1
|
Moura JP, Oliveira PJ, Urbano AM. Mitochondria: An overview of their origin, genome, architecture, and dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167803. [PMID: 40118291 DOI: 10.1016/j.bbadis.2025.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Mitochondria are traditionally viewed as the powerhouses of eukaryotic cells, i.e., the main providers of the metabolic energy required to maintain their viability and function. However, the role of these ubiquitous intracellular organelles far extends energy generation, encompassing a large suite of functions, which they can adjust to changing physiological conditions. These functions rely on a sophisticated membrane system and complex molecular machineries, most of which imported from the cytosol through intricate transport systems. In turn, mitochondrial plasticity is rooted on mitochondrial biogenesis, mitophagy, fusion, fission, and movement. Dealing with all these aspects and terminology can be daunting for newcomers to the field of mitochondria, even for those with a background in biological sciences. The aim of the present educational article, which is part of a special issue entitled "Mitochondria in aging, cancer and cell death", is to present these organelles in a simple and concise way. Complex molecular mechanisms are deliberately omitted, as their inclusion would defeat the stated purpose of the article. Also, considering the wide scope of the article, coverage of each topic is necessarily limited, with the reader directed to excellent reviews, in which the different topics are discussed in greater depth than is possible here. In addition, the multiple cell type-specific genotypic and phenotypic differences between mitochondria are largely ignored, focusing instead on the characteristics shared by most of them, with an emphasis on mitochondria from higher eukaryotes. Also ignored are highly degenerate mitochondrion-related organelles, found in various anaerobic microbial eukaryotes lacking canonical mitochondria.
Collapse
Affiliation(s)
- João P Moura
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Ana M Urbano
- Molecular Physical-Chemistry R&D Unit, Centre for Investigation in Environment, Genetics and Oncobiology (CIMAGO), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Zhou Y, Wang J, Sun Y, Cheng Y, Wu W. Non-Hydroxamate Inhibitors of IspC Enzyme in the MEP Pathway: Structural Insights and Drug Development Potential. Chem Biol Drug Des 2025; 105:e70086. [PMID: 40099748 DOI: 10.1111/cbdd.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
1-Deoxy-D-xylulose-5-phosphate reductoisomerase (IspC) is a key enzyme in the MEP pathway, essential for many bacteria, human pathogens, and plants, thus being an attractive drug target. Fosmidomycin, a potent IspC inhibitor with hydroxamate metal-binding pharmacophores (MBPs), has entered clinical trials for malaria but is hampered by pharmacokinetic and toxicity issues of the hydroxamate fragment. This has led to increased interest in non-hydroxamate inhibitors. This review focuses on the crystal structure and active-site binding mode of IspC, and the structural types, inhibitory activities, and structure-activity relationships of non-hydroxamate IspC inhibitors. Early attempts to design such inhibitors involved direct removal or replacement of the hydroxamate MBPs, with varying results. Lipophilic inhibitors, bisubstrate inhibitors, and those developed for herbicidal applications have shown promise. However, challenges remain due to the sensitivity of the enzyme active site to ligand interactions. Future research could draw from other metalloenzyme studies to develop novel and efficient non-hydroxamate IspC inhibitors.
Collapse
Affiliation(s)
- Yaqing Zhou
- Shiyan Key Laboratory of Biological Resources and eco-Environmental Protection, College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, China
| | - Jili Wang
- Shiyan Key Laboratory of Biological Resources and eco-Environmental Protection, College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, China
| | - Yong Sun
- Shiyan Key Laboratory of Biological Resources and eco-Environmental Protection, College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, China
| | - Yarui Cheng
- Shiyan Key Laboratory of Biological Resources and eco-Environmental Protection, College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, China
| | - Wenhai Wu
- Shiyan Key Laboratory of Biological Resources and eco-Environmental Protection, College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, China
| |
Collapse
|
3
|
Zheng M, Jiang Y, Ran Z, Liang S, Xiao T, Li X, Ma W. A cyanobacteria-derived intermolecular salt bridge stabilizes photosynthetic NDH-1 and prevents oxidative stress. Commun Biol 2025; 8:172. [PMID: 39905225 PMCID: PMC11794437 DOI: 10.1038/s42003-025-07556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Throughout evolution, addition of numerous cyanobacteria-derived subunits to the photosynthetic NDH-1 complex stabilizes the complex and facilitates cyclic electron transfer around photosystem I (PSI CET), a critical antioxidant mechanism for efficient photosynthesis, but its stabilization mechanism remains elusive. Here, a cyanobacteria-derived intermolecular salt bridge is found to form between the two conserved subunits, NdhF1 and NdhD1. Its disruption destabilizes photosynthetic NDH-1 and impairs PSI CET, resulting in the production of more reactive oxygen species under high light conditions. The salt bridge and transmembrane helix 16, both situated at the C-terminus of NdhF1, collaboratively secure the linkage between NdhD1 and NdhB, akin to a cramping mechanism. The linkage is also stabilized by cyanobacteria-derived NdhP and NdhQ subunits, but their stabilization mechanisms are distinctly different. Collectively, to the best of our knowledge, this is the first study to unveil the stabilization mechanism of photosynthetic NDH-1 by incorporating photosynthetic components into its conserved subunits during evolution.
Collapse
Affiliation(s)
- Mei Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuanyuan Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shengjun Liang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tingting Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiafei Li
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
4
|
Pandey A, Amin N, Kannaujiya VK, Sinha RP. Extraction, characterization and antioxidative potentials of UV-screening compound, mycosporine-like amino acids from epilithic cyanobacterium Lyngbya sp. HKAR - 15. World J Microbiol Biotechnol 2024; 40:378. [PMID: 39503910 DOI: 10.1007/s11274-024-04184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Mycosporine-like amino acids (MAAs) are a unique class of UV-screening bioactive molecules with potent antioxidants and photoprotective properties, synthesized by various species of cyanobacteria in different habitats. The cyanobacterial biofilms play a crucial driver in the development of ecological communities. The current study examined the existence of the photoprotective MAAs in a novel epilithic cyanobacterium Lyngbya sp. strain HKAR-15 isolated from cyanobacterial biofilms on the rock surface. The isolated MAAs were identified, purified and characterized using UV-Vis spectroscopy, HPLC (High-Performance Liquid Chromatography), ESI-MS (Electrospray Ionization-Mass Spectrometry), FTIR (Fourier Transform Infrared Spectroscopy) and NMR (Nuclear Magnetic Resonance). The compounds were recognized as palythine (retention time (RT): 2.7 min; UV λmax: 320 nm; m/z: 245.02) and porphyra-334 (RT: 3.6 min; UV λmax: 334 nm; m/z: 347.1). FTIR spectroscopy analyses also revealed the presence of functional groups of both compounds. NMR spectroscopy analyses confirmed the presence of both palythine and porphyra-334. The UV-induced production of both MAAs was visualized under ultraviolet radiation (UVR) in contrast to the photosynthetically active radiation (PAR). The MAAs (palythine and porphyra-334) had a significant dose-dependent free radical scavenging capacity. The findings show that MAAs perform a dynamic role in the survival and photoprotection of cyanobacteria in hostile environments under high solar UV irradiances. These photoprotective compounds may have various biotechnological applications as well as role in the development of natural sunscreens.
Collapse
Affiliation(s)
- Abha Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Nasreen Amin
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
6
|
Mustieles-del-Ser P, Ruano-Gallego D, Parro V. Immunoanalytical Detection of Conserved Peptides: Refining the Universe of Biomarker Targets in Planetary Exploration. Anal Chem 2024; 96:4764-4773. [PMID: 38484023 PMCID: PMC10975014 DOI: 10.1021/acs.analchem.3c04165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.
Collapse
Affiliation(s)
- Pedro Mustieles-del-Ser
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
- Departments
of Physics and Mathematics, and Automatics, Universidad de Alcalá (UAH), Alcalá de Henares 28805, Spain
| | | | - Víctor Parro
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
| |
Collapse
|
7
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
8
|
Ricart W, Crujeiras AB, Mateos A, Castells-Nobau A, Fernández-Real JM. Is obesity the next step in evolution through brain changes? NEUROSCIENCE APPLIED 2024; 3:103927. [DOI: 10.1016/j.nsa.2023.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Balaga RR, Itoh F, Chauhan S, Mandal M, Krishna PS, Suzuki I, Prakash JSS. Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803. Genes (Basel) 2023; 14:2151. [PMID: 38136973 PMCID: PMC10743179 DOI: 10.3390/genes14122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.
Collapse
Affiliation(s)
- Radha Rani Balaga
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Fumihiro Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Suraj Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Mukulika Mandal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Pilla Sankara Krishna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Jogadhenu S. S. Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| |
Collapse
|
10
|
Marshall B, Amritkar K, Wolfe M, Kaçar B, Landick R. Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway. Front Microbiol 2023; 14:1286626. [PMID: 38029103 PMCID: PMC10663253 DOI: 10.3389/fmicb.2023.1286626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Bailey Marshall
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Kaustubh Amritkar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael Wolfe
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
11
|
Crockford PW, Bar On YM, Ward LM, Milo R, Halevy I. The geologic history of primary productivity. Curr Biol 2023; 33:4741-4750.e5. [PMID: 37827153 DOI: 10.1016/j.cub.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.
Collapse
Affiliation(s)
- Peter W Crockford
- Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Yinon M Bar On
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Division of Geological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luce M Ward
- Department of Geosciences, Smith College, Northampton, MA 01063, USA
| | - Ron Milo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
12
|
Tan JSW, Salter TL, Watson JS, Waite JH, Sephton MA. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars. ASTROBIOLOGY 2023; 23:1045-1055. [PMID: 37506324 DOI: 10.1089/ast.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Evidence of liquid water is a primary indicator of habitability on the icy moons in our outer solar system as well as on terrestrial planets such as Mars. If liquid water-containing environments host life, some of its organic remains can be fossilized and preserved as organic biosignatures. However, inorganic materials may also be present and water-assisted organic-inorganic reactions can transform the organic architecture of biological remains. Our understanding of the fate of these organic remains can be assisted by experimental simulations that monitor the chemical changes that occur in microbial organic matter due to the presence of water and minerals. We performed hydrothermal experiments at temperatures between 100°C and 300°C involving lipid-rich microbes and natural serpentinite mineral mixtures generated by the subaqueous hydrothermal alteration of ultramafic rock. The products reveal what the signals of life may look like when subjected to water-organic-inorganic reactions. Straight- and branched-chain lipids in unaltered samples are joined by cyclization and aromatization products in hydrothermally altered samples. Hydrothermal reactions produce distinct products that are not present in the starting materials, including small, single-ring, heteroatomic, and aromatic compounds such as indoles and phenols. Hydrothermal reactions in the presence of serpentinite minerals lead to significant reduction of these organic structures and their replacement by diketopiperazines (DKPs) and dihydropyrazines (DHPs), which may be compounds that are distinct to organic-inorganic reactions. Given that the precursors of DKPs and DHPs are normally lost during early diagenesis, the presence of these compounds can be an indicator of coexisting recent life and hydrothermal processing in the presence of minerals. However, laboratory experiments reveal that the formation and preservation of these compounds can only occur within a distinct temperature window. Our findings are relevant to life detection missions that aim to access hydrothermal and serpentinizing environments in the subsurfaces of icy moons and Mars.
Collapse
Affiliation(s)
- Jonathan S W Tan
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Tara L Salter
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - J Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Yang Z, Ma X, Wang Q, Tian X, Sun J, Zhang Z, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nat Commun 2023; 14:5542. [PMID: 37696791 PMCID: PMC10495350 DOI: 10.1038/s41467-023-41137-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae.
Collapse
Affiliation(s)
- Zhiping Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolin Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
14
|
Chang Y, Fu Y, Chen Z, Luo Z, Zhao Y, Li Z, Zhang W, Wu G, Fu B, Zhang DH, Ashfold MNR, Yang X, Yuan K. Vacuum ultraviolet photodissociation of sulfur dioxide and its implications for oxygen production in the early Earth's atmosphere. Chem Sci 2023; 14:8255-8261. [PMID: 37564413 PMCID: PMC10411858 DOI: 10.1039/d3sc03328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
The emergence of molecular oxygen (O2) in the Earth's primitive atmosphere is an issue of major interest. Although the biological processes leading to its accumulation in the Earth's atmosphere are well understood, its abiotic source is still not fully established. Here, we report a new direct dissociation channel yielding S(1D) + O2(a1Δg/X3Σg-) products from vacuum ultraviolet (VUV) photodissociation of SO2 in the wavelength range between 120 and 160 nm. Experimental results show O2 production to be an important channel from SO2 VUV photodissociation, with a branching ratio of 30 ± 5% at the H Lyman-α wavelength (121.6 nm). The relatively large amounts of SO2 emitted from volcanic eruptions in the Earth's late Archaean eon imply that VUV photodissociation of SO2 could have provided a crucial additional source term in the O2 budget in the Earth's primitive atmosphere. The results could also have implications for abiotic oxygen formation on other planets with atmospheres rich in volcanically outgassed SO2.
Collapse
Affiliation(s)
- Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zijie Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Marine Engineering College, Dalian Maritime University Liaoning 116026 China
| | - Yarui Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zhenxing Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Hefei National Laboratory Hefei 230088 China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Hefei National Laboratory Hefei 230088 China
- Department of Chemistry, Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | | | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Hefei National Laboratory Hefei 230088 China
- Department of Chemistry, Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
15
|
Rastogi RP, Shree A, Patel HM, Chaudhry S, Madamwar D. Characterization, UV-induction, antioxidant function and role in photo-protection of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium, Euhalothece sp.WR7. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Haywood J, Breese KJ, Zhang J, Waters MT, Bond CS, Stubbs KA, Mylne JS. A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action. Nat Commun 2022; 13:5563. [PMID: 36137996 PMCID: PMC9500038 DOI: 10.1038/s41467-022-33185-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.
Collapse
Affiliation(s)
- Joel Haywood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Jingjing Zhang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Joshua S Mylne
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
17
|
Li YH, Hou HF, Geng Z, Zhang H, She Z, Dong YH. Structural basis of a multi-functional deaminase in chlorovirus PBCV-1. Arch Biochem Biophys 2022; 727:109339. [DOI: 10.1016/j.abb.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
18
|
González-Flores A, Jin J, Osinski G, Tsujita C. Acritarch-like Microorganisms from the 1.9 Ga Gunflint Chert, Canada. ASTROBIOLOGY 2022; 22:568-578. [PMID: 35442767 PMCID: PMC9125578 DOI: 10.1089/ast.2021.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Fossil evidence of eukaryotic life older than 1.8 Ga has long been debated because known fossils of that age usually lack cellular micro- and ultra-structures that bear strong affinities to eukaryotes. These include fossils of the ∼1.9 Ga Gunflint Chert microbiota that, despite being exceptionally well preserved, have suffered from cellular degradation, which poses challenges to studying their delicate cellular structures. In this study, we use an extended-focal-depth imaging technique, in combination with scanning electron microscopy, to document multiple types of large (10-35 μm diameter), cyst-like bodies based on distinctive details such as (1) radially arranged internal strands similar to those in some acritarchs and dinoflagellates; (2) regularly spaced long tubular processes, stubby pustules, and/or robust podia on the cell surface; (3) reticulate cell-wall sculpturing such as scale-like tubercles, pits, and ridges; and (4) internal bodies that may represent membrane-bound organelles. These micro- and ultra-structures provide strong morphological evidence for the presence of protists in the late Paleoproterozoic.
Collapse
Affiliation(s)
- A.L. González-Flores
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
| | - J. Jin
- Department of Earth Sciences, University of Western Ontario, London, Canada
| | - G.R. Osinski
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
| | - C.J. Tsujita
- Department of Earth Sciences, University of Western Ontario, London, Canada
| |
Collapse
|
19
|
Zhao J, Jiang Y, Tian Y, Mao J, Wei L, Ma W. New insights into the effect of NdhO levels on cyanobacterial cell death triggered by high temperature. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:533-541. [PMID: 34428393 DOI: 10.1071/fp21097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
NdhO, a regulatory oxygenic photosynthesis-specific subunit, is close to the ferredoxin-binding site of cyanobacterial NDH-1, and its levels are negatively associated with the rates of cyclic electron transfer around PSI mediated by NDH-1 (NDH-CET). However, the effect of NdhO levels on cyanobacterial cell death triggered by high temperature remains elusive. Here, our results uncovered a synergistic effect of NdhO levels on the cell death and reactive oxygen species (ROS) accumulation when cyanobacterial cells grown at 30°C for 1 day were transferred to 45°C for 2 days. Such synergistic effect was found to be closely associated with the activities of NDH-CET and CO2 assimilation during high temperature. Collectively, we propose that the effect of NdhO levels on the cyanobacterial cell bleaching and cell death triggered by high temperature is a result of influencing production of ROS by NDH-CET, which is considered to be vital to balance the ATP/NADPH ratio and improve the Calvin-Benson cycle.
Collapse
Affiliation(s)
- Jiaohong Zhao
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yuanyuan Jiang
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yuhao Tian
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jun Mao
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Lanzhen Wei
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China; and Corresponding author
| | - Weimin Ma
- Shanghai Key laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China; and Corresponding author
| |
Collapse
|
20
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
21
|
Yang X, Guo Q, Boyko V, Avetisyan K, Findlay AJ, Huang F, Wang Z, Chen Z. Isotopic reconstruction of iron oxidation-reduction process based on an Archean Ocean analogue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152609. [PMID: 34963590 DOI: 10.1016/j.scitotenv.2021.152609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The chemical composition and redox conditions of the Precambrian ocean are key factors for reconstructing the temporal evolution of atmospheric oxygen through time. In particular, the isotopic composition of iron are useful proxies for reconstructing paleo-ocean environments. Yet, respective processes and related signatures are poorly constrained, hindering the reconstruction of iron redox mechanisms in the Archean ocean. This study centers on Sihailongwan Lake, a stratified water body with a euxinic lower water column considered as an Archean ocean analogue. Results show that the anaerobic oxidation layer is so different from other similar lakes in which dissolved Fe oxidation is present in redoxcline layer. And the fractionation factor between ferrous Fe and iron hydroxide observed in nature water body of Sihailongwan Lake reaches to 2.6‰, which would benefit the production of the oxidations of BIF in sediment. By the spatial distribution of Fe isotope, the benthic water in autumn and the hypolimnetic anoxic water in spring has been identified as iron sulfide zone, where iron isotopic fractionation factor during iron sulfide formation is 1.16‰, accounting for partial scavenging of dissolved Fe(II) with an associated isotopic fractionation. However, pyrite in the sediment records the iron isotopic signal from the redoxcline but not in the iron sulfide or oxide zones of the water column. Above findings indicate that neither the iron isotope fractionation during partial transfer of ferrous iron to iron sulfide nor the partial oxidation of ferrous iron are recorded as pyrite in sedimentary rock. Importantly, the signal of Fe isotopic fractionation in water was archived in the suspended particulate matter and transferred into the sediment, rather than via ferrous iron directly deposited in the sediment. This study reveals that Fe isotopes from modern natural environments are useful proxies for reconstructing iron oxidation-reduction process during Earth's early history.
Collapse
Affiliation(s)
- Xi Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Valeria Boyko
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Khoren Avetisyan
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alyssa J Findlay
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhongliang Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
| | - Zhenwu Chen
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Evidence for the oxidation of Earth's crust from the evolution of manganese minerals. Nat Commun 2022; 13:960. [PMID: 35181670 PMCID: PMC8857192 DOI: 10.1038/s41467-022-28589-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/06/2022] [Indexed: 11/08/2022] Open
Abstract
Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth's crust through time. Changes in crustal redox state are critical to Earth's evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 ± 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth's history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.
Collapse
|
23
|
Salter TL, Magee BA, Waite JH, Sephton MA. Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. ASTROBIOLOGY 2022; 22:143-157. [PMID: 35021862 DOI: 10.1089/ast.2020.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered. We have performed a series of experiments using pyrolysis-gas chromatography-mass spectrometry to characterize the mass spectrometric fingerprints of microbial life. A range of extremophile Archaea and Bacteria have been analyzed and the laboratory data converted to MASPEX-type signals. Molecular characteristics of protein, carbohydrate, and lipid structures were detected, and the characteristic fragmentation patterns corresponding to these different biological structures were identified. Protein pyrolysis fragments included phenols, nitrogen heterocycles, and cyclic dipeptides. Oxygen heterocycles, such as furans, were detected from carbohydrates. Our data reveal how mass spectrometry on Europa Clipper can aid in the identification of the presence of life, by looking for characteristic bacterial fingerprints that are similar to those from simple Earthly organisms.
Collapse
Affiliation(s)
- Tara L Salter
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Brian A Magee
- Space Science and Engineering Division, Southwest Research Institute, Boulder, Colorado, USA
| | - J Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Naafs BDA, Bianchini G, Monteiro FM, Sánchez-Baracaldo P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. GEOBIOLOGY 2022; 20:41-59. [PMID: 34291867 DOI: 10.1111/gbi.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The 2-methylhopanes (2-MeHops) are molecular fossils of 2-methylbacteriohopanepolyols (2-MeBHPs) and among the oldest biomarkers on Earth. However, these biomarkers' specific sources are currently unexplained, including whether they reflect an expansion of marine cyanobacteria. Here, we study the occurrence of 2-MeBHPs and the genes involved in their synthesis in modern bacteria and explore the occurrence of 2-MeHops in the geological record. We find that the gene responsible for 2-MeBHP synthesis (hpnP) is widespread in cyano- and ⍺-proteobacteria, but absent or very limited in other classes/phyla of bacteria. This result is consistent with the dominance of 2-MeBHP in cyano- and ⍺-proteobacterial cultures. The review of their geological occurrence indicates that 2-MeHops are found from the Paleoproterozoic onwards, although some Precambrian samples might be biased by drilling contamination. During the Phanerozoic, high 2-MeHops' relative abundances (index >15%) are associated with climatic and biogeochemical perturbations such as the Permo/Triassic boundary and the Oceanic Anoxic Events. We analyzed the modern habitat of all hpnP-containing bacteria and find that the only one species coming from an undisputed open marine habitat is an ⍺-proteobacterium acting upon the marine nitrogen cycle. Although organisms can change their habitat in response to environmental stress and evolutionary pressure, we speculate that the high sedimentary 2-MeHops' occurrence observed during the Phanerozoic reflect ⍺-proteobacteria expansion and marine N-cycle perturbations in response to climatic and environmental change.
Collapse
Affiliation(s)
- B D A Naafs
- Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, Bristol, UK
| | - G Bianchini
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - F M Monteiro
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
25
|
Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nat Commun 2021; 12:7341. [PMID: 34930924 PMCID: PMC8688491 DOI: 10.1038/s41467-021-27589-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
At present, molecular hydrogen (H2) produced through Fe(II) oxidation during serpentinization of ultramafic rocks represents a small fraction of the global sink for O2 due to limited exposures of ultramafic rocks. In contrast, ultramafic rocks such as komatiites were much more common in the Early Earth and H2 production via serpentinization was a likely factor in maintaining an O2-free atmosphere throughout most of the Archean. Using thermodynamic simulations, this work quantifies the global O2 consumption attributed to serpentinization during the past 3.5 billion years. Results show that H2 generation is strongly dependent on rock compositions where serpentinization of more magnesian lithologies generated substantially higher amounts of H2. Consumption of >2 Tmole O2 yr-1 via low-temperature serpentinization of Archean continents and seafloor is possible. This O2 sink diminished greatly towards the end of the Archean as ultramafic rocks became less common and helped set the stage for the Great Oxidation Event.
Collapse
|
26
|
Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021; 37:246-256. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.
Collapse
Affiliation(s)
- Phoebe A Cohen
- Williams College Department of Geosciences, Williamstown, MA, USA.
| | - Robin B Kodner
- Western Washington University Department of Environmental Sciences, Bellingham, WA, USA.
| |
Collapse
|
27
|
Bouteau F, Grésillon E, Chartier D, Arbelet-Bonnin D, Kawano T, Baluška F, Mancuso S, Calvo P, Laurenti P. Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. PLANT SIGNALING & BEHAVIOR 2021; 16:2004769. [PMID: 34913409 PMCID: PMC9208782 DOI: 10.1080/15592324.2021.2004769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 05/27/2023]
Abstract
Before the upheaval brought about by phylogenetic classification, classical taxonomy separated living beings into two distinct kingdoms, animals and plants. Rooted in 'naturalist' cosmology, Western science has built its theoretical apparatus on this dichotomy mostly based on ancient Aristotelian ideas. Nowadays, despite the adoption of the Darwinian paradigm that unifies living organisms as a kinship, the concept of the "scale of beings" continues to structure our analysis and understanding of living species. Our aim is to combine developments in phylogeny, recent advances in biology, and renewed interest in plant agency to craft an interdisciplinary stance on the living realm. The lines at the origin of plant or animal have a common evolutionary history dating back to about 3.9 Ga, separating only 1.6 Ga ago. From a phylogenetic perspective of living species history, plants and animals belong to sister groups. With recent data related to the field of Plant Neurobiology, our aim is to discuss some socio-cultural obstacles, mainly in Western naturalist epistemology, that have prevented the integration of living organisms as relatives, while suggesting a few avenues inspired by practices principally from other ontologies that could help overcome these obstacles and build bridges between different ways of connecting to life.
Collapse
Affiliation(s)
- François Bouteau
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| | - Etienne Grésillon
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | - Denis Chartier
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | | | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu 1–1, KitakyushuJapan
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino (FI), Italy
| | - Paco Calvo
- Minimal Intelligence Lab, Department of Philosophy, University of Murcia, Murcia, Spain
| | - Patrick Laurenti
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| |
Collapse
|
28
|
Vítězová M, Lochman J, Zapletalová M, Ratering S, Schnell S, Vítěz T. Archaeal community dynamics in biogas fermentation at various temperatures assessed by mcrA amplicon sequencing using different primer pairs. World J Microbiol Biotechnol 2021; 37:188. [PMID: 34611812 DOI: 10.1007/s11274-021-03152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
In this study, the taxonomic and functional diversity of methanogenic archaea in two parallel 120 l fermenters operated at different temperatures and fed with maize silage was estimated by mcrA metabarcoding analysis using two typical primer pairs (ML and MLA) amplifying part of the functional methyl coenzyme M reductase (mcrA) gene. The alpha diversity indices showed that the ML primer pair detected a higher Operational Taxonomic Unit (OTU) abundance compared to the MLA primer pair and methanogen diversity was significantly lower in the 60 °C fermenters. The beta diversity analysis showed the methanogenic community clustered together at 50 °C and 40° and was statistically different from the 60 °C community. Similar, to alpha diversity, beta diversity was also significantly different between primer pairs. At all temperatures analysed, the primer pairs showed a different abundance of the different methanogenic OTUs, e.g. more OTUs relative to Methanoculleus sp. with the ML primer pair, and more OTUs corresponding to Methanobacterium sp. with the MLA primer pair. Moreover, OTUs corresponding to Methanosphaera sp. and Methanobrevibacter sp. were found only by using ML primer pair, while the MLA primer pair detected sequences corresponding to Methanothrix sp.
Collapse
Affiliation(s)
- Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Tomáš Vítěz
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.,Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| |
Collapse
|
29
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
30
|
Complete Chloroplast Genome Sequence of Fortunella venosa (Champ. ex Benth.) C.C.Huang (Rutaceae): Comparative Analysis, Phylogenetic Relationships, and Robust Support for Its Status as an Independent Species. FORESTS 2021. [DOI: 10.3390/f12080996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fortunella venosa (Rutaceae) is an endangered species endemic to China and its taxonomic status has been controversial. The genus Fortunella contains a variety of important economic plants with high value in food, medicine, and ornamental. However, the placement of Genus Fortunella into Genus Citrus has led to controversy on its taxonomy and Systematics. In this present research, the Chloroplast genome of F. venosa was sequenced using the second-generation sequencing, and its structure and phylogenetic relationship analyzed. The results showed that the Chloroplast genome size of F. venosa was 160,265 bp, with a typical angiosperm four-part ring structure containing a large single copy region (LSC) (87,597 bp), a small single copy region (SSC) (18,732 bp), and a pair of inverted repeat regions (IRa\IRb) (26,968 bp each). There are 134 predicted genes in Chloroplast genome, including 89 protein-coding genes, 8 rRNAs, and 37 tRNAs. The GC-content of the whole Chloroplast genome was 43%, with the IR regions having a higher GC content than the LSC and the SSC regions. There were no rearrangements present in the Chloroplast genome; however, the IR regions showed obvious contraction and expansion. A total of 108 simple sequence repeats (SSRs) were present in the entire chloroplast genome and the nucleotide polymorphism was high in LSC and SSC. In addition, there is a preference for codon usage with the non-coding regions being more conserved than the coding regions. Phylogenetic analysis showed that species of Fortunella are nested in the genus of Citrus and the independent species status of F. venosa is supported robustly, which is significantly different from F. japonica. These findings will help in the development of DNA barcodes that can be useful in the study of the systematics and evolution of the genus Fortunella and the family Rutaceae.
Collapse
|
31
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
32
|
Snyder-Beattie AE, Sandberg A, Drexler KE, Bonsall MB. The Timing of Evolutionary Transitions Suggests Intelligent Life is Rare. ASTROBIOLOGY 2021; 21:265-278. [PMID: 33216655 PMCID: PMC7997718 DOI: 10.1089/ast.2019.2149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
It is unknown how abundant extraterrestrial life is, or whether such life might be complex or intelligent. On Earth, the emergence of complex intelligent life required a preceding series of evolutionary transitions such as abiogenesis, eukaryogenesis, and the evolution of sexual reproduction, multicellularity, and intelligence itself. Some of these transitions could have been extraordinarily improbable, even in conducive environments. The emergence of intelligent life late in Earth's lifetime is thought to be evidence for a handful of rare evolutionary transitions, but the timing of other evolutionary transitions in the fossil record is yet to be analyzed in a similar framework. Using a simplified Bayesian model that combines uninformative priors and the timing of evolutionary transitions, we demonstrate that expected evolutionary transition times likely exceed the lifetime of Earth, perhaps by many orders of magnitude. Our results corroborate the original argument suggested by Brandon Carter that intelligent life in the Universe is exceptionally rare, assuming that intelligent life elsewhere requires analogous evolutionary transitions. Arriving at the opposite conclusion would require exceptionally conservative priors, evidence for much earlier transitions, multiple instances of transitions, or an alternative model that can explain why evolutionary transitions took hundreds of millions of years without appealing to rare chance events. Although the model is simple, it provides an initial basis for evaluating how varying biological assumptions and fossil record data impact the probability of evolving intelligent life, and also provides a number of testable predictions, such as that some biological paradoxes will remain unresolved and that planets orbiting M dwarf stars are uninhabitable.
Collapse
Affiliation(s)
| | - Anders Sandberg
- Future of Humanity Institute, University of Oxford, Oxford, United Kingdom
| | - K. Eric Drexler
- Future of Humanity Institute, University of Oxford, Oxford, United Kingdom
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 2021; 22:137. [PMID: 33637041 PMCID: PMC7912892 DOI: 10.1186/s12864-021-07448-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07448-x.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
34
|
Gupta A, Sainis JK, Bhagwat SG, Chittela RK. Modulation of photosynthesis in Synechocystis and Synechococcus grown with chromium (VI). J Biosci 2021. [DOI: 10.1007/s12038-020-00119-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Tan JS, Royle SH, Sephton MA. Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis-Gas Chromatography-Mass Spectrometry. ASTROBIOLOGY 2021; 21:199-218. [PMID: 33226839 PMCID: PMC7876361 DOI: 10.1089/ast.2019.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Acidic iron- and sulfur-rich streams are appropriate analogues for the late Noachian and early Hesperian periods of martian history, when Mars exhibited extensive habitable environments. Any past life on Mars may have left behind diagnostic evidence of life that could be detected at the present day. For effective preservation, these remains must have avoided the harsh radiation flux at the martian surface, survived geological storage for billions of years, and remained detectable within their geochemical environment by analytical instrument suites used on Mars today, such as thermal extraction techniques. We investigated the detectability of organic matter within sulfur stream sediments that had been subjected to artificial maturation by hydrous pyrolysis. After maturation, the samples were analyzed by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) to determine whether organic matter could be detected with this commonly used technique. We find that macromolecular organic matter can survive the artificial maturation process in the presence of iron- and sulfur-rich minerals but cannot be unambiguously distinguished from abiotic organic matter. However, if jarosite and goethite are present in the sulfur stream environment, they interfere with the py-GC-MS detection of organic compounds in these samples. Clay reduces the obfuscating effect of the oxidizing minerals by providing nondeleterious adsorption sites. We also find that after a simple alkali and acid leaching process that removes oxidizing minerals such as iron sulfates, oxides, and oxyhydroxides, the sulfur stream samples exhibit much greater organic responses during py-GC-MS in terms of both abundance and diversity of organic compounds, such as the detection of hopanes in all leached samples. Our results suggest that insoluble organic matter can be preserved over billions of years of geological storage while still retaining diagnostic organic information, but sample selection strategies must either avoid jarosite- and goethite-rich outcrops or conduct preparative chemistry steps to remove these oxidants prior to analysis by thermal extraction techniques.
Collapse
Affiliation(s)
- Jonathan S.W. Tan
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Samuel H. Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
36
|
Iwasaki A, Suenaga K. Bioorganic Study of New Natural Products Isolated from Marine Cyanobacteria. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Lechuga-Vieco AV, Justo-Méndez R, Enríquez JA. Not all mitochondrial DNAs are made equal and the nucleus knows it. IUBMB Life 2020; 73:511-529. [PMID: 33369015 PMCID: PMC7985871 DOI: 10.1002/iub.2434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
The oxidative phosphorylation (OXPHOS) system is the only structure in animal cells with components encoded by two genomes, maternally transmitted mitochondrial DNA (mtDNA), and biparentally transmitted nuclear DNA (nDNA). MtDNA‐encoded genes have to physically assemble with their counterparts encoded in the nucleus to build together the functional respiratory complexes. Therefore, structural and functional matching requirements between the protein subunits of these molecular complexes are rigorous. The crosstalk between nDNA and mtDNA needs to overcome some challenges, as the nuclear‐encoded factors have to be imported into the mitochondria in a correct quantity and match the high number of organelles and genomes per mitochondria that encode and synthesize their own components locally. The cell is able to sense the mito‐nuclear match through changes in the activity of the OXPHOS system, modulation of the mitochondrial biogenesis, or reactive oxygen species production. This implies that a complex signaling cascade should optimize OXPHOS performance to the cellular‐specific requirements, which will depend on cell type, environmental conditions, and life stage. Therefore, the mitochondria would function as a cellular metabolic information hub integrating critical information that would feedback the nucleus for it to respond accordingly. Here, we review the current understanding of the complex interaction between mtDNA and nDNA.
Collapse
Affiliation(s)
- Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Raquel Justo-Méndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | |
Collapse
|
38
|
Agafonov VA, Negrobov VV, Igamberdiev AU. Symbiogenesis as a driving force of evolution: The legacy of Boris Kozo-Polyansky. Biosystems 2020; 199:104302. [PMID: 33227379 DOI: 10.1016/j.biosystems.2020.104302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
We analyze evolutionary views of Boris Kozo-Polyansky (1890-1957) who was the first who formulated the symbiotic theory of evolution as a concept in his book, Symbiogenesis: A New Principle of Evolution (1924). Later, starting from 1967, Lynn Margulis independently formulated and further developed the concept of symbiogenesis. Although the ideas on the symbiotic origin of chloroplasts and mitochondria appeared earlier, the book of Kozo-Polyansky presented symbiogenesis as the main factor of complexification in the course of evolution, not only in relation to the origin of eukaryotic cell. Kozo-Polyansky incorporated the ideas of symbiogenesis into a broader paradigm that anticipated the important concepts of the modern Extended Evolutionary Synthesis such as the idea of net of life, the evolutionary role of apoptosis, the ideas of punctuated equilibrium, and the concept of metasystem transition.
Collapse
Affiliation(s)
- Vladimir A Agafonov
- Department of Botany and Mycology, Voronezh State University, Voronezh, 394006, Russia.
| | - Vladimir V Negrobov
- Department of Botany and Mycology, Voronezh State University, Voronezh, 394006, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
39
|
Seyler L, Kujawinski EB, Azua-Bustos A, Lee MD, Marlow J, Perl SM, Cleaves II HJ. Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. ASTROBIOLOGY 2020; 20:1251-1261. [PMID: 32551936 PMCID: PMC7116171 DOI: 10.1089/ast.2019.2135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.
Collapse
Affiliation(s)
- Lauren Seyler
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Address correspondence to: Lauren Seyler, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86 Water Street, Woods Hole, MA 02543, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Armando Azua-Bustos
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Michael D. Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Jeffrey Marlow
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Scott M. Perl
- Geological and Planetary Sciences, California Institute of Technology/NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, California, USA
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, USA
- Geographical Research Laboratory, Carnegie Institution of Washington
| |
Collapse
|
40
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
41
|
Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab8fad] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Planavsky NJ, Robbins LJ, Kamber BS, Schoenberg R. Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus 2020; 10:20190140. [PMID: 32642054 DOI: 10.1098/rsfs.2019.0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deciphering the role-if any-that free oxygen levels played in controlling the timing and tempo of the radiation of complex life is one of the most fundamental questions in Earth and life sciences. Accurately reconstructing Earth's redox history is an essential part of tackling this question. Over the past few decades, there has been a proliferation of research employing geochemical redox proxies in an effort to tell the story of Earth's oxygenation. However, many of these studies, even those considering the same geochemical proxy systems, have led to conflicting interpretations of the timing and intensity of oxygenation events. There are two potential explanations for conflicting redox reconstructions: (i) that free oxygen levels were incredibly dynamic in both time and space or (ii) that collectively, as a community-including the authors of this article-we have frequently studied rocks affected by secondary weathering and alteration (particularly secondary oxidation) while neglecting to address the impact of this alteration on the generated data. There are now multiple case studies that have documented previously overlooked secondary alteration, resolving some of the conflicting constrains regarding redox evolution. Here, an analysis of a large shale geochemistry database reveals significant differences in cerium (Ce) anomalies, a common palaeoredox proxy, between outcrop and drill core samples. This inconsistency provides support for the idea that geochemical data from altered samples are frequently published in the peer-reviewed literature. As individuals and a geochemical community, most of us have been slow to appreciate how pervasive the problem is but there are examples of other communities that have faced and met the challenges raised by such quality control crises. Further evidence of the high potential for alteration of deep-time geochemical samples, and recognition of the manner in which this may lead to spurious results and palaeoenvironmental interpretations, indicate that sample archiving, in publicly accessible collections needs to become a prerequisite for publication of new palaeoredox data. Finally, the geochemical community need to think about ways to implement additional quality control measures to increase the fidelity of palaeoredox proxy work.
Collapse
Affiliation(s)
- Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Leslie J Robbins
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Balz S Kamber
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ronny Schoenberg
- Department of Geosciences, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
43
|
Assessment of the Chemical Diversity and Potential Toxicity of Benthic Cyanobacterial Blooms in the Lagoon of Moorea Island (French Polynesia). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the last decades, an apparent increase in the frequency of benthic cyanobacterial blooms has occurred in coral reefs and tropical lagoons, possibly in part because of global change and anthropogenic activities. In the frame of the survey of marine benthic cyanobacteria proliferating in the lagoon of Moorea Island (French Polynesia), 15 blooms were collected, mainly involving three species—Anabaena sp.1, Lyngbya majuscula and Hydrocoleum majus-B. Their chemical fingerprints, obtained through high performance liquid chromatography combined with UV detection and mass spectrometry (HPLC-UV-MS) analyses, revealed a high extent of species-specificity. The chemical profile of Anabaena sp.1 was characterized by three major cyclic lipopeptides of the laxaphycin family, whereas the one of L. majuscula was characterized by a complex mixture including tiahuramides, trungapeptins and serinol-derived malyngamides. Toxicity screening analyses conducted on these cyanobacterial samples using Artemia salina and mouse neuroblastoma cell-based (CBA-N2a) cytotoxic assays failed to show any toxicity to a degree that would merit risk assessment with regard to public health. However, the apparently increasing presence of blooms of Lyngbya, Hydrocoleum, Anabaena or other benthic cyanobacteria on coral reefs in French Polynesia encourages the implementation of ad hoc monitoring programs for the surveillance of their proliferation and potential assessment of associated hazards.
Collapse
|
44
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Sehlmeyer K, Ruwisch J, Roldan N, Lopez-Rodriguez E. Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis. Front Physiol 2020; 11:386. [PMID: 32431623 PMCID: PMC7213507 DOI: 10.3389/fphys.2020.00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein C (SP-C) is an important player in enhancing the interfacial adsorption of lung surfactant lipid films to the alveolar air-liquid interface. Doing so, surface tension drops down enough to stabilize alveoli and the lung, reducing the work of breathing. In addition, it has been shown that SP-C counteracts the deleterious effect of high amounts of cholesterol in the surfactant lipid films. On its side, cholesterol is a well-known modulator of the biophysical properties of biological membranes and it has been proven that it activates the inflammasome pathways in the lung. Even though the molecular mechanism is not known, there are evidences suggesting that these two molecules may interplay with each other in order to keep the proper function of the lung. This review focuses in the role of SP-C and cholesterol in the development of lung fibrosis and the potential pathways in which impairment of both molecules leads to aberrant lung repair, and therefore impaired alveolar dynamics. From molecular to cellular mechanisms to evidences in animal models and human diseases. The evidences revised here highlight a potential SP-C/cholesterol axis as target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
- Institute of Functional Anatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
46
|
Teece BL, George SC, Agbaje OBA, Jacquet SM, Brock GA. Mars Rover Techniques and Lower/Middle Cambrian Microbialites from South Australia: Construction, Biofacies, and Biogeochemistry. ASTROBIOLOGY 2020; 20:637-657. [PMID: 32159385 DOI: 10.1089/ast.2019.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Perseverance rover (Mars 2020) is equipped with an instrumental and analytical payload capable of identifying a broad range of organic molecules in geological samples. To determine the efficacy of these analytical techniques in recognizing important ecological and environmental signals in the rock record, this study utilized analogous equipment, including gas chromatography/mass spectrometry, Raman spectroscopy, X-ray fluorescence (XRF), Fourier transform infrared spectroscopy, along with macroscopic and petrographic observations, to examine early-middle Cambrian microbialites from the Arrowie Basin, South Australia. Morphological and petrographic observations of these carbonate successions reveal evidence of hypersaline-restricted environments. Microbialites have undergone moderate diagenesis, as supported by XRF data that show mineral assemblages, including celestine and the illitization of smectite. Raman spectral data, carbon preference indices of ∼1, and the methylphenanthrene index place the samples in the prehnite/pumpellyite metamorphic facies. Pristane and phytane are the only biomarkers that were detected in the least thermally mature samples. This research demonstrates a multitechnique approach that can yield significant geological, depositional, paleobiological, and diagenetic information that has important implications for planning future astrobiological exploration.
Collapse
Affiliation(s)
- Bronwyn L Teece
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Simon C George
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
| | - Oluwatoosin Bunmi A Agbaje
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| | - Sarah M Jacquet
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Department of Geological Sciences, University of Missouri, Columbia, Missouri
| | - Glenn A Brock
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
47
|
Gao F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:165. [PMID: 32184761 PMCID: PMC7058544 DOI: 10.3389/fmicb.2020.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Iron–sulfur (Fe–S) clusters are ancient and ubiquitous cofactors and are involved in many important biological processes. Unlike the non-photosynthetic bacteria, cyanobacteria have developed the sulfur utilization factor (SUF) mechanism as their main assembly pathway for Fe–S clusters, supplemented by the iron–sulfur cluster and nitrogen-fixing mechanisms. The SUF system consists of cysteine desulfurase SufS, SufE that can enhance SufS activity, SufBC2D scaffold complex, carrier protein SufA, and regulatory repressor SufR. The S source for the Fe–S cluster assembly mainly originates from L-cysteine, but the Fe donor remains elusive. This minireview mainly focuses on the biogenesis pathway of the Fe–S clusters in cyanobacteria and its relationship with iron homeostasis. Future challenges of studying Fe–S clusters in cyanobacteria are also discussed.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
48
|
Structural insights into NDH-1 mediated cyclic electron transfer. Nat Commun 2020; 11:888. [PMID: 32060291 PMCID: PMC7021789 DOI: 10.1038/s41467-020-14732-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
NDH-1 is a key component of the cyclic-electron-transfer around photosystem I (PSI CET) pathway, an important antioxidant mechanism for efficient photosynthesis. Here, we report a 3.2-Å-resolution cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus. The structure reveals three β-carotene and fifteen lipid molecules in the membrane arm of NDH-1L. Regulatory oxygenic photosynthesis-specific (OPS) subunits NdhV, NdhS and NdhO are close to the Fd-binding site whilst NdhL is adjacent to the plastoquinone (PQ) cavity, and they play different roles in PSI CET under high-light stress. NdhV assists in the binding of Fd to NDH-1L and accelerates PSI CET in response to short-term high-light exposure. In contrast, prolonged high-light irradiation switches on the expression and assembly of the NDH-1MS complex, which likely contains no NdhO to further accelerate PSI CET and reduce ROS production. We propose that this hierarchical mechanism is necessary for the survival of cyanobacteria in an aerobic environment. NDH-1 is a key component of the cyclic-electron-transfer around photosystem I pathway, an antioxidant mechanism for efficient photosynthesis. Here, authors report a cryo-EM structure of the ferredoxin (Fd)-NDH-1L complex from the cyanobacterium Thermosynechococcus elongatus.
Collapse
|
49
|
Melnikov S, Kwok HS, Manakongtreecheep K, van den Elzen A, Thoreen CC, Söll D. Archaeal Ribosomal Proteins Possess Nuclear Localization Signal-Type Motifs: Implications for the Origin of the Cell Nucleus. Mol Biol Evol 2020; 37:124-133. [PMID: 31501901 DOI: 10.1093/molbev/msz207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are divided into the nucleus and the cytosol, and, to enter the nucleus, proteins typically possess short signal sequences, known as nuclear localization signals (NLSs). Although NLSs have long been considered as features unique to eukaryotic proteins, we show here that similar or identical protein segments are present in ribosomal proteins from the Archaea. Specifically, the ribosomal proteins uL3, uL15, uL18, and uS12 possess NLS-type motifs that are conserved across all major branches of the Archaea, including the most ancient groups Microarchaeota and Diapherotrites, pointing to the ancient origin of NLS-type motifs in the Archaea. Furthermore, by using fluorescence microscopy, we show that the archaeal NLS-type motifs can functionally substitute eukaryotic NLSs and direct the transport of ribosomal proteins into the nuclei of human cells. Collectively, these findings illustrate that the origin of NLSs preceded the origin of the cell nucleus, suggesting that the initial function of NLSs was not related to intracellular trafficking, but possibly was to improve recognition of nucleic acids by cellular proteins. Overall, our study reveals rare evolutionary intermediates among archaeal cells that can help elucidate the sequence of events that led to the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Sergey Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Hui-Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | | | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Chemistry, Yale University, New Haven, CT
| |
Collapse
|
50
|
Cohen ML, Mashanova EV, Jagannathan SV, Soto W. Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid ( Euprymna scolopes). MICROBIOLOGY-SGM 2020; 166:262-277. [PMID: 31967537 PMCID: PMC7376262 DOI: 10.1099/mic.0.000884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many microorganisms engaged in host-microbe interactions pendulate between a free-living phase and a host-affiliated stage. How adaptation to stress during the free-living phase affects host-microbe associations is unclear and understudied. To explore this topic, the symbiosis between Hawaiian bobtail squid (Euprymna scolopes) and the luminous bacterium Vibrio fischeri was leveraged for a microbial experimental evolution study. V. fischeri experienced adaptation to extreme pH while apart from the squid host. V. fischeri was serially passaged for 2000 generations to the lower and upper pH growth limits for this microorganism, which were pH 6.0 and 10.0, respectively. V. fischeri was also serially passaged for 2000 generations to vacillating pH 6.0 and 10.0. Evolution to pH stress both facilitated and impaired symbiosis. Microbial evolution to acid stress promoted squid colonization and increased bioluminescence for V. fischeri, while symbiont adaptation to alkaline stress diminished these two traits. Oscillatory selection to acid and alkaline stress also improved symbiosis for V. fischeri, but the facilitating effects were less than that provided by microbial adaptation to acid stress. In summary, microbial adaptation to harsh environments amid the free-living phase may impact the evolution of host-microbe interactions in ways that were not formerly considered.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Ekaterina Vadimovna Mashanova
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Sveta Vivian Jagannathan
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - William Soto
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|