1
|
Ernst L, Song H, Kim D, Würthner F. Photoinduced stepwise charge hopping in π-stacked perylene bisimide donor-bridge-acceptor arrays. Nat Chem 2025; 17:767-776. [PMID: 40087404 PMCID: PMC12055566 DOI: 10.1038/s41557-025-01770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
The mechanistic understanding of light-driven charge separation and charge-carrier transport within the frameworks of π-conjugated molecules is imperative to mimic natural photosynthesis and derive synthetic materials for solar energy conversion. In this regard, since the late 1980s, the distance and solvent dependence of stepwise (incoherent) charge-carrier hopping versus single-step (coherent) superexchange transport (tunnelling) have been studied in detail. Here we introduce structurally highly defined cofacially stacked donor-acceptor perylene bisimide arrays, which offer a high resemblance to natural systems. Similarity is achieved through controlling energy and electron transfer processes via intermolecular interactions between the π-stacked perylene bisimide subunits. Selective excitation of the donor induces electron transfer to the acceptor unit in polar solvents, facilitated by a 'through-stack' wire-like charge hopping mechanism with a low attenuation factor β = 0.21 Å-1, which suggests through-stack as being equally supportive for long-distance sequential electron transfer compared to the investigated 'through-bond' transfer along π-conjugated bridges.
Collapse
Affiliation(s)
- Leander Ernst
- Universität Würzburg, Institut für Organische Chemie, Würzburg, Germany
| | - Hongwei Song
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie, Würzburg, Germany.
- Universität Würzburg, Center for Nanosystems Chemistry, Würzburg, Germany.
| |
Collapse
|
2
|
Fan H, Wang L, Zeng X, Xiong C, Yu D, Zhang X, Chen J, Meng Z, Campbell A, Huang W, Mei H, Sun H. Redox-Inducible Radiomimetic Photosensitizers Selectively Suppress Cancer Cell Proliferation by Damaging DNA through Radical Cation Chemistry. Angew Chem Int Ed Engl 2025; 64:e202413352. [PMID: 39145675 DOI: 10.1002/anie.202413352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Radiotherapy leverages ionizing radiation to kill cancer cells through direct and indirect effects, and direct effects are considered to play an equal or greater role. Several photosensitizers have been developed to mimic the direct effects of radiotherapy, generating radical cations in DNA models, but none has been applied in cellular studies. Here, we design a radiomimetic photosensitizer, producing DNA radical cations in cells for the first time. To reduce adverse effects, several redox-inducible precursors are prepared as cancer cells have elevated levels of GSH and H2O2. These precursors respond to GSH or H2O2, releasing the active photosensitizer that captures DNA abasic (AP) sites and generates DNA radical cations upon photolysis, without disrupting the redox state of cells. DNA radical cations migrate freely and are eventually trapped by H2O and O2 to yield DNA lesions, thus triggering DNA damage response. Our study suggests that direct effects of radiotherapy suppress cancer cell proliferation mainly by inducing G2/M phase cell cycle arrest, rather than promoting apoptosis. Synergistic effects of the precursor and chemotherapeutic agents are also observed in combination phototherapy. Beyond highlighting an alternative strategy for phototherapy, this proof-of-concept study affords a facile cellular platform to study the direct effects of radiotherapy.
Collapse
Affiliation(s)
- Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanwei Zeng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Chenghe Xiong
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaofan Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayi Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Wanqiao Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
3
|
Jang J, Yoon HJ. Long-Range Charge Transport in Molecular Wires. J Am Chem Soc 2024; 146:32206-32221. [PMID: 39540553 DOI: 10.1021/jacs.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While short-range charge transport is typically dominated by off-resonant tunneling, which decays exponentially with molecular length, recent studies have highlighted certain molecular structures that facilitate LRCT with minimal attenuation over several nanometers. This Perspective reviews the latest progress in understanding LRCT, focusing on chemical designs and mechanisms that enable this phenomenon. Key strategies include π-conjugation, redox-active centers, and stabilization of radical intermediates, which support LRCT through mechanisms such as coherent resonant tunneling or incoherent hopping. We discuss how the effects of molecular structure, length, and temperature influence charge transport, and highlight emerging techniques like the Seebeck effect for distinguishing between transport mechanisms. By clarifying the principles behind LRCT and outlining future challenges, this work aims to guide the design of molecular systems capable of sustaining efficient long-distance charge transport, thereby paving the way for practical applications in molecular electronics and beyond.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
4
|
Chalkopiadis L, Lambropoulos K, Simserides C. Electronic structure, absorption spectra and oxidation dynamics in polyynes and dicyanopolyynes. Phys Chem Chem Phys 2024; 26:22149-22163. [PMID: 39119726 DOI: 10.1039/d4cp02719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The advent of femtosecond to attosecond experimental tools has made now possible to study such ultrafast carrier dynamics, e.g., the spatial and temporal charge density evolution, after an initial oxidation or reduction in molecules, candidates for atomic wires like polyynes and dicyanopolyynes. Here, we study the electronic structure and hole transfer in symmetric molecules containing carbon, nitrogen and hydrogen, the first members in the series of polyynic carbynes and dicyanopolyynes, using methods based on density functional theory (DFT): constrained DFT (CDFT), time-dependent DFT (TDDFT) and real-time TDDFT (RT-TDDFT), with Löwdin population analysis, comparing many levels of theory and obtaining convergence of the results. For the same purposes, we develop a tight binding (TB) variant using all valence orbitals of all atoms. This TB variant is applied here in linear molecules, but it is also adequate for electronic structure, charge transfer and charge transport of non-linear molecules and clusters of molecules. We calculate the electronic structure, the time-dependent dipole moment and the probabilities of finding the hole at each site, their mean over time values, the mean transfer rates from the oxidation site to other sites and the frequency content (using charge as well as dipole moment oscillations). We take into account zero-point motion. The initial conditions for RT-TDDFT are obtained by CDFT. For TB, we explore different initial conditions: we place the hole at a particular orbital or distribute it among a number of orbitals; it is also possible to include phase differences between orbitals. Finally, we compare with available experimental data.
Collapse
Affiliation(s)
- Lazaros Chalkopiadis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| |
Collapse
|
5
|
Majid A, Raza NZ, Haider S, Alam K, Naeem S. Electronic Transport Properties of Molecular Clusters Sb 4O 6, P 4Se 3, and P 4O 6. J Phys Chem A 2024; 128:4814-4822. [PMID: 38857364 DOI: 10.1021/acs.jpca.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Inorganic molecular crystal (IMC) is a trending class of materials in which structural units comprise molecular cages or clusters bonded via van der Waal forces. The structure-property relationship in IMCs is less known due to the unusual assembly of molecular clusters in these materials. In this paper, the density functional theory-calculated electronic transport properties of the molecular clusters of antimony oxide (Sb4O6), phosphorus triselenide (P4Se3), and phosphorus trioxide (P4O6) are described in detail. The calculated values of highest occupied molecular orbital-lowest unoccupied molecular orbital gaps appeared as 5.487, 2.296, and 4.425 eV for Sb4O6, P4Se3, and P4O6, respectively. The work was carried out to explore the charge transport mechanism in IMCs in order to disclose their potential in practical applications. The calculations involved charge-transfer integral based on Marcus theory to compute the electronic coupling (V), reorganization energies (λ), and hopping rate (k) in the structures. The hopping rate for Sb4O6, P4Se3, and P4O6 is found as 8.49 × 10-12, 1.28 × 10-14, and 2.51 × 10-20 s-1, respectively. The transport properties of Sb4O6 are found better, which predicts the application of the relevant IMC for device grade applications. The findings of this study are important for future application of the IMCs in electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan
| | - Nimra Zaib Raza
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia
| | - Kamran Alam
- Department of Chemical Engineering Materials Environment Sapienza, University of Rome, Roma RM 00185, Italy
| | - Samia Naeem
- Department of Physics, Government College Women University Sialkot, Sialkot 51310, Pakistan
| |
Collapse
|
6
|
Copp W, Karimi A, Yang T, Guarné A, Luedtke NW. Fluorescent molecular rotors detect O6-methylguanine dynamics and repair in duplex DNA. Chem Commun (Camb) 2024; 60:1156-1159. [PMID: 38190113 DOI: 10.1039/d3cc04782b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Å of separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Ashkan Karimi
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Tianxiao Yang
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Alba Guarné
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, H3A-1A3 Montreal, Canada
| |
Collapse
|
7
|
Gunasinghe Pattiya Arachchillage KG, Chandra S, Williams A, Rangan S, Piscitelli P, Florence L, Ghosal Gupta S, Artes Vivancos JM. A single-molecule RNA electrical biosensor for COVID-19. Biosens Bioelectron 2023; 239:115624. [PMID: 37639885 DOI: 10.1016/j.bios.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The COVID-19 pandemic shows a critical need for rapid, inexpensive, and ultrasensitive early detection methods based on biomarker analysis to reduce mortality rates by containing the spread of epidemics. This can be achieved through the electrical detection of nucleic acids at the single-molecule level. In particular, the scanning tunneling microscopic-assisted break junction (STM-BJ) method can be utilized to detect individual nucleic acid molecules with high specificity and sensitivity in liquid samples. Here, we demonstrate single-molecule electrical detection of RNA coronavirus biomarkers, including those of SARS-CoV-2 as well as those of different variants and subvariants. Our target sequences include a conserved sequence in the human coronavirus family, a conserved target specific for the SARS-CoV-2 family, and specific targets at the variant and subvariant levels. Our results demonstrate that it is possible to distinguish between different variants of the COVID-19 virus using electrical conductance signals, as recently suggested by theoretical approaches. Our results pave the way for future miniaturized single-molecule electrical biosensors that could be game changers for infectious diseases and other public health applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | | | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
8
|
Zhu L, Li Q, Wan Y, Guo M, Yan L, Yin H, Shi Y. Short-Range Charge Transfer in DNA Base Triplets: Real-Time Tracking of Coherent Fluctuation Electron Transfer. Molecules 2023; 28:6802. [PMID: 37836645 PMCID: PMC10574627 DOI: 10.3390/molecules28196802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred during the short-range charge transfer of DNA base triplets remains a great challenge. Here, by means of ab initio molecular dynamics and Ehrenfest dynamics, the nuclear-electron interaction in the thymine-adenine-thymine (TAT) charge transfer process is successfully simulated. The results show that the electron transfer of TAT has an oscillating phenomenon with a period of 10 fs. The charge density difference proves that the charge transfer proportion is as high as 59.817% at 50 fs. The peak position of the hydrogen bond fluctuates regularly between -0.040 and -0.056. The time-dependent Marcus-Levich-Jortner theory proves that the vibrational coupling between nucleus and electron induces coherent electron transfer in TAT. This work provides a real-time demonstration of the short-range coherent electron transfer of DNA base triplets and establishes a theoretical basis for the design and development of novel biological probe molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; (L.Z.); (Q.L.); (Y.W.); (M.G.); (L.Y.); (H.Y.)
| |
Collapse
|
9
|
Pattiya Arachchillage KGG, Chandra S, Williams A, Piscitelli P, Pham J, Castillo A, Florence L, Rangan S, Artes Vivancos JM. Electrical detection of RNA cancer biomarkers at the single-molecule level. Sci Rep 2023; 13:12428. [PMID: 37528139 PMCID: PMC10393997 DOI: 10.1038/s41598-023-39450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Cancer is a significant healthcare issue, and early screening methods based on biomarker analysis in liquid biopsies are promising avenues to reduce mortality rates. Electrical detection of nucleic acids at the single molecule level could enable these applications. We examine the electrical detection of RNA cancer biomarkers (KRAS mutants G12C and G12V) as a single-molecule proof-of-concept electrical biosensor for cancer screening applications. We show that the electrical conductance is highly sensitive to the sequence, allowing discrimination of the mutants from a wild-type KRAS sequence differing in just one base. In addition to this high specificity, our results also show that these biosensors are sensitive down to an individual molecule with a high signal-to-noise ratio. These results pave the way for future miniaturized single-molecule electrical biosensors that could be groundbreaking for cancer screening and other applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jennifer Pham
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Aderlyn Castillo
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
10
|
Maity D, Bhaumik SK, Banerjee S. Contrasting luminescence in heparin and DNA-templated co-assemblies of dimeric cyanostilbenes: efficient energy transfer in heparin-based co-assemblies. Phys Chem Chem Phys 2023; 25:12810-12819. [PMID: 37129214 DOI: 10.1039/d3cp00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dimeric cationic cyanostilbenes with peripheral alkyl chains demonstrated aggregation in aqueous media depending on the length of the hydrophobic segment and produced luminescent spherical nano-assemblies in the case of long alkyl chain derivatives. In the presence of heparin, a bio-polyanion that is routinely used as an anticoagulant, the self-assembled structures obtained from the amphiphilic dimers showed the formation of higher-order structures whereas the non-assembling dimers exhibited heparin-induced supramolecular structure formation. In both cases, a significant enhancement in the emission was observed. This led to the detection of heparin in aqueous buffer, serum and plasma with a "turn-on" fluorescence response. Interestingly, these derivatives also exhibited luminescence variation in the presence of ctDNA. However, the response towards DNA was opposite to that observed in the case of heparin i.e., "turn-off'' fluorescence response. Notably, depending on the length of the alkyl segment, divergent DNA binding modes of these derivatives were observed. Due to their enhanced luminescence, the heparin-based co-assemblies were further explored as artificial light-harvesting systems exhibiting an efficient energy transfer process to embedded acceptor dyes with a high antenna effect.
Collapse
Affiliation(s)
- Dhananjoy Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| | - Shubhra Kanti Bhaumik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| |
Collapse
|
11
|
Fan S, Takada T, Maruyama A, Fujitsuka M, Kawai K. Programmed Control of Fluorescence Blinking Patterns based on Electron Transfer in DNA. Chemistry 2023; 29:e202203552. [PMID: 36601797 DOI: 10.1002/chem.202203552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Fluorescence imaging uses changes in the fluorescence intensity and emission wavelength to analyze multiple targets simultaneously. To increase the number of targets that can be identified simultaneously, fluorescence blinking can be used as an additional parameter. To understand and eventually control blinking, we used DNA as a platform to elucidate the processes of electron transfer (ET) leading to blinking, down to the rate constants. With a fixed ET distance, various blinking patterns were observed depending on the DNA sequence between the donor and acceptor units of the DNA platform. The blinking pattern was successfully described with a combination of ET rate constants. Therefore, molecules with various blinking patterns can be developed by tuning ET. It is expected that the number of targets that can be analyzed simultaneously will increase by the power of the number of blinking patterns.
Collapse
Affiliation(s)
- Shuya Fan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kiyohiko Kawai
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
12
|
Fan S, Takada T, Maruyama A, Fujitsuka M, Kawai K. Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuya Fan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kiyohiko Kawai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
13
|
Wei Z, Philip AM, Jager WF, Grozema FC. Fast Charge Separation in Distant Donor-Acceptor Dyads Driven by Relaxation of a Hot Excited State. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19250-19261. [PMID: 36424999 PMCID: PMC9677426 DOI: 10.1021/acs.jpcc.2c05754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A series of three perylenemonoimide-p-oligophenylene-dimethylaniline molecular dyads undergo photoinduced charge separation (CS) with anomalous distance dependence as a function of increasing donor-acceptor (DA) distances. A comprehensive experimental and computational investigation of the photodynamics in the donor-bridge-acceptor (DBA) chromophores reveals a clear demarcation concerning the nature of the CS accessed at shorter (bridgeless) and longer DA distances. At the shortest distance, a strong DA interaction and ground-state charge delocalization populate a hot excited state (ES) with prominent charge transfer (CT) character, via Franck-Condon vertical excitation. The presence of such a CT-polarized hot ES enables a subpicosecond CS in the bridgeless dyad. The incorporation of the p-oligophenylene bridge effectively decouples the donor and the acceptor units in the ground state and consequentially suppresses the CT polarization in the hot ES. Theoretically, this should render a slower CS at longer distances. However, the transient absorption measurement reveals a fast CS process at the longer distance, contrary to the anticipated exponential distance dependence of the CS rates. A closer look into the excited-state dynamics suggests that the hot ES undergoes ultrafast geometry relaxation (τ < 1 ps) to create a relaxed ES. As compared to a decoupled, twisted geometry in the hot ES, the geometry of the relaxed ES exhibits a more planar conformation of the p-oligophenylene bridges. Planarization of the bridge endorses an increased charge delocalization and a prominent CT character in the relaxed ES and forms the origin for the evident fast CS at the longest distance. Thus, the relaxation of the hot ES and the concomitantly enhanced charge delocalization adds a new caveat to the classic nature of distance-dependent CS in artificial DBA chromophores and recommends a cautious treatment of the attenuation factor (β) while discussing anomalous CS trends.
Collapse
|
14
|
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Xu L, Zhou B, Song Y, Cai X, Lu W. Electron-Transfer Study and Single Nucleotide Discrimination of a DNA Sequence on a Polymer Gold Electrode (PGE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2035390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Long Xu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Binyu Zhou
- Department of Interventional Oncology, the People's Hospital of China Medical University, Shenyang, China
| | - Yaling Song
- Zhejiang GeneX Precision Medicine Co., Ltd, Hangzhou, P.R. China
| | - Xu Cai
- Department of Songbei Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Lu
- Zhejiang GeneX Precision Medicine Co., Ltd, Hangzhou, P.R. China
| |
Collapse
|
16
|
Chuang J, Chang C, Chang YJ, Chou P, Wen Y, Liu C, Chou T, Chow TJ. Synthesis of rod‐shaped dipolar compounds for the study of long‐range electronic interactions. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jay Chuang
- Department of Chemistry Chinese Culture University Taipei Taiwan
| | - Chun‐Wei Chang
- Department of Chemistry and Biochemistry National Chung Cheng University Chiayi Taiwan
| | - Yuan Jay Chang
- Department of Chemistry Tunghai University Taichung Taiwan
| | - Po‐Ting Chou
- Department of Chemistry Chinese Culture University Taipei Taiwan
| | - Yuh‐Sheng Wen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Ching‐Yang Liu
- Department of Chemistry Chinese Culture University Taipei Taiwan
| | - Teh‐Chang Chou
- Department of Chemistry and Biochemistry National Chung Cheng University Chiayi Taiwan
| | - Tahsin J. Chow
- Department of Chemistry Tunghai University Taichung Taiwan
- Institute of Chemistry Academia Sinica Taipei Taiwan
| |
Collapse
|
17
|
Harvey SM, Wasielewski MR. Photogenerated Spin-Correlated Radical Pairs: From Photosynthetic Energy Transduction to Quantum Information Science. J Am Chem Soc 2021; 143:15508-15529. [PMID: 34533930 DOI: 10.1021/jacs.1c07706] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than a half century ago, the NMR spectra of diamagnetic products resulting from radical pair reactions were observed to have strongly enhanced absorptive and emissive resonances. At the same time, photogenerated radical pairs were discovered to exhibit unusual electron paramagnetic resonance spectra that also had such resonances. These non-Boltzmann, spin-polarized spectra were observed in both chemical systems as well as in photosynthetic reaction center proteins following photodriven charge separation. Subsequent studies of these phenomena led to a variety of chemical electron donor-acceptor model systems that provided a broad understanding of the spin dynamics responsible for these spectra. When the distance between the two radicals is restricted, these observations result from the formation of spin-correlated radical pairs (SCRPs) in which the spin-spin exchange and dipolar interactions between the two unpaired spins play an important role in the spin dynamics. Early on, it was recognized that SCRPs photogenerated by ultrafast electron transfer are entangled spin pairs created in a well-defined spin state. These SCRPs can serve as spin qubit pairs (SQPs), whose spin dynamics can be manipulated to study a wide variety of quantum phenomena intrinsic to the field of quantum information science. This Perspective highlights the role of SCRPs as SQPs, gives examples of possible quantum manipulations using SQPs, and provides some thoughts on future directions.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
18
|
Valdiviezo J, Clever C, Beall E, Pearse A, Bae Y, Zhang P, Achim C, Beratan DN, Waldeck DH. Delocalization-Assisted Transport through Nucleic Acids in Molecular Junctions. Biochemistry 2021; 60:1368-1378. [PMID: 33870693 DOI: 10.1021/acs.biochem.1c00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The flow of charge through molecules is central to the function of supramolecular machines, and charge transport in nucleic acids is implicated in molecular signaling and DNA repair. We examine the transport of electrons through nucleic acids to understand the interplay of resonant and nonresonant charge carrier transport mechanisms. This study reports STM break junction measurements of peptide nucleic acids (PNAs) with a G-block structure and contrasts the findings with previous results for DNA duplexes. The conductance of G-block PNA duplexes is much higher than that of the corresponding DNA duplexes of the same sequence; however, they do not display the strong even-odd dependence conductance oscillations found in G-block DNA. Theoretical analysis finds that the conductance oscillation magnitude in PNA is suppressed because of the increased level of electronic coupling interaction between G-blocks in PNA and the stronger PNA-electrode interaction compared to that in DNA duplexes. The strong interactions in the G-block PNA duplexes produce molecular conductances as high as 3% G0, where G0 is the quantum of conductance, for 5 nm duplexes.
Collapse
Affiliation(s)
- Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Caleb Clever
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Edward Beall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Pearse
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yookyung Bae
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Desai AM, Pandey SP, Singh PK. Effect of counter-anions on the aggregation of Thioflavin-T. Phys Chem Chem Phys 2021; 23:9948-9961. [PMID: 33861224 DOI: 10.1039/d1cp00193k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aggregation of small molecules in aqueous solution is known to be influenced by the ionic strength of the medium; however, the role played by the identity of salt in the phenomenon of small molecule aggregation is rarely investigated. In the present contribution, we have investigated the effect of counter-anions on the aggregation of a popular cationic amyloid sensing probe, Thioflavin-T (ThT), by taking six different anions, viz. chloride, bromide, acetate, iodide, tetrafluoroborate, and perchlorate. Our results clearly indicate that it is not the ionic strength of the medium which solely controls aggregation of small molecules but distinct ions behave distinctly with regard to the organization. In fact, distinct ion effects play a major role in the salt induced organization of fluorophores. Using detailed steady-state emission, time-resolved emission, and ground-state absorption measurements, the optical properties of salt induced aggregates of ThT have been characterized. We have rationalized our observations on the basis of the theory of matching water affinity, which suggests that the matching free hydration energy is a critical aspect for the formation of contact ion pairs, which eventually results in aggregation. In brief, a larger sized anion, perchlorate, has a lower free energy of hydration and forms a suitable contact ion pair, with a larger organic cation, ThT, having weaker hydration. This contact ion-pair formation subsequently leads to the formation of an aggregate assembly which is found to be emissive in nature. Therefore, it is possible to induce aggregation of ThT by selecting the right counterion with the appropriate size, which may help us to evaluate the false positive signals when high ionic strength and specific counterions are present in the sensing matrix.
Collapse
Affiliation(s)
- Akshat M Desai
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
20
|
Berger F, de Sousa JA, Zhao S, Zorn NF, El Yumin AA, Quintana García A, Settele S, Högele A, Crivillers N, Zaumseil J. Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals. ACS NANO 2021; 15:5147-5157. [PMID: 33600164 PMCID: PMC7992189 DOI: 10.1021/acsnano.0c10341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
The functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects has greatly improved their performance in applications such as quantum light sources and bioimaging. Here, we report the covalent functionalization of purified semiconducting SWCNTs with stable organic radicals (perchlorotriphenylmethyl, PTM) carrying a net spin. This model system allows us to use the near-infrared photoluminescence arising from the defect-localized exciton as a highly sensitive probe for the short-range interaction between the PTM radical and the SWCNT. Our results point toward an increased triplet exciton population due to radical-enhanced intersystem crossing, which could provide access to the elusive triplet manifold in SWCNTs. Furthermore, this simple synthetic route to spin-labeled defects could enable magnetic resonance studies complementary to in vivo fluorescence imaging with functionalized SWCNTs and facilitate the scalable fabrication of spintronic devices with magnetically switchable charge transport.
Collapse
Affiliation(s)
- Felix
J. Berger
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - J. Alejandro de Sousa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Laboratorio
de Electroquímica, Departamento de Química, Facultad
de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela
| | - Shen Zhao
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Abdurrahman Ali El Yumin
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Aleix Quintana García
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Högele
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Núria Crivillers
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
- E-mail:
| |
Collapse
|
21
|
Forzani ES, He H, Hihath J, Lindsay S, Penner RM, Wang S, Xu B. Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963-2020). ACS NANO 2020; 14:12291-12312. [PMID: 32940998 PMCID: PMC7718722 DOI: 10.1021/acsnano.0c06017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemistry intersected nanoscience 25 years ago when it became possible to control the flow of electrons through single molecules and nanostructures. Many surprises and a wealth of understanding were generated by these experiments. Professor Nongjian Tao was among the pioneering scientists who created the methods and technologies for advancing this new frontier. Achieving a deeper understanding of charge transport in molecules and low-dimensional materials was the first priority of his experiments, but he also succeeded in discovering applications in chemical sensing and biosensing for these novel nanoscopic systems. In parallel with this work, the investigation of a range of phenomena using novel optical microscopic methods was a passion of his and his students. This article is a review and an appreciation of some of his many contributions with a view to the future.
Collapse
Affiliation(s)
- Erica S Forzani
- Biodesign Center for Bioelectronics and Biosensors, Departments of Chemical Engineering and Mechanical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Huixin He
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Stuart Lindsay
- Biodesign Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Deng A, Li H, Bo M, Huang Z, Li L, Yao C, Li F. Understanding atomic bonding and electronic distributions of a DNA molecule using DFT calculation and BOLS-BC model. Biochem Biophys Rep 2020; 24:100804. [PMID: 32923699 PMCID: PMC7475201 DOI: 10.1016/j.bbrep.2020.100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/04/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is an important molecule that has been extensively researched, mainly due to its structure and function. Herein, we investigated the electronic behavior of the DNA molecule containing 1008 atoms using density functional theory. The bond-charge (BC) model shows the relationship between charge density and atomic strain. Besides, the model mentioned above is combined with the bond-order-length-strength (BOLS) notion to calculate the atomic cohesive energy, the bond energy, and the local bond strain of the DNA chain. Using the BOLS-BC model, we were able to obtain information on the bonding features of the DNA chain and better comprehend the associated properties of electrons in biological systems. Consequently, this report functions as a theoretical reference for the precise regulation of the electrons and the bonding states of biological systems. Electronic behavior of the DNA molecule using density functional theory. Deformation charge density reveals the bonding characteristics of DNA. The relationship between charge density and bond parameter.
Collapse
Affiliation(s)
- Anlin Deng
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - Hanze Li
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - Maolin Bo
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - ZhongKai Huang
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - Lei Li
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM), Yangtze Normal University, Chongqing, 408100, China
| | - Fengqin Li
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
23
|
Simserides C, Morphis A, Lambropoulos K. Hole Transfer in Open Carbynes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3979. [PMID: 32911864 PMCID: PMC7559821 DOI: 10.3390/ma13183979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
Abstract
We investigate hole transfer in open carbynes, i.e., carbon atomic nanowires, using Real-Time Time-Dependent Density Functional Theory (RT-TDDFT). The nanowire is made of N carbon atoms. We use the functional B3LYP and the basis sets 3-21G, 6-31G*, cc-pVDZ, cc-pVTZ, cc-pVQZ. We also utilize a few Tight-Binding (TB) wire models, a very simple model with all sites equivalent and transfer integrals given by the Harrison ppπ expression (TBI) as well as a model with modified initial and final sites (TBImod) to take into account the presence of one or two or three hydrogen atoms at the edge sites. To achieve similar site occupations in cumulenes with those obtained by converged RT-TDDFT, TBImod is sufficient. However, to achieve similar frequency content of charge and dipole moment oscillations and similar coherent transfer rates, the TBImod transfer integrals have to be multiplied by a factor of four (TBImodt4times). An explanation for this is given. Full geometry optimization at the B3LYP/6-31G* level of theory shows that in cumulenes bond length alternation (BLA) is not strictly zero and is not constant, although it is symmetrical relative to the molecule center. BLA in cumulenic cases is much smaller than in polyynic cases, so, although not strictly, the separation to cumulenes and polyynes, approximately, holds. Vibrational analysis confirms that for N even all cumulenes with coplanar methylene end groups are stable, for N odd all cumulenes with perpendicular methylene end groups are stable, and the number of hydrogen atoms at the end groups is clearly seen in all cumulenic and polyynic cases. We calculate and discuss the Density Functional Theory (DFT) ground state energy of neutral molecules, the CDFT (Constrained DFT) "ground state energy" of molecules with a hole at one end group, energy spectra, density of states, energy gap, charge and dipole moment oscillations, mean over time probabilities to find the hole at each site, coherent transfer rates, and frequency content, in general. We also compare RT-TDDFT with TB results.
Collapse
Affiliation(s)
- Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece; (A.M.); (K.L.)
| | | | | |
Collapse
|
24
|
Dutta S, Rühle J, Schikora M, Deussner-Helfmann N, Heilemann M, Zatsepin T, Duchstein P, Zahn D, Knör G, Mokhir A. Red light-triggered photoreduction on a nucleic acid template. Chem Commun (Camb) 2020; 56:10026-10029. [PMID: 32728684 DOI: 10.1039/d0cc03086d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjugate Sn(iv)(pyropheophorbide a)dichloride-(peptide nucleic acid) catalyzes reduction of azobenzene derivatives in the presence of complementary nucleic acid (NA) upon irridiation with red light (660 nm). This is the first red light-induced NA-templated photoreduction. It is highly sensitive to single mismatches in the NA-template and can detect down to 5 nM NAs.
Collapse
Affiliation(s)
- Subrata Dutta
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Iv M, Peskin U. Ballistic transport and quantum unfurling in molecular junctions via minimal representations of quantum master equations. J Chem Phys 2020; 152:184112. [PMID: 32414262 DOI: 10.1063/5.0005412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum furling and unfurling are inelastic transitions between localized and delocalized electronic states. We predict scenarios where these processes govern charge transport through donor-bridge-acceptor molecular junctions. Like in the case of ballistic transport, the resulting currents are nearly independent of the molecular bridge length. However, currents involving quantum furling and unfurling processes can be controlled by the coupling to vibrations in the intra-molecular and the extra-molecular environment, which can be experimentally tuned. Our study is based on rate equations for exchange of energy (bosons) and particles (fermions) between the molecular bridge and its environment. An efficient algorithm is introduced for a compact representation of the relevant rate equations, which utilizes the redundancies in the rate matrix and the sparsity of the creation and annihilation operators in the molecular Fock space.
Collapse
Affiliation(s)
- Michael Iv
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Uri Peskin
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
26
|
Shen P, Huang M, Qian J, Li J, Ding S, Zhou X, Xu B, Zhao Z, Tang BZ. Achieving Efficient Multichannel Conductance in Through‐Space Conjugated Single‐Molecule Parallel Circuits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Miaoling Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsInstitute of Physical ChemistryZhejiang Normal University Jinhua Zhejiang 321004 China
| | - Jingyu Qian
- State Key Laboratory of Supramolecular Structure and MaterialsJilin University 2699 Qianjin Street Changchun 130012 China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Siyang Ding
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsInstitute of Physical ChemistryZhejiang Normal University Jinhua Zhejiang 321004 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and MaterialsJilin University 2699 Qianjin Street Changchun 130012 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
- Department of ChemistryThe Hong Kong University of Science & Technology Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
27
|
Shen P, Huang M, Qian J, Li J, Ding S, Zhou X, Xu B, Zhao Z, Tang BZ. Achieving Efficient Multichannel Conductance in Through‐Space Conjugated Single‐Molecule Parallel Circuits. Angew Chem Int Ed Engl 2020; 59:4581-4588. [DOI: 10.1002/anie.202000061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Miaoling Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsInstitute of Physical ChemistryZhejiang Normal University Jinhua Zhejiang 321004 China
| | - Jingyu Qian
- State Key Laboratory of Supramolecular Structure and MaterialsJilin University 2699 Qianjin Street Changchun 130012 China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Siyang Ding
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsInstitute of Physical ChemistryZhejiang Normal University Jinhua Zhejiang 321004 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and MaterialsJilin University 2699 Qianjin Street Changchun 130012 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
- Department of ChemistryThe Hong Kong University of Science & Technology Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
28
|
Jung HW, Yoon SE, Carroll PJ, Gau MR, Therien MJ, Kang YK. Distance Dependence of Electronic Coupling in Rigid, Cofacially Compressed, π-Stacked Organic Mixed-Valence Systems. J Phys Chem B 2020; 124:1033-1048. [DOI: 10.1021/acs.jpcb.9b09578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hae Won Jung
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea
| | - Sung Ewn Yoon
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Youn K. Kang
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
29
|
Belobo Belobo D, Dang Koko A. Bright solitary waves as charge transport in DNA: A variational approximation. Biopolymers 2019; 111:e23346. [PMID: 31875331 DOI: 10.1002/bip.23346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/17/2019] [Accepted: 11/29/2019] [Indexed: 11/11/2022]
Abstract
Modeling energy and charge transfer in DNA has been a challenging issue because of many conformations DNA can take. Due to its simplicity, we propose a discrete variational approach to study the charge transfer mechanism in DNA based on the Holstein-Su-Schrieffer-Heeger model. It is shown that bright solitary waves may propagate through the DNA and the variational approximation provides explicit relations between experimental parameters and important characteristics of the waves such as amplitude, width, chirp and homogenous phase, and energy. Our analytical predictions are confirmed by intensive numerical simulations with a good accuracy.
Collapse
|
30
|
Deng H, Ray PC, Ghann WE, Uddin J, Samokhvalov A, Yu H. Distance-dependent Fluorescence Quenching on a Silver Nanoparticle Surface. CHEM LETT 2019. [DOI: 10.1246/cl.190684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Deng
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Paresh C Ray
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
| | - William E. Ghann
- Department of Natural Sciences, Coppin State University, Baltimore, MD, USA
| | - Jamal Uddin
- Department of Natural Sciences, Coppin State University, Baltimore, MD, USA
| | | | - Hongtao Yu
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
31
|
Ferapontova EE. Electron Transfer in DNA at Electrified Interfaces. Chem Asian J 2019; 14:3773-3781. [PMID: 31545875 DOI: 10.1002/asia.201901024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/22/2019] [Indexed: 12/24/2022]
Abstract
The ability of the DNA double helix to transport electrons underlies many life-centered biological processes and bio-electronic applications. However, there is little consensus on how efficiently the base pair π-stacks of DNA mediate electron transport. This minireview scrutinizes the current state-of-the-art knowledge on electron transfer (ET) properties of DNA and its long-range ability to transfer (mediate) electrical signals at electrified interfaces, without being oxidized or reduced. Complex changes an electric field induces in the DNA structure and its electronic properties govern the efficiency of DNA-mediated ET at electrodes and allow addressing the existing phenomenological riddles, while recently discovered rectifying properties of DNA contribute both to our understanding of DNA's ET in living systems and to advances in molecular bioelectronics.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, 8000, Aarhus C, Denmark
| |
Collapse
|
32
|
Teo RD, Smithwick ER, Migliore A. 2'-Deoxy-2'-fluoro-arabinonucleic acid: a valid alternative to DNA for biotechnological applications using charge transport. Phys Chem Chem Phys 2019; 21:22869-22878. [PMID: 31599901 PMCID: PMC7050622 DOI: 10.1039/c9cp04805g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The non-biological 2'-deoxy-2'-fluoro-arabinonucleic acid (2'F-ANA) may be used as a valid alternative to DNA in biomedical and electronic applications because of its higher resistance to hydrolysis and nuclease degradation. However, the advantage of using 2'F-ANA in such applications also depends on its charge-transfer properties compared to DNA. In this study, we compare the charge conduction properties of model 2'F-ANA and DNA double-strands, using structural snapshots from MD simulations to calculate the electronic couplings and reorganization energies associated with the hole transfer steps between adjacent nucleobase pairs. Inserting these charge-transfer parameters into a kinetic model for charge conduction, we find similar conductive properties for DNA and 2'F-ANA. Moreover, we find that 2'F-ANA's enhanced chemical stability does not correspond to a reduction in the nucleobase π-stack structural flexibility relevant to both electronic couplings and reorganization free energies. Our results promote the use of 2'F-ANA in applications that can be based on charge transport, such as biosensing and chip technology, where its chemical stability and conductivity can advantageously combine.
Collapse
Affiliation(s)
- Ruijie D Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
33
|
Bortolus M, Ribaudo G, Toffoletti A, Carbonera D, Zagotto G. Photo-induced spin switching in a modified anthraquinone modulated by DNA binding. Photochem Photobiol Sci 2019; 18:2199-2207. [PMID: 30838367 DOI: 10.1039/c8pp00586a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An anthraquinone modified with a nitroxide radical and able to intercalate into DNA has been synthesized to obtain a molecule the spin state of which can be manipulated by visible light and DNA binding. The doublet ground state of the molecule can be photo-switched to either a strongly coupled spin state (quartet + doublet), when isolated, or to an uncoupled spin state (triplet and doublet), when bound to DNA. The different spin state that is obtained upon photoexcitation depends on the intercalation of the quinonic core into double-stranded DNA which changes the conformation of the molecule, thereby altering the exchange interaction between the excited state localized on the quinonic core and the nitroxide radical. The spin state of the system has been investigated using both continuous-wave and time-resolved EPR spectroscopy.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Giovanni Ribaudo
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Antonio Toffoletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
34
|
An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nat Protoc 2019; 14:2672-2690. [PMID: 31391579 DOI: 10.1038/s41596-019-0197-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
Understanding the photoinduced electron-transfer process is of paramount importance for realizing efficient solar energy conversion. It is rather difficult to clarify the link between the specific properties and the photoelectrochemical performance of an individual component in an ensemble system because data are usually presented as averages because of interplay of the heterogeneity of the bulk system. Here, we report a step-by-step protocol to fabricate an ultrasensitive photoelectrochemical platform for real-time detection of the intrinsic photoelectrochemical behaviors of a single entity with picoampere and sub-millisecond sensitivity. Using a micron-thickness nanoparticulate TiO2-filmed Au ultramicroelectrode (UME) as the electron-transport electrode, photocurrent transients can be observed for each individual dye-tagged oxide semiconductor nanoparticle collision associated with a single-entity photoelectrochemical reaction. This protocol allows researchers to obtain high-resolution photocurrent signals to quantify the photoinduced electron-transfer properties of an individual entity, as well as to precisely process the data obtained. We also include procedures for dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM) imaging and collision frequency-concentration correlation to confirm that the photoelectrochemical collision events occur at an unambiguously single-entity level. The time required for the entire protocol is ~36 h, with a single-entity photoelectrochemical measurement taking <1 h to complete for each independent experiment. This protocol requires basic nanoelectrochemistry and nanotechnology skills, as well as an intermediate-level understanding of photoelectrochemistry.
Collapse
|
35
|
Liu J, Segal D. Interplay of Direct and Indirect Charge-Transfer Pathways in Donor–Bridge–Acceptor Systems. J Phys Chem B 2019; 123:6099-6110. [DOI: 10.1021/acs.jpcb.9b04958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Mantela M, Lambropoulos K, Theodorakou M, Simserides C. Quasi-Periodic and Fractal Polymers: Energy Structure and Carrier Transfer. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2177. [PMID: 31284609 PMCID: PMC6651379 DOI: 10.3390/ma12132177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022]
Abstract
We study the energy structure and the coherent transfer of an extra electron or hole along aperiodic polymers made of N monomers, with fixed boundaries, using B-DNA as our prototype system. We use a Tight-Binding wire model, where a site is a monomer (e.g., in DNA, a base pair). We consider quasi-periodic (Fibonacci, Thue-Morse, Double-Period, Rudin-Shapiro) and fractal (Cantor Set, Asymmetric Cantor Set) polymers made of the same monomer (I polymers) or made of different monomers (D polymers). For all types of such polymers, we calculate the highest occupied molecular orbital (HOMO) eigenspectrum and the lowest unoccupied molecular orbital (LUMO) eigenspectrum, the HOMO-LUMO gap and the density of states. We examine the mean over time probability to find the carrier at each monomer, the frequency content of carrier transfer (Fourier spectra, weighted mean frequency of each monomer, total weighted mean frequency of the polymer), and the pure mean transfer rate k. Our results reveal that there is a correspondence between the degree of structural complexity and the transfer properties. I polymers are more favorable for charge transfer than D polymers. We compare k ( N ) of quasi-periodic and fractal sequences with that of periodic sequences (including homopolymers) as well as with randomly shuffled sequences. Finally, we discuss aspects of experimental results on charge transfer rates in DNA with respect to our coherent pure mean transfer rates.
Collapse
Affiliation(s)
- Marilena Mantela
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece
| | - Marina Theodorakou
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece.
| |
Collapse
|
37
|
Goluguri RR, Sen S, Udgaonkar J. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. eLife 2019; 8:e44766. [PMID: 31025940 PMCID: PMC6516828 DOI: 10.7554/elife.44766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
Protein aggregation appears to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET-FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Sreemantee Sen
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Jayant Udgaonkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
38
|
Muftakhov MV, Shchukin PV. Resonant electron capture by uridine and deoxyuridine molecules: Fragmentation with charge transfer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:482-490. [PMID: 30430683 DOI: 10.1002/rcm.8354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Charge transfer via DNA plays an important role in physical and chemical processes in biological systems, and is used in biomolecular electronics. The present study considers the resonant interaction of free electrons with nucleosides, which is important for an understanding of the processes of electron transport in DNA. METHODS Resonant electron capture negative ion mass spectrometry was used to study the processes of low-energy electron attachment to two uracil nucleosides, uridine and deoxyuridine, while density functional theory (DFT) calculations were used to analyze the energy aspects of ion formation and decay. RESULTS Short-lived molecular ions, formed via mechanisms of π* shape resonances, were found in the energy region below 5 eV. The fragmentation channels of these resonances and the structures of the charged and neutral products formed were determined. CONCLUSIONS These results suggest that the formation of some fragment negative ions occurs through intramolecular charge transfer.
Collapse
Affiliation(s)
- Mars V Muftakhov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| |
Collapse
|
39
|
Woźniak AP, Leś A, Adamowicz L. Theoretical modeling of DNA electron hole transport through polypyrimidine sequences: a QM/MM study. J Mol Model 2019; 25:97. [PMID: 30874898 DOI: 10.1007/s00894-019-3976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
The phenomenon of DNA hole transport (HT) has attracted of scientists for several decades, mainly due to its potential application in molecular electronics. As electron holes mostly localize on purine bases in DNA, the majority of scientific effort has been invested into chemically modifying the structures of adenine and guanine in order to increase their HT-mediating properties. In this work we examine an alternative, never yet explored, way of affecting the HT efficiency by forcing electron holes to localize on pyrimidine bases and move between them. Using an enhanced and revised version of our previously developed QM/MM model, we perform simulations of HT through polyadenine, polycytosine, polyguanine, and polythymine stacks according to a multistep hopping mechanism. From these simulations, kinetic parameters for HT are obtained. The results indicate a particularly high efficiency of cytosine→cytosine hopping, which is about ten times higher than the G → G hopping. We also discuss possible improvement of cytosine HT by modifying the oxidoreductive properties of complementary guanine residues.
Collapse
Affiliation(s)
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Pharmaceutical Research Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Ludwik Adamowicz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA.
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
40
|
Abstract
The corpus of electron transfer (ET) theory provides considerable power to describe the kinetics and dynamics of electron flow at the nanoscale. How is it, then, that nucleic acid (NA) ET continues to surprise, while protein-mediated ET is relatively free of mechanistic bombshells? I suggest that this difference originates in the distinct electronic energy landscapes for the two classes of reactions. In proteins, the donor/acceptor-to-bridge energy gap is typically several-fold larger than in NAs. NA ET can access tunneling, hopping, and resonant transport among the bases, and fluctuations can enable switching among mechanisms; protein ET is restricted to tunneling among redox active cofactors and, under strongly oxidizing conditions, a few privileged amino acid side chains. This review aims to provide conceptual unity to DNA and protein ET reaction mechanisms. The establishment of a unified mechanistic framework enabled the successful design of NA experiments that switch electronic coherence effects on and off for ET processes on a length scale of multiple nanometers and promises to provide inroads to directing and detecting charge flow in soft-wet matter.
Collapse
Affiliation(s)
- David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA; .,Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
41
|
Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices. J Mol Model 2018; 24:330. [PMID: 30386940 DOI: 10.1007/s00894-018-3856-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
Abstract
The feasibility of electron transport conduction through a guanine base of DNA was investigated and then compared with another component of DNA, i.e., cytosine. A mathematical approach based on the jellium model using non-equilibrium Green's function combined with semi empirical extended Huckel theory was applied using the Atomistik Tool Kit. This was further used to measure significant transport parameters such as current, conductance, transmission spectra and the HOMO-LUMO gap of the suggested molecular system. An important revelation from our research work is that the cytosine-based molecular device exhibits metallic behavior with current ranging up to 70 μA, and hence establishes itself as a good conductor. On the other hand, the guanine-based device is comparatively less conductive, exhibiting current in the order of 3 μA. Another interesting observation about the guanine-based device is the visibility of a prominent negative differential resistance effect during the positive bias and a tunneling effect during negative bias. The uniform charge transfer through the cytosine device confirms its application as a molecular wire. The observations on the guanine-based device give better insights into its application as a memory device for nano-scale devices.
Collapse
|
42
|
Gangada S, Chakali M, Mandal H, Duvva N, Chitta R, Lingamallu G, Bangal PR. Excitation-dependent electron exchange energy and electron transfer dynamics in a series of covalently tethered N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline - [C 60] fullerene dyads via varying π-conjugated spacers. Phys Chem Chem Phys 2018; 20:21352-21367. [PMID: 30095832 DOI: 10.1039/c8cp03521k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond time-resolved fluorescence and transient absorption studies are reported for three newly synthesized covalently linked N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline (BBA) and pyrrolidinofullerenes (C60)-based donor-π conjugated bridge-acceptor dyads (D-B-A) as functions of the bridge length (7.1, 9.5 and 11.2 Å for Dyad-1, Dyad-2 and Dyad-3), dielectric constants of the medium and pump wavelengths. In polar solvent, ultrafast fluorescence quenching (kEET ≥ 2 × 1012 s-1) of the BBA moiety upon excitation of the BBA moiety (320 nm) is observed in the dyads and is assigned to a mechanism involving electron exchange energy transfer (EET) from 1BBA* to C60 followed by electron transfer from BBA to 1C60*. Cohesive rise and decay dynamics of conjugated BBA˙+-C60˙- anion pairs confirm the involvement of a distance independent adiabatic charge-separation (CS) process (kCS ≥ 2.2 × 1011 s-1) with near unity quantum efficiency (φCS ≥ 99.7%) and a distance-dependent non-adiabatic charge-recombination (CR) process [kCR ∼ (1010-108) s-1]. In contrast, excitation of the C60 moiety (λex = 430 to 700 nm) illustrates photoinduced electron transfer from BBA to 1C60*, involving non-adiabatic (diabatic) and distance-dependent CS (kCS in the range of 0.59-1.78 × 1011 s-1) with 98.86-99.6% (Dyad-3-Dyad-1) quantum efficiency and a CR process with kCR values [kCR ∼ (1010-108) s-1] up to three orders greater than kCS of the respective dyads. Both the processes, CS and CR, upon C60 excitation and the CR process upon BBA excitation show distance dependent rate constants with exponential factor β ≤ 0.5 Å-1, and electron transfer is concluded to occur through a covalently linked conjugated π bridge. Global and target analysis of fsTA data reveal the occurrence of two closely lying CS states, thermally hot (CShot) and thermally relaxed (CSeq) states, and two CR processes with two orders of different rate constants. Careful analysis of the kinetic and thermodynamic data allowed us to estimate the total reorganization energy and electronic coupling matrix (V), which decrease exponentially with distance. These novel features of the distance independent adiabatic CS process and the distance-dependent diabatic CR process upon donor excitation are due to extending the π-conjugation between BBA and C60. The demonstrated results may provide a benchmark in the design of light-harvesting molecular devices where ultrafast CS processes and long-lived CS states are essential requirements.
Collapse
Affiliation(s)
- Suneel Gangada
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan - 305817, India.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lewis FD, Young RM, Wasielewski MR. Tracking Photoinduced Charge Separation in DNA: from Start to Finish. Acc Chem Res 2018; 51:1746-1754. [PMID: 30070820 DOI: 10.1021/acs.accounts.8b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The initial studies of the dynamics of photoinduced charge separation conducted in our laboratories 20 years ago found strongly distance-dependent rate constants over short distances but failed to detect intermediates in the transport of positive charge (holes). These observations were consistent with the single-step superexchange or tunneling mechanism that had been observed for numerous donor-bridge-acceptor systems at that time. Subsequent studies found weak distance dependence for hole transport over longer distances in DNA, characteristic of incoherent hopping of either localized or delocalized holes. The introduction of synthetic DNA capped hairpin constructs possessing hole donor and acceptor chromophores (or purine bases) at opposite ends of a base-pair domain made it possible to determine the time required for transit of charge from one chromophore to the other and, in some cases, to distinguish between the transit time and the much faster initial charge injection time. These studies eliminated conventional tunneling as a viable mechanism for charge transport in DNA except at very short donor-acceptor separations; however, they did not establish the presence or nature of intermediates in the charge separation process. Recent studies in our laboratories have succeeded in identifying key intermediates as well as untangling the dynamics and efficiency of the charge separation process from start to finish. The dynamics of the initial charge injection process is dependent upon both its free energy and the stacking of the hole donor chromophore and adjacent purine base. The transport of positive charge (holes) over multiple base pairs in duplex DNA occurs most efficiently via repeating adenine bases, known as A-tracts. The transit time across an A-tract is strongly dependent upon the free energy for hole injection, whereas the efficiency of charge separation depends on the competition between charge delocalization and charge recombination in the contact radical ion pair. The guanine cation radical has been detected both by femtosecond transient absorption and by stimulated Raman spectroscopies when the guanine is located near the chromophore employed for hole injection into an A-tract. Replacement of guanine by its derivative 8-phenylethynylguanine (EG), permits tracking of hole transport across longer poly(purine) sequences as a consequence of the stronger transient absorption and stimulated Raman scattering for EG+• vs G+•. We have recently obtained evidence based on femtosecond transient absorption spectroscopy for the formation of delocalized A-polarons in A-tracts possessing four or more A-T base pairs. Similar methods have been used to track hole transport across less-common DNA structures including diblock and triblock poly(purines), locked nucleic acids, three-way junctions, and G-quadruplexes. Similar methods are have been applied to the study of photoinduced electron transport in DNA.
Collapse
Affiliation(s)
- Frederick D. Lewis
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
44
|
Yuan Y, Du C, Sun C, Zhu J, Wu S, Zhang Y, Ji T, Lei J, Yang Y, Gao N, Nie G. Chaperonin-GroEL as a Smart Hydrophobic Drug Delivery and Tumor Targeting Molecular Machine for Tumor Therapy. NANO LETTERS 2018; 18:921-928. [PMID: 29287145 DOI: 10.1021/acs.nanolett.7b04307] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeted delivery of hydrophobic therapeutic drugs to tumors is one of the major challenges in drug development. The use of natural proteins as drug delivery vehicles holds great promise due to various functionalities of proteins. In the current study, we exploited a natural protein, GroEL, which possesses a double layer cage structure, as a hydrophobic drug container, which is switchable by ATP binding to a hydrophilic status, to design a novel and intelligent hydrophobic drug delivery molecular machine with a controlled drug release profile. When loaded with the hydrophobic antitumor drug, Doxorubicin (Dox), GroEL was able to shield the drug from the aqueous phase of blood, releasing the drug once in the presence of a critical concentration of ATP at the tumor site. Unexpectedly, we found that GroEL has a specific affinity for the cell structural protein, plectin, which is expressed at abnormally elevated levels on the membranes of tumor cells but not in normal cells. This finding, in combination with the ATP sensitivity, makes GroEL a superior natural tumor targeting nanocarrier. Our data show that GroEL-Dox is able to effectively, and highly selectively, deliver the hydrophobic drug to fast growing tumors without overt adverse effects on the major organs. GroEL is therefore a promising drug delivery platform that can overcome the obstacles to hydrophobic drug targeting and delivery.
Collapse
Affiliation(s)
- Yi Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Chong Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- Department of General Surgery, Peking University First Hospital , Beijing 100034, China
| | - Cuiji Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Jin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Shan Wu
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Jianlin Lei
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital , Beijing 100034, China
| | - Ning Gao
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University , Beijing 100871, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Appukutti N, Serpell CJ. High definition polyphosphoesters: between nucleic acids and plastics. Polym Chem 2018. [DOI: 10.1039/c8py00251g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids and synthetic polyphosphoester materials have been distinct fields – this review shows how these areas now comprise a continuum.
Collapse
|
46
|
Wang JC, Hill SP, Dilbeck T, Ogunsolu OO, Banerjee T, Hanson K. Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem Soc Rev 2018; 47:104-148. [DOI: 10.1039/c7cs00565b] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
High surface area metal oxides offer a unique substrate for the assembly of multiple molecular components at an interface.
Collapse
Affiliation(s)
- Jamie C. Wang
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Sean P. Hill
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Tristan Dilbeck
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | | | - Tanmay Banerjee
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Max Planck Institute for Solid State Research
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Materials Science and Engineering
| |
Collapse
|
47
|
Synthesis and properties of microenvironment-sensitive oligonucleotides containing a small fluorophore, 3-aminobenzonitrile or 3-aminobenzoic acid. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Ivanov MV, Reilly N, Uhler B, Kokkin D, Rathore R, Reid SA. Cofacially Arrayed Polyfluorenes: Spontaneous Formation of π-Stacked Assemblies in the Gas Phase. J Phys Chem Lett 2017; 8:5272-5276. [PMID: 29020769 DOI: 10.1021/acs.jpclett.7b02627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding geometrical and size dependencies of through-space charge delocalization in multichromophoric systems is critical to model electron transfer and transport in materials and biomolecules. In this work, we examine the size evolution of hole delocalization in van der Waals clusters of fluorene (i.e., (F)n), where a range of geometries are possible, reflecting both π-stacking and C-H/π interactions. Using mass-selected two-color resonant two-photon ionization spectroscopy (2CR2PI), we measure electronic spectra and vertical ionization potentials (IPs) in the gas phase. Results are compared with model covalently linked assemblies (denoted Fn), exhibiting a sterically enforced cofacial (i.e., π-stacked) orientation of chromophores. For both systems, an inverse size dependence (i.e., 1/n) of IP vs cluster size is found. Surprisingly, the values for the two sets fall on the same line! This trend is examined via theory, which emphasizes the important role of π-stacking, and its geometrical dependencies, in the process of hole delocalization in multichromophoric assemblies.
Collapse
Affiliation(s)
- Maxim V Ivanov
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Neil Reilly
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Brandon Uhler
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Damian Kokkin
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Rajendra Rathore
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Scott A Reid
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
49
|
Méndez-Ardoy A, Markandeya N, Li X, Tsai YT, Pecastaings G, Buffeteau T, Maurizot V, Muccioli L, Castet F, Huc I, Bassani DM. Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chem Sci 2017; 8:7251-7257. [PMID: 29147547 PMCID: PMC5633016 DOI: 10.1039/c7sc03341a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022] Open
Abstract
Aromatic foldamers are bioinspired architectures whose potential use in materials remains largely unexplored. Here we report our investigation of vertical and horizontal charge transport over long distances in helical oligo-quinolinecarboxamide foldamers organized as single monolayers on Au or SiO2. Conductive atomic force microscopy showed that vertical conductivity is efficient and that it displays a low attenuation with foldamer length (0.06 Å-1). In contrast, horizontal charge transport is found to be negligible, demonstrating the strong anisotropy of foldamer monolayers. Kinetic Monte Carlo calculations were used to probe the mechanism of charge transport in these helical molecules and revealed the presence of intramolecular through-space charge transfer integrals approaching those found in pentacene and rubrene crystals, in line with experimental results. Kinetic Monte Carlo simulations of charge hopping along the foldamer chain evidence the strong contribution of multiple 1D and 3D pathways in these architectures and their dependence on conformational order. These findings show that helical foldamer architectures may provide a route for achieving charge transport over long distance by combining multiple charge transport pathways.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Nagula Markandeya
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Xuesong Li
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Yu-Tang Tsai
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Gilles Pecastaings
- Inst. Polytechnique de Bordeaux CNRS UMR 5629 LCPO , 16, Av. Pey-Berland , 33600 Pessac , France
| | - Thierry Buffeteau
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Victor Maurizot
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Luca Muccioli
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Frédéric Castet
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| | - Ivan Huc
- Univ. Bordeaux CNRS UMR 5248 CBMN , 2 rue Escarpit , 33600 Pessac , France .
| | - Dario M Bassani
- Univ. Bordeaux CNRS UMR 5255 ISM , 351, Cours de la Libération , 33405 Talence , France .
| |
Collapse
|
50
|
Zhang L, Xiao X, Xu Y, Chen D, Chen J, Ma Y, Dai Z, Zou X. Electrochemical assay for continuous monitoring of dynamic DNA methylation process. Biosens Bioelectron 2017; 100:184-191. [PMID: 28889069 DOI: 10.1016/j.bios.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023]
Abstract
A simple electrochemical strategy is reported for continuous monitoring of dynamic DNA methylation process over time. An electrochemical sensor was prepared by co-assembling of DNA probe and 6-mercapto-1-hexanol onto a gold electrode. The top of the DNA probe was labeled with 6-ferrocenylhexanethiol modified gold nanoparticle. The charge density between the C•G base pair was verified to be slightly reduced by DNA methylation, and could be further decelerated by ~ 25% upon co-locating a Br group onto methylated cytosine (mC). Therefore, in the presence of NaIO4/LiBr, the progressively methylated DNA on the sensor showed a clearly decreasing current over methylation time. The dynamic DNA methylation process was indicated continuously from the current decrease ratio, with a limit of detection of 0.0372µM. The strategy is convenient, cost-effective, and enable continuous profiling methylation process without distortion. Besides, the strategy was successfully applied for the studies on inhibitor screening and flanking sequence preference of DNA methyltransferase 3a. The results show that the activity of DNA methyltransferase 3a can be mildly inhibited by epigallocatechin gallate, and varies towards different flanking sequence with an order of 5'-CCGG-3' < 5'-CGCG-3' < 5'-CGCA-3'.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Xiaofen Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Yuzhi Xu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Danping Chen
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Yingjun Ma
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Zong Dai
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China.
| | - Xiaoyong Zou
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, PR China.
| |
Collapse
|