Affiliation(s)
- Mohammad Wahid Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
26
|
Li J, Richter K, Reinstein J, Buchner J. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 2013; 20:326-31. [PMID: 23396352 DOI: 10.1038/nsmb.2502] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/27/2012] [Indexed: 02/07/2023]
Abstract
Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that associates dynamically with various co-chaperones during its chaperone cycle. Here we analyzed the role of the activating co-chaperone Aha1 in the progression of the yeast Hsp90 chaperone cycle and identified a critical ternary Hsp90 complex containing the co-chaperones Aha1 and Cpr6. Aha1 accelerates the intrinsically slow conformational transitions of Hsp90 to an N-terminally associated state but does not fully close the nucleotide-binding pocket yet. Cpr6 increases the affinity between Aha1 and Hsp90 and further stimulates the Hsp90 ATPase activity. Synergistically, Aha1 and Cpr6 displace the inhibitory co-chaperone Sti1 from Hsp90. To complete the cycle, Aha1 is released by the co-chaperone p23. Thus, at distinct steps during the Hsp90 chaperone cycle, co-chaperones selectively trap statistically distributed Hsp90 conformers and thus turn Hsp90 into a deterministic machine.
Collapse
Affiliation(s)
- Jing Li
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, München, Germany
| | | | | | | |
Collapse
|
27
|
Calderwood SK. Molecular cochaperones: tumor growth and cancer treatment. SCIENTIFICA 2013; 2013:217513. [PMID: 24278769 PMCID: PMC3820307 DOI: 10.1155/2013/217513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/01/2013] [Indexed: 05/12/2023]
Abstract
Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
- *Stuart K. Calderwood:
| |
Collapse
|
28
|
Trivedi DK, Yadav S, Vaid N, Tuteja N. Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. PLANT SIGNALING & BEHAVIOR 2012; 7:1653-66. [PMID: 23073011 PMCID: PMC3578907 DOI: 10.4161/psb.22306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyclophilin proteins are the members of immunophillin group of proteins, known for their property of binding to the immune-suppressant drug cyclosporin A, hence named as cyclophilins. These proteins are characterized by the presence of peptidyl prolyl isomerase (PPIase) domain which catalyzes the cis-trans isomerisation process of proline residues. In the present study, an in-silico based approach was followed to identify and characterize the cyclophilin family from rice, Arabidopsis and yeast. We were able to identify 28 rice, 35 Arabidopsis and 8 yeast cyclophilin genes from their respective genomes on the basis of their annotation as well as the presence of highly conserved PPIase domain. The evolutionary relationship of the cyclophilin genes from the three genomes was analyzed using the phylogenetic tree. We have also classified the rice cyclophilin genes on the basis of localization of the protein in cell. The structural similarity of the cyclophilins was also analyzed on the basis of their homology model. The expression analysis performed using Genevestigator revealed a very strong stress responsive behavior of the gene family which was more prominent in later stages of stress. The study indicates the importance of the gene family in stress response as well as several developmental stages thus opening up many avenues for future study on the cyclophilin proteins.
Collapse
|
29
|
Lancaster DL, Dobson CM, Rachubinski RA. Chaperone proteins select and maintain [PIN+] prion conformations in Saccharomyces cerevisiae. J Biol Chem 2012; 288:1266-76. [PMID: 23148221 DOI: 10.1074/jbc.m112.377564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions are proteins that can adopt different infectious conformations known as "strains" or "variants," each with a distinct, epigenetically inheritable phenotype. Mechanisms by which prion variants are determined remain unclear. Here we use the Saccharomyces cerevisiae prion Rnq1p/[PIN(+)] as a model to investigate the effects of chaperone proteins upon prion variant determination. We show that deletion of specific chaperone genes alters [PIN(+)] variant phenotypes, including [PSI(+)] induction efficiency, Rnq1p aggregate morphology/size and variant dominance. Mating assays demonstrate that gene deletion-induced phenotypic changes are stably inherited in a non-Mendelian manner even after restoration of the deleted gene, confirming that they are due to a bona fide change in the [PIN(+)] variant. Together, our results demonstrate a role for chaperones in regulating the prion variant complement of a cell.
Collapse
Affiliation(s)
- David L Lancaster
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
30
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
31
|
Wang Y, Gibney PA, West JD, Morano KA. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds. Mol Biol Cell 2012; 23:3290-8. [PMID: 22809627 PMCID: PMC3469052 DOI: 10.1091/mbc.e12-06-0447] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Diverse thiol-reactive compounds are found to activate the Hsf1-regulated heat shock response in Saccharomyces cerevisiae. The highly conserved cytosolic Hsp70 protein chaperone is shown to act as a sensor for these molecules through a pair of reactive cysteine residues in the nucleotide-binding domain. The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors.
Collapse
Affiliation(s)
- Yanyu Wang
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
32
|
Zuehlke AD, Johnson JL. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Genetics 2012; 191:805-14. [PMID: 22505624 PMCID: PMC3389976 DOI: 10.1534/genetics.112.140319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/05/2012] [Indexed: 01/11/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) of Saccharomyces cerevisiae is an abundant essential eukaryotic molecular chaperone involved in the activation and stabilization of client proteins, including several transcription factors and oncogenic kinases. Hsp90 undergoes a complex series of conformational changes and interacts with partner co-chaperones such as Sba1, Cpr6, Cpr7, and Cns1 as it binds and hydrolyzes ATP. In the absence of nucleotide, Hsp90 is dimerized only at the carboxy-terminus. In the presence of ATP, Hsp90 also dimerizes at the amino-terminus, creating a binding site for Sba1. Truncation of a charged linker region of yeast Hsp90 (Hsp82Δlinker) was known to disrupt the ability of Hsp82 to undergo amino-terminal dimerization and bind Sba1. We found that yeast expressing Hsp82Δlinker constructs exhibited a specific synthetic lethal phenotype in cells lacking CPR7. The isolated tetratricopeptide repeat domain of Cpr7 was both necessary and sufficient for growth in those strains. Cpr6 and Cpr7 stably bound the carboxy-terminus of wild-type Hsp82 only in the presence of nonhydrolyzable ATP and formed an Hsp82-Cpr6-Cpr7 ternary complex. However, in cells expressing Hsp82Δlinker or lacking CPR7, Cpr6 was able to bind Hsp82 in the presence or absence of nucleotide. Overexpression of CNS1, but not of other co-chaperones, in cpr7 cells restored nucleotide-dependent Hsp82-Cpr6 interaction. Together, our results suggest that the in vivo functions of Cpr7 include modulating Hsp90 conformational changes, mediating proper signaling of the nucleotide-bound state to the carboxy-terminus of Hsp82, or regulating Hsp82-Cpr6 interaction.
Collapse
Affiliation(s)
- Abbey D. Zuehlke
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-3051
| | - Jill L. Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-3051
| |
Collapse
|
33
|
Pearson JD, Mohammed Z, Bacani JTC, Lai R, Ingham RJ. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein. BMC Cancer 2012; 12:229. [PMID: 22681779 PMCID: PMC3407532 DOI: 10.1186/1471-2407-12-229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. METHODS NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. RESULTS We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this oncoprotein to signal. CONCLUSIONS This is the first study demonstrating that the expression of immunophilin family co-chaperones is promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in lymphoma.
Collapse
Affiliation(s)
- Joel D Pearson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Zubair Mohammed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Julinor T C Bacani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
34
|
Bhatt H, Trivedi DK, Pal RK, Johri AK, Tuteja N, Bhavesh NS. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of a cyclophilin A-like protein from Piriformospora indica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:709-12. [PMID: 22684077 PMCID: PMC3370917 DOI: 10.1107/s1744309112018131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
Abstract
Cyclophilins are widely distributed both in eukaryotes and prokaryotes and have a primary role as peptidyl-prolyl cis-trans isomerases (PPIases). This study focuses on the cloning, expression, purification and crystallization of a salinity-stress-induced cyclophilin A (CypA) homologue from the symbiotic fungus Piriformospora indica. Crystallization experiments in the presence of 56 mM sodium phosphate monobasic monohydrate, 1.34 M potassium phosphate dibasic pH 8.2 yielded crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 121.15, b = 144.12, c = 110.63 Å. The crystals diffracted to a resolution limit of 2.0 Å. Analysis of the diffraction data indicated the presence of three molecules of the protein per asymmetric unit (V(M) = 4.48 Å(3) Da(-1), 72.6% solvent content).
Collapse
Affiliation(s)
- Harshesh Bhatt
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Dipesh Kumar Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Neel Sarovar Bhavesh
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
35
|
Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress. Apoptosis 2012; 17:784-96. [DOI: 10.1007/s10495-012-0730-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Lin JY, Mendu V, Pogany J, Qin J, Nagy PD. The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombusviral replicase. PLoS Pathog 2012; 8:e1002491. [PMID: 22346747 PMCID: PMC3276564 DOI: 10.1371/journal.ppat.1002491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/04/2011] [Indexed: 12/24/2022] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Venugopal Mendu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Qin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
37
|
Iki T, Yoshikawa M, Meshi T, Ishikawa M. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 2012; 31:267-78. [PMID: 22045333 PMCID: PMC3261558 DOI: 10.1038/emboj.2011.395] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/06/2011] [Indexed: 12/30/2022] Open
Abstract
Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.
Collapse
Affiliation(s)
- Taichiro Iki
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| | - Manabu Yoshikawa
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Tetsuo Meshi
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| | - Masayuki Ishikawa
- Division of Plant Sciences, Plant–Microbe Interactions Research Unit, National Institute of Agrobiological Sciences (NIAS), Ibaraki, Japan
| |
Collapse
|
38
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
39
|
Earley KW, Poethig RS. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 2011; 286:38184-38189. [PMID: 21908611 PMCID: PMC3207435 DOI: 10.1074/jbc.m111.290130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
SQN (SQUINT) is the Arabidopsis ortholog of the immunophilin CyP40 (cyclophilin 40) and promotes microRNA activity by promoting the activity of AGO1. In animals and Saccharomyces cerevisiae, CyP40 promotes protein activity in association with the protein chaperone Hsp90. To determine whether CyP40 also acts in association with Hsp90 in plants, we examined the interaction between SQN and Hsp90 in vitro and tested the importance of this interaction for the function of SQN in planta. We found that SQN interacts with cytoplasmic Hsp90 proteins but not with Hsp90 proteins localized to chloroplasts, mitochondria, or the endoplasmic reticulum. The interaction between SQN and Hsp90 in vitro requires the MEEVD domain of Hsp90, as well as several conserved amino acids within the tetratricopeptide repeat domain of SQN. Amino acid substitutions that disrupt the interaction between SQN and Hsp90 in vitro also impair the activity of SQN in planta. Our results indicate that the interaction between CyP40 and Hsp90 is conserved in plants and that this interaction is essential for the function of CyP40.
Collapse
Affiliation(s)
- Keith W Earley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
40
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
41
|
Wang H, Zhang Y, Wang T, You H, Jia J. N-methyl-4-isoleucine cyclosporine attenuates CCl -induced liver fibrosis in rats by interacting with cyclophilin B and D. J Gastroenterol Hepatol 2011; 26:558-67. [PMID: 21332552 DOI: 10.1111/j.1440-1746.2010.06406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM N-methyl-4-isoleucine cyclosporine (NIM811), a new analogue of cyclosporine A, can inhibit collagen deposition in vitro and reduce liver necrosis in a bile-duct-ligation animal model. However, whether NIM811 effects on CCl(4) -induced rat liver fibrosis, and the related mechanism has not been determined. METHODS A liver fibrosis model was induced in Wistar rats using CCl(4) for 6 weeks. Meanwhile, two different doses of NIM811 (low-dose 10 mg/kg and high-dose 20 mg/kg) were given to the CCl(4) -treated rats. Liver fibrosis was then evaluated according to histopathological scoring and liver hydroxyproline content. Serum alanine aminotransferase, aspartate aminotransferase and albumin levels, expression of matrix metalloproteinase-13, tissue inhibitor of metalloproteinase-1, α-smooth muscle actin and cyclophilin B and D in liver tissue were determined. Cyclophilin B and D were also studied in an hepatic stellate cell line. RESULTS Hydroxyproline content was decreased in both NIM811 groups compared with the model (P < 0.05). Liver necrosis and fibrosis were also attenuated in the NIM811 groups. NIM811 suppressed the expression of tissue inhibitor of metalloproteinase-1, transforming growth factor beta mRNA and α-smooth muscle actin protein in liver tissue. Expression of cyclophilin B in the fibrosis model was increased compared with the normal group (P < 0.05), and was decreased significantly in the low-dose NIM811 treatment group (P < 0.05), which indicated that cyclophilin B might have a profibrotic effect. In vitro studies revealed that cyclophilin B and/or D knockout were associated with collagen inhibition. CONCLUSIONS NIM811 attenuates liver fibrosis in a CCl(4)-induced rat liver fibrosis model, which may be related to binding with cyclophilin B and D.
Collapse
Affiliation(s)
- Hui Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Abstract
The c-Met receptor tyrosine kinase (MetR) is frequently overexpressed and constitutively phosphorylated in a number of human malignancies. Activation of the receptor by its ligand, hepatocyte growth factor (HGF), leads to increased cell proliferation, motility, survival and disruption of adherens junctions. In this study, we show that hTid-1, a DNAJ/Hsp40 chaperone, represents a novel modulator of the MetR signaling pathway. hTid-1 is a co-chaperone of the Hsp70 family of proteins, and has been shown to regulate a number of cellular signaling proteins including several involved in tumorigenic and apoptotic pathways. In this study we demonstrate that hTid-1 binds to unphosphorylated MetR and becomes dissociated from the receptor upon HGF stimulation. Overexpression of the short form of hTid-1 (hTid-1(S)) in 786-0 renal clear cell carcinomas (RCCs) enhances MetR kinase activity leading to an increase in HGF-mediated cell migration with no discernible effect on cell proliferation. By contrast, knockdown of hTid-1 markedly impairs both the onset and amplitude of MetR phosphorylation in response to HGF without altering receptor protein levels. hTid-1-depleted cells display defective migratory properties, coincident with inhibition of ERK/MAP kinase and STAT3 pathways. Taken together, our findings denote hTid-1(S) as an essential regulatory component of MetR signaling. We propose that the binding of hTid-1(S) to MetR may stabilize the receptor in a ligand-competent state and this stabilizing function may influence conformational changes that take place during the catalytic cycle that promote kinase activation. Given the prevalence of HGF/MetR pathway activation in human cancers, targeted inhibition of hTid-1 may be a useful therapeutic in the management of MetR-dependent malignancies.
Collapse
|
43
|
Dimou M, Venieraki A, Liakopoulos G, Kouri ED, Tampakaki A, Katinakis P. Gene Expression and Biochemical Characterization of Azotobacter vinelandii Cyclophilins and Protein Interaction Studies of the Cytoplasmic Isoform with dnaK and lpxH. J Mol Microbiol Biotechnol 2011; 20:176-90. [DOI: 10.1159/000329486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Cox MB, Johnson JL. The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol 2011; 787:45-66. [PMID: 21898226 DOI: 10.1007/978-1-61779-295-3_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes, such as protein translation, translocation, and disassembly of protein complexes (1). Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
45
|
Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 2010; 5:e11717. [PMID: 20661446 PMCID: PMC2908686 DOI: 10.1371/journal.pone.0011717] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet. METHODOLOGY AND PRINCIPAL FINDINGS We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action. CONCLUSION AND SIGNIFICANCE The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/genetics
- Cyclophilins/metabolism
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins
- Humans
- Immunoblotting
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Molecular Chaperones
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Jan-Philip Schülke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
46
|
Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. PLoS Negl Trop Dis 2010; 4:e729. [PMID: 20614016 PMCID: PMC2894131 DOI: 10.1371/journal.pntd.0000729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/10/2010] [Indexed: 11/19/2022] Open
Abstract
Background Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. Methodology/Principal Findings Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. Conclusions/Significance The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets. Visceral leishmanisasis, also known as Kala Azar, is caused by the protozoan parasite Leishmania donovani. The L. donovani infectious cycle comprises two developmental stages, a motile promastigote stage that proliferates inside the digestive tract of the phlebotomine insect host, and a non-motile amastigote stage that differentiates inside the macrophages of mammalian hosts. Intracellular parasite survival in mouse and macrophage infection assays has been shown to be strongly compromised in the presence of the inhibitor cyclosporin A (CsA), which binds to members of the cyclophilin (CyP) protein family. It has been suggested that the toxic effects of CsA on amastigotes occurs indirectly via host cyclophilins, which may be required for intracellular parasite development and growth. Using a host-free L. donovani culture system we revealed for the first time a direct and stage-specific effect of CsA on promastigote growth and amastigote viability. We provided evidence that parasite killing occurs through a heat sensitivity mechanism likely due to direct inhibition of the co-chaperone cyclophilin 40. Our data allow important new insights into the function of the Leishmania CyP protein family in differentiation, growth, and intracellular survival, and define this class of molecules as important drug targets.
Collapse
|
47
|
Voisine C, Pedersen JS, Morimoto RI. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 2010; 40:12-20. [PMID: 20472062 DOI: 10.1016/j.nbd.2010.05.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 02/06/2023] Open
Abstract
Adult-onset neurodegeneration and other protein conformational diseases are associated with the appearance, persistence, and accumulation of misfolded and aggregation-prone proteins. To protect the proteome from long-term damage, the cell expresses a highly integrated protein homeostasis (proteostasis) machinery to ensure that proteins are properly expressed, folded, and cleared, and to recognize damaged proteins. Molecular chaperones have a central role in proteostasis as they have been shown to be essential to prevent the accumulation of alternate folded proteotoxic states as occurs in protein conformation diseases exemplified by neurodegeneration. Studies using invertebrate models expressing proteins associated with Huntington's disease, Alzheimer's disease, ALS, and Parkinson's disease have provided insights into the genetic networks and stress signaling pathways that regulate the proteostasis machinery to prevent cellular dysfunction, tissue pathology, and organismal failure. These events appear to be further amplified by aging and provide evidence that age-related failures in proteostasis may be a common element in many diseases.
Collapse
Affiliation(s)
- Cindy Voisine
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
48
|
Millson SH, Nuttall JM, Mollapour M, Piper PW. The Hsp90/Cdc37p chaperone system is a determinant of molybdate resistance in Saccharomyces cerevisiae. Yeast 2009; 26:339-47. [PMID: 19399909 DOI: 10.1002/yea.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Saccharomyces cerevisiae lacks enzymes that contain the molybdopterin co-factor and therefore any requirement for molybdenum as a trace mineral supplement. Instead, high molybdate levels are inhibitory to its growth. Low cellular levels of heat shock protein 90 (Hsp90), an essential chaperone, were found to enhance this sensitivity to molybdate. Certain Hsp90 point mutations and co-chaperone protein defects that partially compromise the function of the Hsp90/Cdc37p chaperone system also rendered S. cerevisiae hypersensitive to high molybdate levels. Sensitivity was especially apparent with mutations close to the Hsp90 nucleotide binding site, with the loss of the non-essential co-chaperone Sti1p (the equivalent of mammalian Hop), and with the abolition of residue Ser14 phosphorylation on the essential co-chaperone Cdc37p. While it remains to be proved that these effects reflect direct inhibition of the Hsp90 of the cell by the MoO(4) (2+) oxyanion in vivo; this possibility is suggested by molybdate sensitivity arising with a mutation in the Hsp90 nucleotide binding site that does not generate stress sensitivity or an impaired stress response. Molybdate sensitivity may therefore be a useful phenotype to score when studying mutations in this chaperone system.
Collapse
Affiliation(s)
- Stefan H Millson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
49
|
Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS. Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:5424-9. [PMID: 19289849 PMCID: PMC2664006 DOI: 10.1073/pnas.0812729106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 01/02/2023] Open
Abstract
Loss-of-function mutations of SQUINT (SQN)-which encodes the Arabidopsis orthologue of cyclophilin 40 (CyP40)-cause the precocious expression of adult vegetative traits, an increase in carpel number, and produce abnormal spacing of flowers in the inflorescence. Here we show that the vegetative phenotype of sqn is attributable to the elevated expression of miR156-regulated members of the SPL family of transcription factors and provide evidence that this defect is a consequence of a reduction in the activity of ARGONAUTE1 (AGO1). Support for this latter conclusion was provided by the phenotypic similarity between hypomorphic alleles of AGO1 and null alleles of SQN and by the genetic interaction between sqn and these alleles. Our results suggest that AGO1, or an AGO1-interacting protein, is a major client of CyP40 and that miR156 and its targets play a central role in the regulation of vegetative phase change in Arabidopsis.
Collapse
Affiliation(s)
- Michael R. Smith
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Matthew R. Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Tanya Z. Berardini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Barbara Möller
- Laboratory of Biochemistry, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
50
|
Holmes JL, Sharp SY, Hobbs S, Workman P. Silencing of HSP90 Cochaperone AHA1 Expression Decreases Client Protein Activation and Increases Cellular Sensitivity to the HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin. Cancer Res 2008; 68:1188-97. [DOI: 10.1158/0008-5472.can-07-3268] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|