1
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat Commun 2024; 15:9084. [PMID: 39433544 PMCID: PMC11494099 DOI: 10.1038/s41467-024-52914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 e-Å-2, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.5. Each map allows us to identify distinct RNA helices and determine a unique tertiary structure. Statistical analysis of these 120 structures confirms two reported conformations and reveals a range of kinetically trapped, intermediate, and highly compacted states, demonstrating a maturation folding landscape likely driven by helix-helix compaction interactions.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, 69120, Heidelberg, Germany
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wąchalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, Becker T, Beckmann R, Kopito RR. UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature 2024; 627:445-452. [PMID: 38383785 PMCID: PMC11469336 DOI: 10.1038/s41586-024-07073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan Penchev
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | | | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Tertiary structure of single-instant RNA molecule reveals folding landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541511. [PMID: 37292713 PMCID: PMC10245749 DOI: 10.1101/2023.05.19.541511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The folding of RNA and protein molecules during their synthesis is a crucial self-assembly process that nature employs to convert genetic information into the complex molecular machinery that supports life. Misfolding events are the cause of several diseases, and the folding pathway of central biomolecules, such as the ribosome, is strictly regulated by programmed maturation processes and folding chaperones. However, the dynamic folding processes are challenging to study because current structure determination methods heavily rely on averaging, and existing computational methods do not efficiently simulate non-equilibrium dynamics. Here we utilize individual-particle cryo-electron tomography (IPET) to investigate the folding landscape of a rationally designed RNA origami 6-helix bundle that undergoes slow maturation from a "young" to "mature" conformation. By optimizing the IPET imaging and electron dose conditions, we obtain 3D reconstructions of 120 individual particles at resolutions ranging from 23-35 Å, enabling us first-time to observe individual RNA helices and tertiary structures without averaging. Statistical analysis of 120 tertiary structures confirms the two main conformations and suggests a possible folding pathway driven by helix-helix compaction. Studies of the full conformational landscape reveal both trapped states, misfolded states, intermediate states, and fully compacted states. The study provides novel insight into RNA folding pathways and paves the way for future studies of the energy landscape of molecular machines and self-assembly processes.
Collapse
|
4
|
Xu S, Li X, Geng J, Cao Y, Yu Y, Qi L. Sec61γ is a vital protein in the endoplasmic reticulum membrane promoting tumor metastasis and invasion in lung adenocarcinoma. Br J Cancer 2023; 128:1478-1490. [PMID: 36759724 PMCID: PMC10070493 DOI: 10.1038/s41416-023-02150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/01/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Finding effective prognostic markers and therapeutic targets is of great significance for controlling metastasis and invasion clinically. METHODS The open copy-number aberrations and gene expression datasets were analysed, and the data of 102 LUAD patients was used for further validation. The cell proliferation, colony formation, migration, invasion assays and mice tumor models were used to detect the function of SEC61G. The epidermal growth factor receptor (EGFR) pathway was also detected to find the mechanism of Sec61γ. RESULTS Based on the open datasets, we found that the high level of SEC61G mRNA may drive LUAD metastasis. Furthermore, the overexpression of Sec61γ protein was significantly associated with poor prognosis and greater tumor cell proliferation and metastasis. The SEC61G knockdown could inhibit the EGFR pathway, including STAT3, AKT and PI3K, which can be reversed by Sec61γ overexpression and epithelial growth factor (EGF) supplement. CONCLUSIONS Sec61γ promoted the proliferation, metastasis, and invasion of LUAD through EGFR pathways. Sec61γ might be a potential target for the treatment of LUAD metastases.
Collapse
Affiliation(s)
- Shanqi Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianxiong Geng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingyue Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Saha N, Tomar RS. Copper inhibits protein maturation in the secretory pathway by targeting the Sec61 translocon in Saccharomyces cerevisiae. J Biol Chem 2022; 298:102170. [PMID: 35738397 PMCID: PMC9304788 DOI: 10.1016/j.jbc.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
In Saccharomyces cerevisiae, proteins destined for secretion utilize the post-translational translocon machinery to gain entry into the endoplasmic reticulum. These proteins then mature by undergoing a number of post-translational modifications in different compartments of the secretory pathway. While these modifications have been well established for many proteins, to date only a few studies have been conducted regarding the conditions and factors affecting maturation of these proteins before entering into the endoplasmic reticulum. Here, using immunoblotting, microscopy, and spot test assays, we show that excess copper inhibits the Sec61 translocon function and causes accumulation of two well-known post-translationally translocated proteins, Gas1 (glycophospholipid-anchored surface protein) and CPY (carboxypeptidase Y), in the cytosol. We further show that the copper-sensitive phenotype of sec61-deficient yeast cells is ameliorated by restoring the levels of SEC61 through plasmid transformation. Furthermore, screening of translocation-defective Sec61 mutants revealed that sec61-22, bearing L80M, V134I, M248V, and L342S mutations, is resistant to copper, suggesting that copper might be inflicting toxicity through one of these residues. In conclusion, these findings imply that copper-mediated accumulation of post-translationally translocated proteins is due to the inhibition of Sec61.
Collapse
Affiliation(s)
- Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Monjezi MR, Fouladseresht H, Farjadian S, Gharesi-Fard B, Khosropanah S, Doroudchi M. T Cell Proliferative Responses and IgG Antibodies to β2GPI in Patients with Diabetes and Atherosclerosis. Endocr Metab Immune Disord Drug Targets 2021; 21:495-503. [PMID: 32368987 DOI: 10.2174/1871530320666200505115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes increases the risk of myocardial infarction (MI) by 2 to 3 folds. Tlymphocytes play a role in atherosclerosis, which is the main pathology behind MI. Cellular immune responses to beta-2 glycoprotein I (β2GPI) are shown in carotid atherosclerosis. OBJECTIVE To investigate the self-reactive, β2GPI-specific T-lymphocytes in patients with and without diabetes and atherosclerosis. METHODS Collectively, 164 subjects with and without diabetes that underwent coronary angiography were divided into four groups based on their diabetes status and coronary stenosis. Group I=Diabetic with ≥50% stenosis: A+D+ (n=66); Group II=Non-diabetic with ≥50% stenosis, A+D- (n=39); Group III=Diabetic with <50% stenosis: A-D+ (n=28); and Group IV=Non-diabetic with <50% stenosis: AD- (n=31). All groups were evaluated for anti-β2GPI IgG antibody by ELISA method. Then, PBMCs were isolated from 18 subjects and were stimulated with β2GPI-derived peptides to assess their proliferation in accordance with their HLA-DRB1 alleles. RESULTS Mean β2GPI IgG levels were higher in groups with ≥50% stenosis (A+) compared to those with <50% stenosis (A-), (P=0.02). The co-presence of diabetes in A+ individuals increased mean β2GPI-specific IgG. Auto-reactive β2GPI-specific T cells were detected in the repertoire of T-lymphocytes in all groups. β2GPI-peptides showed promiscuous restriction by various HLADRB1. CONCLUSION β2GPI is the target of cellular and humoral immune responses in patients with atherosclerosis. Since the T cell responses but not antibodies were detectable in A-D+ and A-D- groups, it is reasonable to assume that cellular responses preceded the humoral responses. Post-translation modifications of β2GPI under oxidative and glycemic stresses may have increased the IgG levels in patients with diabetes. Finally, identification of antigens that trigger immuno-pathogenesis in atherosclerosis and diabetes may help the development of immunomodulation methods to prevent or treat these debilitating diseases.
Collapse
Affiliation(s)
- Mohammad R Monjezi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Wells JN, Buschauer R, Mackens-Kiani T, Best K, Kratzat H, Berninghausen O, Becker T, Gilbert W, Cheng J, Beckmann R. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biol 2020; 18:e3000780. [PMID: 32687489 PMCID: PMC7392345 DOI: 10.1371/journal.pbio.3000780] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Cells adjust to nutrient deprivation by reversible translational shutdown. This is accompanied by maintaining inactive ribosomes in a hibernation state, in which they are bound by proteins with inhibitory and protective functions. In eukaryotes, such a function was attributed to suppressor of target of Myb protein 1 (Stm1; SERPINE1 mRNA-binding protein 1 [SERBP1] in mammals), and recently, late-annotated short open reading frame 2 (Lso2; coiled-coil domain containing short open reading frame 124 [CCDC124] in mammals) was found to be involved in translational recovery after starvation from stationary phase. Here, we present cryo-electron microscopy (cryo-EM) structures of translationally inactive yeast and human ribosomes. We found Lso2/CCDC124 accumulating on idle ribosomes in the nonrotated state, in contrast to Stm1/SERBP1-bound ribosomes, which display a rotated state. Lso2/CCDC124 bridges the decoding sites of the small with the GTPase activating center (GAC) of the large subunit. This position allows accommodation of the duplication of multilocus region 34 protein (Dom34)-dependent ribosome recycling system, which splits Lso2-containing, but not Stm1-containing, ribosomes. We propose a model in which Lso2 facilitates rapid translation reactivation by stabilizing the recycling-competent state of inactive ribosomes.
Collapse
Affiliation(s)
- Jennifer N. Wells
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Robert Buschauer
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Timur Mackens-Kiani
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Katharina Best
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Hanna Kratzat
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Wendy Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Jingdong Cheng
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| |
Collapse
|
8
|
Abstract
One-fourth of eukaryotic genes code for integral membrane proteins, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining feature of membrane proteins is one or more transmembrane domains (TMDs). During membrane protein biogenesis, TMDs are selectively recognized, shielded, and chaperoned into the lipid bilayer, where they often assemble with other TMDs. If maturation fails, exposed TMDs serve as a cue for engagement of degradation pathways. Thus, TMD-recognition factors in the cytosol and ER are essential for membrane protein biogenesis and quality control. Here, we discuss the growing assortment of cytosolic and membrane-embedded TMD-recognition factors, the pathways within which they operate, and mechanistic principles of recognition.
Collapse
|
9
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
10
|
Lei D, Liu J, Liu H, Cleveland TE, Marino JP, Lei M, Ren G. Single-Molecule 3D Images of "Hole-Hole" IgG1 Homodimers by Individual-Particle Electron Tomography. Sci Rep 2019; 9:8864. [PMID: 31221961 PMCID: PMC6586654 DOI: 10.1038/s41598-019-44978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
The engineering of immunoglobulin-G molecules (IgGs) is of wide interest for improving therapeutics, for example by modulating the activity or multiplexing the specificity of IgGs to recognize more than one antigen. Optimization of engineered IgG requires knowledge of three-dimensional (3D) structure of synthetic IgG. However, due to flexible nature of the molecules, their structural characterization is challenging. Here, we use our reported individual-particle electron tomography (IPET) method with optimized negative-staining (OpNS) for direct 3D reconstruction of individual IgG hole-hole homodimer molecules. The hole-hole homodimer is an undesired variant generated during the production of a bispecific antibody using the knob-into-hole heterodimer technology. A total of 64 IPET 3D density maps at ~15 Å resolutions were reconstructed from 64 individual molecules, revealing 64 unique conformations. In addition to the known Y-shaped conformation, we also observed an unusual X-shaped conformation. The 3D structure of the X-shaped conformation contributes to our understanding of the structural details of the interaction between two heavy chains in the Fc domain. The IPET approach, as an orthogonal technique to characterize the 3D structure of therapeutic antibodies, provides insight into the 3D structural variety and dynamics of heterogeneous IgG molecules.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hongbin Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Ming Lei
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Li W, Agrawal RK. Joachim Frank's Binding with the Ribosome. Structure 2019; 27:411-419. [PMID: 30595455 PMCID: PMC11062599 DOI: 10.1016/j.str.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
With recent technological advancements, single-particle cryogenic electron microscopy (cryo-EM) is now the technique of choice to study structure and function of biological macromolecules at near-atomic resolution. Many single-particle EM reconstruction methods necessary for these advances were pioneered by Joachim Frank, and were optimized using the ribosome as a benchmark specimen. In doing so, he made several landmark contributions to the understanding of the structure and function of ribosomes. These include the first 3D visualization of ribosome-bound transfer RNAs, the first experimentally derived structures of the primary complexes formed during the bacterial translation elongation cycle, and the critical ribosomal conformational transitions required for translation. Over the years, his laboratory studied many important functional complexes of the ribosome from both eubacterial and eukaryotic systems, including ribosomes from pathogenic organisms. This article presents a brief account of the contributions made by Joachim Frank to the ribosome field.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
12
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
13
|
Mandon EC, Butova C, Lachapelle A, Gilmore R. Conserved motifs on the cytoplasmic face of the protein translocation channel are critical for the transition between resting and active conformations. J Biol Chem 2018; 293:13662-13672. [PMID: 29986881 DOI: 10.1074/jbc.ra118.004123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Sec61 complex is the primary cotranslational protein translocation channel in yeast (Saccharomyces cerevisiae). The structural transition between the closed inactive conformation of the Sec61 complex and its open and active conformation is thought to be promoted by binding of the ribosome nascent-chain complex to the cytoplasmic surface of the Sec61 complex. Here, we have analyzed new yeast Sec61 mutants that selectively interfere with cotranslational translocation across the endoplasmic reticulum. We found that a single substitution at the junction between transmembrane segment TM7 and the L6/7 loop interferes with cotranslational translocation by uncoupling ribosome binding to the L6/7 loop from the separation of the lateral gate transmembrane spans. Substitutions replacing basic residues with acidic residues in the C-terminal tail of Sec61 had an unanticipated impact upon binding of ribosomes to the Sec61 complex. We found that similar charge-reversal mutations in the N-terminal tail and in cytoplasmic loop L2/3 did not alter ribosome binding but interfered with translocation channel gating. These findings indicated that these segments are important for the structural transition between the inactive and active conformations of the Sec61 complex. In summary our results have identified additional cytosolic segments of the Sec61 complex important for promoting the structural transition between the closed and open conformations of the complex. We conclude that positively charged residues in multiple cytosolic segments, as well as bulky hydrophobic residues in the L6/7-TM7 junction, are required for cotranslational translocation or integration of membrane proteins by the Sec61 complex.
Collapse
Affiliation(s)
- Elisabet C Mandon
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Cameron Butova
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Amber Lachapelle
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Reid Gilmore
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
14
|
Chook YM, Fontoura BMA, Rout MP. Günter Blobel 1936–2018. Nat Struct Mol Biol 2018; 25:297-298. [DOI: 10.1038/s41594-018-0053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 2018. [PMID: 29519914 DOI: 10.1126/science.aar7899] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein synthesis, transport, and N-glycosylation are coupled at the mammalian endoplasmic reticulum by complex formation of a ribosome, the Sec61 protein-conducting channel, and oligosaccharyltransferase (OST). Here we used different cryo-electron microscopy approaches to determine structures of native and solubilized ribosome-Sec61-OST complexes. A molecular model for the catalytic OST subunit STT3A (staurosporine and temperature sensitive 3A) revealed how it is integrated into the OST and how STT3-paralog specificity for translocon-associated OST is achieved. The OST subunit DC2 was placed at the interface between Sec61 and STT3A, where it acts as a versatile module for recruitment of STT3A-containing OST to the ribosome-Sec61 complex. This detailed structural view on the molecular architecture of the cotranslational machinery for N-glycosylation provides the basis for a mechanistic understanding of glycoprotein biogenesis at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Katharina Braunger
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, Netherlands.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
16
|
Shim SM, Choi HR, Sung KW, Lee YJ, Kim ST, Kim D, Mun SR, Hwang J, Cha-Molstad H, Ciechanover A, Kim BY, Kwon YT. The endoplasmic reticulum-residing chaperone BiP is short-lived and metabolized through N-terminal arginylation. Sci Signal 2018; 11:11/511/eaan0630. [PMID: 29295953 DOI: 10.1126/scisignal.aan0630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BiP and other endoplasmic reticulum (ER)-resident proteins are thought to be metabolically stable and to function primarily in the ER lumen. We sought to assess how the abundance of these proteins dynamically fluctuates in response to various stresses and how their subpopulations are relocated to non-ER compartments such as the cytosol. We showed that the molecular chaperone BiP (also known as GRP78) was short-lived under basal conditions and ER stress. The turnover of BiP was in part driven by its amino-terminal arginylation (Nt-arginylation) by the arginyltransferase ATE1, which generated an autophagic N-degron of the N-end rule pathway. ER stress elicited the formation of R-BiP, an effect that was increased when the proteasome was also inhibited. Nt-arginylation correlated with the cytosolic relocalization of BiP under the types of stress tested. The cytosolic relocalization of BiP did not require the functionality of the unfolded protein response or the Sec61- or Derlin1-containing translocon. A key inhibitor of the turnover and Nt-arginylation of BiP was HERP (homocysteine-responsive ER protein), a 43-kDa ER membrane-integrated protein that is an essential component of ER-associated protein degradation. Pharmacological inhibition of the ER-Golgi secretory pathway also suppressed R-BiP formation. Finally, we showed that cytosolic R-BiP induced by ER stress and proteasomal inhibition was routed to autophagic vacuoles and possibly additional metabolic fates. These results suggest that Nt-arginylation is a posttranslational modification that modulates the function, localization, and metabolic fate of ER-resident proteins.
Collapse
Affiliation(s)
- Sang Mi Shim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ha Rim Choi
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ki Woon Sung
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Tae Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daeho Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Tumor and Vascular Biology Research Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea.
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
17
|
Cuellar J, Valpuesta JM, Wittinghofer A, Sot B. Domain topology of human Rasal. Biol Chem 2017; 399:63-72. [PMID: 28885980 DOI: 10.1515/hsz-2017-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
Abstract
Rasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BP and Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BP and Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Begoña Sot
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain.,IMDEA-Nanociencia, Faraday 9, Campus Universitario de Cantoblanco, 28048 Madrid, Spain
| |
Collapse
|
18
|
Javed A, Christodoulou J, Cabrita LD, Orlova EV. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr D Struct Biol 2017; 73:509-521. [PMID: 28580913 PMCID: PMC5458493 DOI: 10.1107/s2059798317007446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements - the r-proteins and rRNA that line the tunnel - prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
19
|
Voorhees RM, Hegde RS. Toward a structural understanding of co-translational protein translocation. Curr Opin Cell Biol 2016; 41:91-9. [PMID: 27155805 DOI: 10.1016/j.ceb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Abstract
The translocation of most eukaryotic secreted and integral membrane proteins occurs co-translationally at the endoplasmic reticulum (ER). These nascent polypeptides are recognized on the ribosome by the signal recognition particle (SRP), targeted to the ER, and translocated across or inserted into the membrane by the Sec61 translocation channel. Structural analysis of these co-translational processes has been challenging due to the size, complexity, and flexibility of the targeting and translocation machinery. Recent technological advances in cryo-electron microscopy (cryo-EM) have resulted in increasingly powerful tools to study large, heterogeneous, and low-abundance samples. These advances are being utilized to obtain near-atomic resolution reconstructions of functional translation, targeting, and translocation intermediates, paving the way to a mechanistic understanding of protein biogenesis.
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
20
|
Frank J. Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 2016; 65:3-8. [PMID: 26566976 PMCID: PMC4749046 DOI: 10.1093/jmicro/dfv358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.
Collapse
Affiliation(s)
- Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Junne T, Spiess M. Integration of transmembrane domains is regulated by their downstream sequences. J Cell Sci 2016; 130:372-381. [DOI: 10.1242/jcs.194472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
The Sec61 translocon catalyzes translocation of proteins into the endoplasmic reticulum and the lateral integration of transmembrane segments into the lipid bilayer. Integration is mediated by the hydrophobicity of a polypeptide segment consistent with thermodynamic equilibration between the translocon and the lipid membrane. Integration efficiency of a generic series of increasingly hydrophobic sequences (H-segments) was found to diverge significantly in different reporter constructs as a function of the ∼100 residues carboxyterminal of the H-segments. The hydrophobicity threshold of integration was considerably lowered by insertion of generic ∼20-residue peptides either made of flexible glycine-serine repeats, containing multiple negative charges, or consisting of an oligo-proline stretch. A highly flexible, 100-residue glycine-serine stretch maximally enhanced this effect. The apparent free energy of integration was found to be changed by more than 3 kcal/mol with the downstream sequences tested. The C-terminal sequences could also be shown to affect integration of natural mildly hydrophobic sequences. The results suggest that the conformation of the nascent polypeptide in the protected cavity between ribosome and translocon significantly influences the release of the H-segment into the bilayer.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
22
|
Elvekrog MM, Walter P. Dynamics of co-translational protein targeting. Curr Opin Chem Biol 2015; 29:79-86. [PMID: 26517565 DOI: 10.1016/j.cbpa.2015.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Most membrane and secretory proteins are delivered co-translationally to protein translocation channels in their destination membrane by the signal recognition particle (SRP) and its receptor. This co-translational molecular machinery is conserved across all kingdoms of life, though it varies in composition and function. Here we report recent progress towards understanding the mechanism of SRP function, focusing on findings about Escherichia coli SRP's conformational dynamics throughout the targeting process. These insights shed light on a key checkpoint in the targeting cycle: how SRP regulates engagement of an actively translating ribosome with the translocation machinery at the membrane.
Collapse
Affiliation(s)
- Margaret M Elvekrog
- The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Peter Walter
- The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
23
|
Ercius P, Alaidi O, Rames MJ, Ren G. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5638-63. [PMID: 26087941 PMCID: PMC4710474 DOI: 10.1002/adma.201501015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated.
Collapse
Affiliation(s)
- Peter Ercius
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Osama Alaidi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Matthew J. Rames
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Gang Ren
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
25
|
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161:438-449. [PMID: 25910204 DOI: 10.1016/j.cell.2015.03.050] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/14/2023]
Abstract
Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin Street, MSB 6.220, Houston, TX 77030, USA
| | - Thomas Walz
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
De Marothy MT, Elofsson A. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding. Protein Sci 2015; 24:1057-74. [PMID: 25970811 DOI: 10.1002/pro.2698] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment.
Collapse
Affiliation(s)
- Minttu T De Marothy
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| |
Collapse
|
27
|
Zhang X, Zhang L, Tong H, Peng B, Rames MJ, Zhang S, Ren G. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography. Sci Rep 2015; 5:9803. [PMID: 25940394 PMCID: PMC4419541 DOI: 10.1038/srep09803] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1-3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.
Collapse
Affiliation(s)
- Xing Zhang
- 1] The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA [2] Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Huimin Tong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bo Peng
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Rames
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
29
|
Dudek J, Pfeffer S, Lee PH, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R. Protein transport into the human endoplasmic reticulum. J Mol Biol 2014; 427:1159-75. [PMID: 24968227 DOI: 10.1016/j.jmb.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.
Collapse
Affiliation(s)
- Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Po-Hsien Lee
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
30
|
Voorhees RM, Fernández IS, Scheres SHW, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 2014; 157:1632-43. [PMID: 24930395 PMCID: PMC4081569 DOI: 10.1016/j.cell.2014.05.024] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/27/2022]
Abstract
Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies. A near-complete atomic resolution structure of the mammalian ribosome Snapshot of a translating ribosome with hybrid state tRNAs and nascent polypeptide Structures of the Sec61 translocon bound to idle and translating ribosomes Molecular details of the residues involved in the ribosome-Sec61 interaction
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
31
|
Haßdenteufel S, Klein MC, Melnyk A, Zimmermann R. Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochem Cell Biol 2014; 92:499-509. [PMID: 24934166 DOI: 10.1139/bcb-2014-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein transport into the human endoplasmic reticulum (ER) is relevant to the biogenesis of most soluble and membrane proteins of organelles, which are involved in endo- or exo-cytsosis. It involves amino-terminal signal peptides in the precursor polypeptides and various transport components in the cytosol plus the ER, and can occur co- or post-translationally. The two mechanisms merge at the level of the ER membrane, specifically at the level of the heterotrimeric Sec61 complex, which forms a dynamic polypeptide-conducting channel in the ER membrane. Since the mammalian ER is also the main intracellular calcium storage organelle, and the Sec61 complex is calcium permeable, the Sec61 complex is tightly regulated in its equilibrium between the closed and open conformations, or "gated", by ligands, such as signal peptides of the transport substrates and the ER lumenal Hsp70-type molecular chaperone BiP. Furthermore, BiP binding to the incoming polypeptide contributes to the efficiency and unidirectionality of transport. Recent insights into the structure and dynamic equilibrium of the Sec61 complex have various mechanistic as well as medical implications.
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Medical Biochemistry & Molecular Biology, Saarland University, Building 44, Kirrbergerstr, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
32
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
33
|
Herrmann JM. The bacterial membrane insertase YidC is a functional monomer and binds ribosomes in a nascent chain-dependent manner. J Mol Biol 2013; 425:4071-3. [PMID: 23933056 DOI: 10.1016/j.jmb.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
34
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
35
|
Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, Rieger B. Measuring image resolution in optical nanoscopy. Nat Methods 2013; 10:557-62. [PMID: 23624665 PMCID: PMC4149789 DOI: 10.1038/nmeth.2448] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
Abstract
Resolution in optical nanoscopy (or super-resolution microscopy) depends on the localization uncertainty and density of single fluorescent labels and on the sample's spatial structure. Currently there is no integral, practical resolution measure that accounts for all factors. We introduce a measure based on Fourier ring correlation (FRC) that can be computed directly from an image. We demonstrate its validity and benefits on two-dimensional (2D) and 3D localization microscopy images of tubulin and actin filaments. Our FRC resolution method makes it possible to compare achieved resolutions in images taken with different nanoscopy methods, to optimize and rank different emitter localization and labeling strategies, to define a stopping criterion for data acquisition, to describe image anisotropy and heterogeneity, and even to estimate the average number of localizations per emitter. Our findings challenge the current focus on obtaining the best localization precision, showing instead how the best image resolution can be achieved as fast as possible.
Collapse
|
36
|
Banterle N, Bui KH, Lemke EA, Beck M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 2013; 183:363-367. [PMID: 23684965 DOI: 10.1016/j.jsb.2013.05.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022]
Abstract
Optical nanoscopy techniques using localization based image reconstruction, also termed super-resolution microscopy (SRM), have become a standard tool to bypass the diffraction limit in fluorescence light microscopy. The localization precision measured for the detected fluorophores is commonly used to describe the maximal attainable resolution. However, this measure takes not all experimental factors, which impact onto the finally achieved resolution, into account. Several other methods to measure the resolution of super-resolved images were previously suggested, typically relying on intrinsic standards, such as molecular rulers, or on a priori knowledge about the specimen, e.g. its spatial frequency content. Here we show that Fourier ring correlation provides an easy-to-use, laboratory consistent standard for measuring the resolution of SRM images. We provide a freely available software tool that combines resolution measurement with image reconstruction.
Collapse
Affiliation(s)
- Niccolò Banterle
- EMBL, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Khanh Huy Bui
- EMBL, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- EMBL, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Martin Beck
- EMBL, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
37
|
Chhangani D, Mishra A. Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 2013; 48:141-56. [PMID: 23378031 DOI: 10.1007/s12035-013-8411-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
A common feature in most neurodegenerative diseases and aging is the progressive accumulation of damaged proteins. Proteins are essential for all crucial biological functions. Under some notorious conditions, proteins loss their three dimensional native conformations and are converted into disordered aggregated structures. Such changes rise into pathological conditions and eventually cause serious protein conformation disorders. Protein aggregation and inclusion bodies formation mediated multifactorial proteotoxic stress has been reported in the progression of Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Prion disease. Ongoing studies have been remarkably informative in providing a systematic outlook for better understanding the concept and fundamentals of protein misfolding and aggregations. However, the precise role of protein quality control system and precursors of this mechanism remains elusive. In this review, we highlight recent insights and discuss emerging cytoprotective strategies of cellular protein quality control system implicated in protein deposition diseases. Our current review provides a clear, understandable framework of protein quality control system that may offer the more suitable therapeutic strategies for protein-associated diseases.
Collapse
Affiliation(s)
- Deepak Chhangani
- Cellular and Molecular Neurobiology Laboratory, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | | |
Collapse
|
38
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
39
|
Behrens C, Hartmann E, Kalies KU. Single rRNA Helices Bind Independently to the Protein-Conducting Channel SecYEG. Traffic 2013; 14:274-81. [DOI: 10.1111/tra.12033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Christina Behrens
- Department of Neuropathology; Georg August University Göttingen; Robert-Koch-Street 40; 37075; Göttingen; Germany
| | - Enno Hartmann
- Institute of Biology, CSCM; University of Lübeck; Ratzeburger Allee 160; 23562; Lübeck; Germany
| | - Kai-Uwe Kalies
- Institute of Biology, CSCM; University of Lübeck; Ratzeburger Allee 160; 23562; Lübeck; Germany
| |
Collapse
|
40
|
Jenner L, Melnikov S, Garreau de Loubresse N, Ben-Shem A, Iskakova M, Urzhumtsev A, Meskauskas A, Dinman J, Yusupova G, Yusupov M. Crystal structure of the 80S yeast ribosome. Curr Opin Struct Biol 2012; 22:759-67. [PMID: 22884264 DOI: 10.1016/j.sbi.2012.07.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 02/08/2023]
Abstract
The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.
Collapse
Affiliation(s)
- Lasse Jenner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP10142, Illkirch F-67400, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 2012; 4:4/5/a011536. [PMID: 22550233 DOI: 10.1101/cshperspect.a011536] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.
Collapse
|
42
|
Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J. A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 2012; 19:176-83. [PMID: 22231398 PMCID: PMC3293257 DOI: 10.1038/nsmb.2214] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/24/2011] [Indexed: 11/15/2022]
Abstract
PUF (Pumilio/FBF) RNA-binding proteins and Argonaute (Ago) miRNA-binding proteins regulate mRNAs post-transcriptionally, each acting through similar yet distinct mechanisms. Here, we report that PUF and Ago proteins can also function together in a complex with a core translation elongation factor, eEF1A, to repress translation elongation. Both nematode and mammalian PUF/Ago/eEF1A complexes were identified, using co-immunoprecipitation and recombinant protein assays. Nematode CSR-1 (Ago) promotes repression of FBF (PUF) target mRNAs in in vivo assays, and the FBF-1/CSR-1 heterodimer inhibits EFT-3 (eEF1A) GTPase activity in vitro. Mammalian PUM2/Ago/eEF1A inhibits translation of nonadenylated and polyadenylated reporter mRNAs in vitro. This repression occurs after translation initiation and leads to ribosome accumulation within the open reading frame, roughly at the site where the nascent polypeptide emerges from the ribosomal exit tunnel. Together, these data suggest that a conserved PUF/Ago/eEF1A complex attenuates translation elongation.
Collapse
Affiliation(s)
- Kyle Friend
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
43
|
Houck SA, Cyr DM. Mechanisms for quality control of misfolded transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1108-14. [PMID: 22100602 DOI: 10.1016/j.bbamem.2011.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/21/2023]
Abstract
To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Scott A Houck
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | |
Collapse
|
44
|
Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011; 286:44702-9. [PMID: 22033925 DOI: 10.1074/jbc.m111.300111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 μM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
46
|
Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S, Schilling J, Brooks CL, Karbstein K, Skiniotis G. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 2011; 333:1449-53. [PMID: 21835981 DOI: 10.1126/science.1208245] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate. These late-binding AFs are positioned to prevent each step in the translation initiation pathway. Together, they obstruct the binding sites for initiation factors, prevent the opening of the messenger RNA channel, block 60S subunit joining, and disrupt the decoding site. These redundant mechanisms probably ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to overcome these obstacles.
Collapse
Affiliation(s)
- Sichen Shao
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
48
|
Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. Membrane protein integration into the endoplasmic reticulum. FEBS J 2011; 278:3846-58. [PMID: 21592307 DOI: 10.1111/j.1742-4658.2011.08185.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
49
|
Tinkering with nature. Nat Rev Mol Cell Biol 2011; 12:401. [PMID: 21654705 DOI: 10.1038/nrm3137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 2011; 18:614-21. [PMID: 21499241 PMCID: PMC3412285 DOI: 10.1038/nsmb.2026] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
The ubiquitous SecY/Sec61–complex translocates nascent secretory proteins across cellular membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly detergent solubilized Sec–complexes have been reported. Here, we present a single–particle cryo–electron microscopy structure of the SecYEG complex in a membrane environment at sub–nanometer resolution, bound to a translating ribosome. Using the SecYEG complex reconstituted in a so–called Nanodisc, we could trace the nascent polypeptide chain from the peptidyl transferase center into the membrane. The reconstruction allowed for the identification of ribosome–lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the PCC. Based on our map and molecular dynamics simulations we present a model of a signal anchor–gated PCC in the membrane.
Collapse
|