1
|
Wingfield JL, Puthanveettil SV. Decoding the complex journeys of RNAs along neurons. Nucleic Acids Res 2025; 53:gkaf293. [PMID: 40243060 PMCID: PMC12004114 DOI: 10.1093/nar/gkaf293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neurons are highly polarized, specialized cells that must overcome immense challenges to ensure the health and survival of the organism in which they reside. They can spread over meters and persist for decades yet communicate at sub-millisecond and millimeter scales. Thus, neurons require extreme levels of spatial-temporal control. Neurons employ molecular motors to transport coding and noncoding RNAs to distal synapses. Intracellular trafficking of RNAs enables neurons to locally regulate protein synthesis and synaptic activity. The way in which RNAs get loaded onto molecular motors and transported to their target locations, particularly following synaptic plasticity, is explored below.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
2
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Kukushkin NV, Williams SP, Carew TJ. Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia. Sci Rep 2019; 9:14379. [PMID: 31591438 PMCID: PMC6779898 DOI: 10.1038/s41598-019-50923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.
Collapse
Affiliation(s)
| | | | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.
| |
Collapse
|
4
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Korsak LIT, Mitchell ME, Shepard KA, Akins MR. Regulation of neuronal gene expression by local axonal translation. CURRENT GENETIC MEDICINE REPORTS 2016; 4:16-25. [PMID: 27722035 DOI: 10.1007/s40142-016-0085-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA localization is a key mechanism in the regulation of protein expression. In neurons, this includes the axonal transport of select mRNAs based on the recognition of axonal localization motifs in these RNAs by RNA binding proteins. Bioinformatic analyses of axonal RNAs suggest that selective inclusion of such localization motifs in mature mRNAs is one mechanism controlling the composition of the axonal transcriptome. The subsequent translation of axonal transcripts in response to specific stimuli provides precise spatiotemporal control of the axonal proteome. This axonal translation supports local phenomena including axon pathfinding, mitochondrial function, and synapse-specific plasticity. Axonal protein synthesis also provides transport machinery and signals for retrograde trafficking to the cell body to effect somatic changes including altering the transcriptional program. Here we review the remarkable progress made in recent years to identify and characterize these phenomena.
Collapse
Affiliation(s)
- Lulu I T Korsak
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | - Molly E Mitchell
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | | | - Michael R Akins
- Assistant Professor, Department of Biology, Department of Neurobiology & Anatomy, Drexel University, PISB 319; 3245 Chestnut St, Philadelphia, PA 19104,
| |
Collapse
|
7
|
Stough S, Kopec AM, Carew TJ. Synaptic generation of an intracellular retrograde signal requires activation of the tyrosine kinase and mitogen-activated protein kinase signaling cascades in Aplysia. Neurobiol Learn Mem 2015; 125:47-54. [PMID: 26238564 PMCID: PMC4648669 DOI: 10.1016/j.nlm.2015.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Cellular changes underlying memory formation can be generated in an activity-dependent manner at specific synapses. Thus an important question concerns the mechanisms by which synaptic signals communicate with the cell body to mediate these cellular changes. A monosynaptic circuit that is enhanced by sensitization in Aplysia is well-suited to study this question because three different subcellular compartments: (i) the sensorimotor SN-MN synapses, (ii) the SN projections to MNs via axonal connections, (iii) the SN cell bodies, can all be manipulated and studied independently. Here, we report that activity-dependent (AD) training in either the entire SN-MN circuit or in only the synaptic compartment, activates MAPK in a temporally and spatially specific pattern. Specifically, we find (i) MAPK activation is first transiently generated at SN-MN synapses during training, (ii) immediately after training MAPK is transiently activated in SN-MN axonal connections and persistently activated in SN cell bodies, and finally, (iii) MAPK is activated in SN cell bodies and SN-MN synapses 1h after training. These data suggest that there is an intracellularly transported retrograde signal generated at the synapse which is later responsible for delayed MAPK activation at SN somata. Finally, we find that this retrograde signal requires activation of tyrosine kinase (TK) and MEK signaling cascades at the synapses.
Collapse
Affiliation(s)
- Shara Stough
- Department of Psychology, Augustana College, Rock Island, IL, United States; Program in Neuroscience, Augustana College, Rock Island, IL, United States
| | - Ashley M Kopec
- Center for Neural Science, New York University, NY, United States
| | - Thomas J Carew
- Center for Neural Science, New York University, NY, United States.
| |
Collapse
|
8
|
Kopec AM, Philips GT, Carew TJ. Distinct Growth Factor Families Are Recruited in Unique Spatiotemporal Domains during Long-Term Memory Formation in Aplysia californica. Neuron 2015; 86:1228-39. [PMID: 26050041 PMCID: PMC4573621 DOI: 10.1016/j.neuron.2015.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/23/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
Several growth factors (GFs) have been implicated in long-term memory (LTM), but no single GF can support all of the plastic changes that occur during memory formation. Because GFs engage highly convergent signaling cascades that often mediate similar functional outcomes, the relative contribution of any particular GF to LTM is difficult to ascertain. To explore this question, we determined the unique contribution of distinct GF families (signaling via TrkB and TGF-βr-II) to LTM formation in Aplysia. We demonstrate that TrkB and TGF-βr-II signaling are differentially recruited during two-trial training in both time (by trial 1 or 2, respectively) and space (in distinct subcellular compartments). These GFs independently regulate MAPK activation and synergistically regulate gene expression. We also show that trial 1 TrkB and trial 2 TGF-βr-II signaling are required for LTM formation. These data support the view that GFs engaged in LTM formation are interactive components of a complex molecular network.
Collapse
Affiliation(s)
- Ashley M Kopec
- Center for Neural Science, New York University, New York, NY 10003
| | - Gary T Philips
- Center for Neural Science, New York University, New York, NY 10003
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, NY 10003.
| |
Collapse
|
9
|
Owen GR, Brenner EA. Mapping molecular memory: navigating the cellular pathways of learning. Cell Mol Neurobiol 2012; 32:919-41. [PMID: 22488526 PMCID: PMC11498452 DOI: 10.1007/s10571-012-9836-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/21/2012] [Indexed: 01/25/2023]
Abstract
A consolidated map of the signalling pathways that function in the formation of short- and long-term cellular memory could be considered the ultimate means of defining the molecular basis of learning. Research has established that experience-dependent activation of these complex cellular cascades leads to many changes in the composition and functioning of a neuron's proteome, resulting in the modulation of its synaptic strength and structure. However, although generally accepted that synaptic plasticity is the mechanism whereby memories are stored in the brain, there is much controversy over whether the site of this neuronal memory expression is predominantly pre- or postsynaptic. Much of the early research into the neuromolecular mechanisms of memory performed using the model organism, the marine snail Aplysia, has focused on the associated presynaptic events. Recently however, postsynaptic mechanisms have been shown to contribute definitively to long term memory processes, and are in fact critical for persistent learning-induced synaptic changes. In this review, in which we aimed to integrate many of the early and recent advances concerning coordinated neuronal signaling in both the pre- and postsynaptic neurons, we have provided a detailed account of the diverse cellular events that lead to modifications in synaptic strength. Thus, a comprehensive synaptic model is presented that could explain a few of the shortcomings that arise when the presynaptic and postsynaptic changes are considered separately. Although it is clear that there is still much to be learnt and that the exact nature of many of the signalling cascades and their components are yet to be fully understood, this still incomplete but integrated illustrative map of the cellular pathways involved provides an overview which expands understanding of the neuromolecular mechanisms of learning and memory.
Collapse
|
10
|
Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 2012; 8:e1002768. [PMID: 22807684 PMCID: PMC3395599 DOI: 10.1371/journal.pgen.1002768] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max Planck Institut für Neurobiologie, Martinsried, Germany
- * E-mail: (HT); (YA)
| | - Andrea Herb
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
| | - Maite Ogueta
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Henrike Scholz
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
- Universität zu Köln, Biozentrum Köln, Köln, Germany
| | - Hiromu Tanimoto
- Max Planck Institut für Neurobiologie, Martinsried, Germany
- * E-mail: (HT); (YA)
| |
Collapse
|
11
|
Philips GT, Sherff CM, Menges SA, Carew TJ. The tail-elicited tail withdrawal reflex of Aplysia is mediated centrally at tail sensory-motor synapses and exhibits sensitization across multiple temporal domains. Learn Mem 2011; 18:272-82. [PMID: 21450911 DOI: 10.1101/lm.2125311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The defensive withdrawal reflexes of Aplysia californica have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the tail-elicited tail withdrawal reflex (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have identified the induction requirements and molecular basis of different temporal phases of synaptic facilitation that underlie sensitization in this system. They have also permitted more recent studies elucidating the role of synaptic and nuclear signaling during synaptic facilitation. Here we report the development of a novel, compartmentalized semi-intact T-TWR preparation that allows examination of the unique contributions of processing in the SN somatic compartment (the pleural ganglion) and the SN-MN synaptic compartment (the pedal ganglion) during the induction of sensitization. Using this preparation we find that the T-TWR is mediated entirely by central connections in the synaptic compartment. Moreover, the reflex is stably expressed for at least 24 h, and can be modified by tail shocks that induce sensitization across multiple temporal domains, as well as direct application of the modulatory neurotransmitter serotonin. This preparation now provides an experimentally powerful system in which to directly examine the unique and combined roles of synaptic and nuclear signaling in different temporal domains of memory formation.
Collapse
Affiliation(s)
- Gary T Philips
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, California 92697-4550, USA
| | | | | | | |
Collapse
|
12
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
13
|
Long AA, Mahapatra CT, Woodruff EA, Rohrbough J, Leung HT, Shino S, An L, Doerge RW, Metzstein MM, Pak WL, Broadie K. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy. J Cell Sci 2010; 123:3303-15. [PMID: 20826458 DOI: 10.1242/jcs.069468] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.
Collapse
Affiliation(s)
- A Ashleigh Long
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Akins MR, Berk-Rauch HE, Fallon JR. Presynaptic translation: stepping out of the postsynaptic shadow. Front Neural Circuits 2009; 3:17. [PMID: 19915727 PMCID: PMC2776480 DOI: 10.3389/neuro.04.017.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/07/2009] [Indexed: 11/13/2022] Open
Abstract
The ability of the nervous system to convert transient experiences into long-lasting structural changes at the synapse relies upon protein synthesis. It has become increasingly clear that a critical subset of this synthesis occurs within the synaptic compartment. While this process has been extensively characterized in the postsynaptic compartment, the contribution of local translation to presynaptic function remains largely unexplored. However, recent evidence highlights the potential importance of translation within the presynaptic compartment. Work in cultured neurons has shown that presynaptic translation occurs specifically at synapses undergoing long-term plasticity and may contribute to the maintenance of nascent synapses. Studies from our laboratory have demonstrated that Fragile X proteins, which regulate mRNA localization and translation, are expressed at the presynaptic apparatus. Further, mRNAs encoding presynaptic proteins traffic into axons. Here we discuss recent advances in the study of presynaptic translation as well as the challenges confronting the field. Understanding the regulation of presynaptic function by local protein synthesis promises to shed new light on activity-dependent modification of synaptic architecture.
Collapse
Affiliation(s)
- Michael R Akins
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | |
Collapse
|
15
|
Cai D, Chen S, Glanzman DL. Postsynaptic regulation of long-term facilitation in Aplysia. Curr Biol 2008; 18:920-5. [PMID: 18571411 PMCID: PMC2711037 DOI: 10.1016/j.cub.2008.05.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 11/23/2022]
Abstract
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.
Collapse
Affiliation(s)
- Diancai Cai
- Department of Physiological Science, UCLA College, University of California, Los Angeles, Los Angeles, California 90095-1606, USA
| | - Shanping Chen
- Department of Physiological Science, UCLA College, University of California, Los Angeles, Los Angeles, California 90095-1606, USA
| | - David L. Glanzman
- Department of Physiological Science, UCLA College, University of California, Los Angeles, Los Angeles, California 90095-1606, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California 90095-1761, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California 90095-1761, USA
| |
Collapse
|
16
|
Gold PE. Protein synthesis inhibition and memory: formation vs amnesia. Neurobiol Learn Mem 2008; 89:201-11. [PMID: 18054504 PMCID: PMC2346577 DOI: 10.1016/j.nlm.2007.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 01/07/2023]
Abstract
Studies using protein synthesis inhibitors have provided key support for the prevalent view that memory formation requires the initiation of protein synthesis as a primary element of the molecular biology of memory. However, many other interpretations of the amnesia data have received far less attention. These include: (a) protein synthesis may play a constitutive role in memory formation, providing proteins prior to an experience that can be activated by training; (b) protein synthesis may be needed to replace proteins available prior to learning but 'consumed' by learning; (c) inhibition of protein synthesis impairs the well-being of neurons, leading to an inability to deliver resources needed for memory formation; and (d) inhibition of protein synthesis results in abnormal neural functions that interfere with memory. One of these, abnormal release of neurotransmitters after inhibition of protein synthesis, is detailed here, along with a review of many circumstances in which it appears that protein synthesis at the time of training is not required for the formation of new memories. Evidence of activation of cell signaling molecules and transcription factors is another form of support for a role of training-initiated protein synthesis in memory. However, recent findings suggest that many of these molecules are activated by training and remain activated for days after training, i.e. activated for times well beyond those typically invoked for memory consolidation processes. Reviewing these results, this paper suggests that the long-lasting molecular changes may be the basis of a form of intracellular memory, one responsible for up-regulating the probability that a neuron, once activated in this manner, will engage in future plasticity. This view melds ideas of modulation of memory with those of consolidation of memory.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Psychology and Psychiatry, Neuroscience Program and Institute for Genomic Biology, University of Illinois, 603 E. Daniel Street, Champaign, IL 61820, USA.
| |
Collapse
|
17
|
Abstract
The lateral giant (LG) command neuron of crayfish responds to an attack directed at the abdomen by triggering a single highly stereotyped escape tail flip. Experimentally applied serotonin (5-hydroxytrptamine, 5-HT) can increase or decrease LG's excitability, depending on the concentration, rate, and duration of 5-HT application. Here we describe three physiological mechanisms that mediate serotonergic facilitation of LG. Two processes strengthen electrical coupling between the primary mechanosensory afferent neurons and LG: first, an early increase in the conductance of electrical synapses between primary afferent neurons and LG dendrites and second, an early increase in the membrane resistance of LG dendrites. The increased coupling facilitates LG's synaptic response and it promotes recruitment of weakly excited afferent neurons to contribute to the response. Third, a delayed increase in the membrane resistance of proximal regions of LG increases the cell's input resistance near the initial segment. Together these mechanisms contribute to serotonergic facilitation of LG's response.
Collapse
|
18
|
Weragoda RMS, Walters ET. Serotonin Induces Memory-Like, Rapamycin-Sensitive Hyperexcitability in Sensory Axons ofAplysiaThat Contributes to Injury Responses. J Neurophysiol 2007; 98:1231-9. [PMID: 17634332 DOI: 10.1152/jn.01189.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of long-term facilitation (LTF) of synapses of Aplysia sensory neurons (SNs) by serotonin (5-HT) has provided an important mechanistic model of memory, but little is known about other long-term effects of 5-HT on sensory properties. Here we show that crushing peripheral nerves results in long-term hyperexcitability (LTH) of the axons of these nociceptive SNs that requires 5-HT activity in the injured nerve. Serotonin application to a nerve segment induces local axonal (but not somal) LTH that is inhibited by 5-HT–receptor antagonists. Blockade of crush-induced axonal LTH by an antagonist, methiothepin, provides evidence for mediation of this injury response by 5-HT. This is the first demonstration in any axon of neuromodulator-induced LTH, a phenomenon potentially important for long-lasting pain. Methiothepin does not reduce axonal LTH induced by local depolarization, so 5-HT is not required for all forms of axonal LTH. Serotonin-induced axonal LTH is expressed as reduced spike threshold and increased repetitive firing, whereas depolarization-induced LTH involves only reduced threshold. Like crush- and depolarization-induced LTH, 5-HT–induced LTH is blocked by inhibiting protein synthesis. Blockade by rapamycin, which also blocks synaptic LTF, is interesting because the eukaryotic protein kinase that is the target of rapamycin (TOR) has a conserved role in promoting growth by stimulating translation of proteins required for translation. Rapamycin sensitivity suggests that localized increases in translation of proteins that promote axonal conduction and excitability at sites of nerve injury may be regulated by the same signals that increase translation of proteins that promote neuronal growth.
Collapse
Affiliation(s)
- Ramal M S Weragoda
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, 6431 Fannin Blvd. MSB 4.116, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Marinesco S, Wickremasinghe N, Carew TJ. Regulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia. J Neurosci 2006; 26:12682-93. [PMID: 17151271 PMCID: PMC6674826 DOI: 10.1523/jneurosci.3309-06.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Aplysia, serotonergic neurons are widely activated during sensitization training, but the effects of exogenous serotonin (5-HT) on reflex circuits vary, inducing short- or long-term synaptic facilitation or synaptic inhibition, depending on the site of application. During learning, it is possible that specific spatial patterns of 5-HT release evoked by training may produce different phases of sensitization or behavioral inhibition. To test this hypothesis, we examined the modulation of the tail-induced siphon withdrawal reflex by repeated noxious stimuli applied to one of three sites: the (1) ipsilateral or (2) contralateral sides of the tail or (3) the head. Ipsilateral tail shock produced long-term sensitization, whereas contralateral tail shock induced only short-term sensitization, and head shock produced inhibition. In parallel cellular experiments, tail-nerve shock evoked large 5-HT release localized around the ipsilateral tail sensory neurons (SNs) and motor neurons (MNs) but only modest 5-HT release in the contralateral pleural-pedal ganglia and in the abdominal ganglion, in which the siphon MNs are located. Head-nerve shock, in contrast, produced only modest 5-HT release in the pleural, pedal, and abdominal ganglia. Thus, each training protocol evoked a specific pattern of 5-HT release within the CNS. In addition, we found that 5-HT released in the pleural ganglia was correlated with facilitation of SN-MN synapses; however, in the abdominal ganglion, it was associated with inhibition of the synapses between identified interneurons (L29s) and siphon MNs (LFSs). Because 5-HT differentially modulates synaptic efficacy at different synaptic sites, our data can explain how specific spatial patterns of 5-HT release in local modulatory fields can contribute to the induction of short- or long-term sensitization or to behavioral inhibition.
Collapse
Affiliation(s)
- Stéphane Marinesco
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697-4550, and
- Institut de Neurobiologie Alfred Fessard, Fédération de Recherche du Centre National de la Recherche Scientifique (CNRS) 2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité Propre de Recherche 9040, CNRS, Gif sur Yvette F-91198, France
| | - Nimalee Wickremasinghe
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697-4550, and
| | - Thomas J. Carew
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697-4550, and
| |
Collapse
|
20
|
Yin HH, Davis MI, Ronesi JA, Lovinger DM. The role of protein synthesis in striatal long-term depression. J Neurosci 2006; 26:11811-20. [PMID: 17108154 PMCID: PMC6674864 DOI: 10.1523/jneurosci.3196-06.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Long-term depression (LTD) at the corticostriatal synapse is postsynaptically induced but presynaptically expressed, the depression being a result of retrograde endocannabinoid signaling that activates presynaptic cannabinoid CB1 receptors and reduces the probability of glutamate release. To study the role of protein synthesis in striatal LTD, we used a striatum-only preparation in which the presynaptic cell body is cut off, leaving intact only its axons, whose terminals synapse on medium spiny neurons. LTD (duration >150 min) was induced in this preparation, thus providing evidence that transcription in the presynaptic cell nucleus is not necessary for this form of plasticity. The maintenance of striatal LTD, however, was blocked by bath application of protein translation inhibitors but not by the same inhibitors loaded into the postsynaptic cell. These results suggest that local translation is critical for the expression of striatal LTD, distinguishing this form of mammalian synaptic plasticity from other forms that require postsynaptic protein synthesis. Possible roles of axonal or glial translation in striatal LTD are considered.
Collapse
Affiliation(s)
- Henry H. Yin
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Margaret I. Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer A. Ronesi
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Abstract
Considerable evidence suggests that the formation of long-term memories requires a critical period of new protein synthesis. Recently, the notion that some of these newly synthesized proteins originate through local translation in neuronal dendrites has gained some traction. Here, we review the experimental support for this idea and highlight some of the key questions outstanding in this area.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | | |
Collapse
|
22
|
Reis SA, Oostra BA, Willemsen R. Isolation of mouse neuritic mRNAs. J Mol Histol 2006; 37:79-86. [PMID: 16821094 DOI: 10.1007/s10735-006-9036-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/22/2006] [Indexed: 11/26/2022]
Abstract
Impaired local protein translation at postsynaptic sites has been hypothesized to be the cause of several neurological disorders such as fragile X syndrome, neurofibromatosis-1, Rett syndrome, and other syndromic and non-specific forms of mental retardation. Identification of which mRNAs are present in dendrites and the identification of the molecular pathways that they promote will be imperative to the understanding of the neuropathology of these diseases. Since mouse models are the most widely used animal models of human diseases we developed a cell culture based technique to isolate mRNAs from mouse neurites.
Collapse
Affiliation(s)
- Surya A Reis
- CBG-Department of Clinical Genetics, Erasmus MC, P.O. Box 1738, 3000, DR, Rotterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Gong R, Park CS, Abbassi NR, Tang SJ. Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 2006; 281:18802-15. [PMID: 16651266 DOI: 10.1074/jbc.m512524200] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local protein synthesis in neuronal dendrites is critical for synaptic plasticity. However, the signaling cascades that couple synaptic activation to dendritic protein synthesis remain elusive. The purpose of this study is to determine the role of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling in regulating dendritic protein synthesis in live neurons. We first characterized the involvement of various subtypes of glutamate receptors and the mTOR kinase in regulating dendritic synthesis of a green fluorescent protein (GFP) reporter controlled by alphaCaMKII 5' and 3' untranslated regions in cultured hippocampal neurons. Specific antagonists of N-methyl-d-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and metabotropic glutamate receptors abolished glutamate-induced dendritic GFP synthesis, whereas agonists of NMDA and metabotropic but not AMPA glutamate receptors activated GFP synthesis in dendrites. Inhibitions of the mTOR signaling, as well as its upstream activators, phosphatidylinositol 3-kinase and AKT, blocked NMDA receptor-dependent dendritic GFP synthesis. Conversely, activation of mTOR signaling stimulated dendritic GFP synthesis. In addition, we also found that inhibition of the mTOR kinase blocked dendritic synthesis of the endogenous alphaCaMKII and MAP2 proteins induced by tetanic stimulations in hippocampal slices. These results identify critical roles of NMDA receptors and the mTOR signaling pathway for control of synaptic activity-induced dendritic protein synthesis in hippocampal neurons.
Collapse
Affiliation(s)
- Ruomu Gong
- Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, California 92697-3800, USA
| | | | | | | |
Collapse
|
24
|
Hu JY, Wu F, Schacher S. Two signaling pathways regulate the expression and secretion of a neuropeptide required for long-term facilitation in Aplysia. J Neurosci 2006; 26:1026-35. [PMID: 16421322 PMCID: PMC6675361 DOI: 10.1523/jneurosci.4258-05.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of several signaling pathways contributes to long-term synaptic plasticity, but how brief stimuli produce coordinated activation of these pathways is not understood. In Aplysia, the long-term facilitation (LTF) of sensory neuron synapses by 5-hydroxytryptamine (serotonin; 5-HT) requires the activation of several kinases, including mitogen-activated protein kinase (MAPK). The 5-HT-enhanced secretion of the sensory neuron-specific neuropeptide sensorin mediates the activation of MAPK. We find that stimulus-induced activation of two signaling pathways, phosphoinositide 3-kinase (PI3K) and type II protein kinase A (PKA), regulate sensorin secretion and responses. Treatment with 5-HT produces a rapid increase in sensorin synthesis, especially at varicosities, which precedes the secretion of sensorin. PI3K inhibitor and rapamycin block LTF and the rapid synthesis of sensorin at varicosities even in the absence of sensory neuron cell bodies. Secretion of the newly synthesized sensorin from the varicosities and activation of the autocrine responses of sensorin to produce LTF require type II PKA interaction with AKAPs (A-kinase anchoring proteins). Thus, long-term synaptic plasticity is produced when multiple signaling pathways that are important for regulating distinct cellular functions are activated in a specific sequence and recruit the secretion of a neuropeptide to activate additional critical pathways.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | |
Collapse
|
25
|
Wiersma-Meems R, Van Minnen J, Syed NI. Synapse formation and plasticity: the roles of local protein synthesis. Neuroscientist 2005; 11:228-37. [PMID: 15911872 DOI: 10.1177/1073858404274110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
From simple reflexes in lower animals to complex motor patterns and learning and memory in higher animals, all nervous system functions hinge upon fundamental, albeit specialized, neuronal units termed synapses. The term synapse denotes the structural and functional building block upon which pivots the enormous information-processing capabilities of our brain. It is the neuronal communications through synapses that ultimately determine who we are and how we react and adapt to our ever-changing environment. Synapses are not only the epic center of our intellect, but they also control myriad traits of our personality, ranging from sinfulness to sainthood (see, e.g., Hamer 2004). Simply put-we are what our synapses deem us to be (LeDoux 2003)! Notwithstanding the reasoning that some aspects of the synaptic arrangement may be genetically hardwired, an overwhelming body of knowledge does nevertheless provide ample plausible evidence that synapses are highly plastic entities undergoing rapid adaptive changes throughout life. It is this adaptability that endows our brain with its "uncanny" powers.
Collapse
Affiliation(s)
- Ryanne Wiersma-Meems
- Department of Cell Biology and Anatomy, The Hotchkiss Brain Institute of Calgary, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
26
|
Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76:99-125. [PMID: 16099088 DOI: 10.1016/j.pneurobio.2005.06.003] [Citation(s) in RCA: 878] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/09/2005] [Accepted: 06/16/2005] [Indexed: 12/19/2022]
Abstract
Interest in BDNF as an activity-dependent modulator of neuronal structure and function in the adult brain has intensified in recent years. Localization of BDNF-TrkB to glutamate synapses makes this system attractive as a dynamic, activity-dependent regulator of excitatory transmission and plasticity. Despite individual breakthroughs, an integrated understanding of BDNF function in synaptic plasticity is lacking. Here, we attempt to distill current knowledge of the molecular mechanisms and function of BDNF in LTP. BDNF activates distinct mechanisms to regulate the induction, early maintenance, and late maintenance phases of LTP. Evidence from genetic and pharmacological approaches is reviewed and tabulated. The specific contribution of BDNF depends on the stimulus pattern used to induce LTP, which impacts the duration and perhaps the subcellular site of BDNF release. Particular attention is given to the role of BDNF as a trigger for protein synthesis-dependent late phase LTP--a process referred to as synaptic consolidation. Recent experiments suggest that BDNF activates synaptic consolidation through transcription and rapid dendritic trafficking of mRNA encoded by the immediate early gene, Arc. A model is proposed in which BDNF signaling at glutamate synapses drives the translation of newly transported (Arc) and locally stored (i.e., alphaCaMKII) mRNA in dendrites. In this model BDNF tags synapses for mRNA capture, while Arc translation defines a critical window for synaptic consolidation. The biochemical mechanisms by which BDNF regulates local translation are also discussed. Elucidation of these mechanisms should shed light on a range of adaptive brain responses including memory and mood resilience.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine, Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | |
Collapse
|
27
|
Thompson KR, Otis KO, Chen DY, Zhao Y, O'Dell TJ, Martin KC. Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron 2005; 44:997-1009. [PMID: 15603742 DOI: 10.1016/j.neuron.2004.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 09/07/2004] [Accepted: 11/15/2004] [Indexed: 11/19/2022]
Abstract
The requirement for transcription during long-lasting plasticity indicates that signals generated at the synapse must be transported to the nucleus. We have investigated whether the classical active nuclear import pathway mediates intracellular retrograde signal transport in Aplysia sensory neurons and rodent hippocampal neurons. We found that importins localize to distal neuronal processes, including synaptic compartments, where they are well positioned to mediate synapse to nucleus signaling. In Aplysia, stimuli known to produce long-lasting but not short-lasting facilitation triggered importin nuclear translocation. In hippocampal neurons, NMDA receptor activation but not depolarization induced importin nuclear translocation. We further showed that LTP-inducing stimuli recruited active nuclear import in hippocampal slices. Together with our finding that long-term facilitation of Aplysia sensory-motor synapses required active nuclear import, our results indicate that regulation of the active nuclear import pathway plays a critical role in transporting synaptically generated signals into the nucleus during learning-related forms of plasticity.
Collapse
Affiliation(s)
- Kimberly R Thompson
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
28
|
Grabham PW, Wu F, Schacher S, Goldberg DJ. Initiating morphological changes associated with long-term facilitation inAplysia is independent of transcription or translation in the cell body. ACTA ACUST UNITED AC 2005; 64:202-12. [PMID: 15849740 DOI: 10.1002/neu.20133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Aplysia, the growth of axonal arbor and the formation of new presynaptic varicosities are thought to contribute to long-term facilitation (LTF) produced by serotonin (5-HT). While it is known that there is a requirement for both transcription and translation in LTF and in the accompanying morphological changes, the mechanisms mediating the initiation and maintenance of these changes are poorly understood. We used long-term labeling of the presynaptic sensory neuron to carry out repeated imaging of axonal morphology, coupled with electrophysiology, to further elucidate the macromolecular requirements of this process. Robust synaptic facilitation, axonal growth, and the formation of axonal varicosities were elicited by 5-HT even when transcription was blocked with actinomycin. Increases in synaptic efficacy and varicosity number were detected 12 h after exposure to 5-HT but did not persist to 24 h. Even when sensory neuron cell bodies were removed, eliminating the contributions of both somal transcription and translation, 5-HT elicited these transient morphological and electrophysiological responses. New sensory varicosities contacting the postsynaptic neuron were filled with the neuropeptide sensorin. Under all conditions, global inhibition of protein synthesis completely blocked the formation of new axonal branches and varicosities. These results demonstrate that neither transcription nor somal translation is required to initiate the axonal growth that often accompanies long-term synaptic plasticity-protein synthesis in the axon is sufficient. Macromolecular synthesis in the cell body is, however, required to maintain the enlarged arbor.
Collapse
Affiliation(s)
- Peter W Grabham
- Department of Pharmacology, Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
mRNA localization and regulated translation take central roles in axon guidance and synaptic plasticity. By spatially restricting gene expression within neurons, local protein synthesis provides growth cones and synapses with the capacity to autonomously regulate their structure and function. Studies in a variety of systems have provided insight into the specific roles of local protein synthesis during axonal navigation and during synaptic plasticity, and have begun to delineate the mechanisms underlying mRNA localization and regulated translation. Several powerful new tools have recently been developed to visualize each of these processes.
Collapse
Affiliation(s)
- Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Gonda Research Building 3506C, 695 Charles Young Drive South, Los Angeles, California 90095-1761, USA.
| |
Collapse
|
30
|
Sutton MA, Wall NR, Aakalu GN, Schuman EM. Regulation of dendritic protein synthesis by miniature synaptic events. Science 2004; 304:1979-83. [PMID: 15218151 DOI: 10.1126/science.1096202] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We examined dendritic protein synthesis after a prolonged blockade of action potentials alone and after a blockade of both action potentials and miniature excitatory synaptic events (minis). Relative to controls, dendrites exposed to a prolonged blockade of action potentials showed diminished protein synthesis. Dendrites in which both action potentials and minis were blocked showed enhanced protein synthesis, suggesting that minis inhibit dendritic translation. When minis were acutely blocked or stimulated, an immediate increase or decrease, respectively, in dendritic translation was observed. Taken together, these results reveal a role for miniature synaptic events in the acute regulation of dendritic protein synthesis in neurons.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology, Howard Hughes Medical Institute (HHMI), California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
31
|
Liu J, Hu JY, Schacher S, Schwartz JH. The two regulatory subunits of aplysia cAMP-dependent protein kinase mediate distinct functions in producing synaptic plasticity. J Neurosci 2004; 24:2465-74. [PMID: 15014122 PMCID: PMC6729487 DOI: 10.1523/jneurosci.4331-03.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the cAMP-dependent protein kinase (PKA) is critical for both short- and long-term facilitation in Aplysia sensory neurons. There are two types of the kinase, I and II, differing in their regulatory (R) subunits. We cloned Aplysia RII; RI was cloned previously. Type I PKA is mostly soluble in the cell body whereas type II is enriched at nerve endings where it is bound to two prominent A kinase-anchoring-proteins (AKAPs). Disruption of the binding of RII to AKAPs by Ht31, an inhibitory peptide derived from a human thyroid AKAP, prevents both the short- and the long-term facilitation produced by serotonin (5-HT). During long-term facilitation, RII is transcriptionally upregulated; in contrast, the amount of RI subunits decreases, and previous studies have indicated that the decrease is through ubiquitin-proteosome-mediated proteolysis. Experiments with antisense oligonucleotides injected into the sensory neuron cell body show that the increase in RII protein is essential for the production of long-term facilitation. Using synaptosomes, we found that 5-HT treatment causes RII protein to increase at nerve endings. In addition, using reverse transcription-PCR, we found that RII mRNA is transported from the cell body to nerve terminals. Our results suggest that type I operates in the nucleus to maintain cAMP response element-binding protein-dependent gene expression, and type II PKA acts at sensory neuron synapses phosphorylating proteins to enhance release of neurotransmitter. Thus, the two types of the kinase have distinct but complementary functions in the production of facilitation at synapses of an identified neuron.
Collapse
Affiliation(s)
- Jinming Liu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
32
|
Sherff CM, Carew TJ. Parallel somatic and synaptic processing in the induction of intermediate-term and long-term synaptic facilitation in Aplysia. Proc Natl Acad Sci U S A 2004; 101:7463-8. [PMID: 15123836 PMCID: PMC409941 DOI: 10.1073/pnas.0402163101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Indexed: 11/18/2022] Open
Abstract
The induction of different phases of memory depends on the amount and patterning of training, raising the question of whether specific training patterns engage different cellular mechanisms and whether these mechanisms operate in series or in parallel. We examined these questions by using a cellular model of memory formation: facilitation of the tail sensory neuron-motor neuron synapses by serotonin (5-hydroxytryptamine, 5-HT) in the CNS of Aplysia. We studied facilitation in two temporal domains: intermediate-term facilitation (1.5-3 h) and long-term facilitation (LTF, >24 h). Both forms can be induced by using several different temporal and spatial patterns of 5-HT, including (i) repeated, temporally spaced pulses of 5-HT to both the sensory neuron soma and the sensory neuron-motor neuron synapse, and (ii) temporally asymmetric exposure of 5-HT to the soma and synapse under conditions in which neither exposure alone induces LTF. We first examined the protein and RNA synthesis requirements for LTF induced by these two patterns and found that asymmetric (but not repeated) 5-HT application induced LTF that required postsynaptic protein and RNA synthesis. We next focused on the patterning and protein synthesis requirements for intermediate-term facilitation. We found that intermediate-term facilitation (i) is induced locally at the synapse, (ii) requires multiple pulses of 5-HT, and (iii) requires synaptic protein synthesis. Our findings show that different temporal and spatial patterns of 5-HT induce specific temporal phases of long-lasting facilitation in parallel by engaging different cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Carolyn M Sherff
- Department of Neurobiology and Behavior and Center for Learning and Memory, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
33
|
Walling SG, Harley CW. Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel beta-adrenergic- and protein synthesis-dependent mammalian plasticity mechanism. J Neurosci 2004; 24:598-604. [PMID: 14736844 PMCID: PMC6729256 DOI: 10.1523/jneurosci.4426-03.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Norepinephrine, acting through beta-adrenergic receptors, is implicated in mammalian memory. In in vitro and in vivo studies, norepinephrine produces potentiation of the perforant path-dentate gyrus evoked potential; however, the duration and dynamics of norepinephrine-induced potentiation have not been explored over extended time periods. To characterize the long-term effects of norepinephrine on granule cell plasticity, the present study uses glutamatergic activation of the locus ceruleus (LC) to induce release of norepinephrine in the hippocampus of the awake rat and examines the subsequent modulation of the dentate gyrus evoked potential for 3 hr (short term) and 24 hr (long term) after LC activation. LC activation initiates a potentiation of the field EPSP slope observed 24 hr later. This late-phase potentiation of the synaptic potential is not preceded by early phase potentiation, although spike potentiation can be seen both immediately after, and 24 hr after, LC activation. Intracerebroventricular infusion of the beta-adrenergic antagonist, propranolol, or the protein synthesis inhibitor, anisomycin, before LC activation blocks the potentiation of perforant path input observed at 24 hr. The initiation of late-phase synaptic potentiation observed at 24 hr but not at the 3 hr after LC activation parallels the observation of a cAMP- and protein synthesis-dependent long-lasting synaptic facilitation in Aplysia that is not preceded by short-term synaptic facilitation. Locus ceruleus-initiated synaptic potentiation may selectively support long-term, rather than short-term, memory. The observation of selective initiation of long-term synaptic facilitation in a mammalian brain, as in invertebrates, is additional evidence that these two forms of memory depend on separable biological mechanisms.
Collapse
Affiliation(s)
- Susan G Walling
- Behavioral Neuroscience, Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | | |
Collapse
|
34
|
Abstract
The cell body has classically been considered the exclusive source of axonal proteins. However, significant evidence has accumulated recently to support the view that protein synthesis can occur in axons themselves, remote from the cell body. Indeed, local translation in axons may be integral to aspects of synaptogenesis, long-term facilitation, and memory storage in invertebrate axons, and for growth cone navigation in response to environmental stimuli in developing vertebrate axons. Here we review the evidence supporting mRNA translation in axons and discuss the potential roles that local protein synthesis may play during development and subsequent neuronal function. We advance the view that local translation provides a rapid supply of nascent proteins in restricted axonal compartments that can potentially underlie long-term responses to transient stimuli.
Collapse
Affiliation(s)
- Michael Piper
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, United Kingdom.
| | | |
Collapse
|
35
|
Giustetto M, Hegde AN, Si K, Casadio A, Inokuchi K, Pei W, Kandel ER, Schwartz JH. Axonal transport of eukaryotic translation elongation factor 1alpha mRNA couples transcription in the nucleus to long-term facilitation at the synapse. Proc Natl Acad Sci U S A 2003; 100:13680-5. [PMID: 14578450 PMCID: PMC263873 DOI: 10.1073/pnas.1835674100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term synaptic plasticity requires both gene expression in the nucleus and local protein synthesis at synapses. The effector proteins that link molecular events in the cell body with local maintenance of synaptic strength are not known. We now show that treatment with serotonin (5-HT) that produces long-term facilitation induces the Aplysia eukaryotic translation elongation factor 1alpha (Ap-eEF1A) as a late gene that might serve this coupling function in sensory neurons. Although the translation factor is induced, it is not transported into axon processes when the stimulation with 5-HT was restricted to the cell body. In contrast, its mRNA is transported when 5-HT was applied to both cell body and synapses. Intracellular injection of antisense oligonucleotides or antibodies that block the induction and expression of Ap-eEF1A do not affect the initial expression of long-term facilitation but do block its maintenance beyond 24 h. The transport of eEF1A protein and its mRNA to nerve terminals suggests that the translation factor plays a role in the local protein synthesis that is essential for maintaining newly formed synapses.
Collapse
Affiliation(s)
- Maurizio Giustetto
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, New York State Psychiatric Institute, and Howard Hughes Medical Institute, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bristol AS, Marinesco S, Carew TJ. Neural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation. J Neurophysiol 2003; 91:678-92. [PMID: 13679400 DOI: 10.1152/jn.00667.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contralateral dishabituation by making selective nerve cuts. We found that an intact pleural-abdominal connective, the descending pathway connecting the ring ganglia with the abdominal ganglion, ipsilateral to the shock was required for contralateral dishabituation. We examined whether network inhibition suppresses the contralateral effects of tail shock in nonhabituated preparations. We found that blockade of inhibitory transmission in the CNS by the nicotinic ACh inhibitor d-tubocurarine (d-TC) rendered tail shock capable of inducing bilateral sensitization. We next asked whether serotonin (5-HT), a neuromodulator released in the CNS in response to tail shock, was affected by d-TC. We found that d-TC does not alter 5-HT processes in the ring ganglia: it had no effect on the lateralized pattern of tail nerve shock-induced changes in tail sensory neuron excitability, a 5-HT-dependent process, and it did not alter tail nerve shock-evoked release of 5-HT. By contrast, d-TC enhanced 5-HT release in the abdominal ganglion. Consistent with this observation, restricting d-TC to the abdominal ganglion rendered tail nerve shock capable of producing bilateral sensitization. Together with the results of the preceding paper, our results suggest a model in which TSW sensitization and dishabituation can be dissociated both anatomically and mechanistically.
Collapse
Affiliation(s)
- Adam S Bristol
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205, USA
| | | | | |
Collapse
|
37
|
Liu K, Hu JY, Wang D, Schacher S. Protein synthesis at synapse versus cell body: enhanced but transient expression of long-term facilitation at isolated synapses. JOURNAL OF NEUROBIOLOGY 2003; 56:275-86. [PMID: 12884266 DOI: 10.1002/neu.10242] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.
Collapse
Affiliation(s)
- Ke Liu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, New York 10032, USA
| | | | | | | |
Collapse
|
38
|
Identification and characterization of Aplysia adducin, an Aplysia cytoskeletal protein homologous to mammalian adducins: increased phosphorylation at a protein kinase C consensus site during long-term synaptic facilitation. J Neurosci 2003. [PMID: 12684453 DOI: 10.1523/jneurosci.23-07-02675.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural changes at synapses are associated with long-term facilitation (LTF) of synaptic transmission between sensory and motor neurons in Aplysia. We have cloned a cDNA encoding Aplysia adducin (ApADD), the Aplysia homolog of mammalian adducins that are regulatory components of the membrane cytoskeleton. ApADD is recovered in the particulate fraction of nervous system extracts and is localized predominantly in the submembraneous region of Aplysia neurons. ApADD is phosphorylated in vitro by protein kinase C (PKC) at a site homologous to the in vivo PKC phosphorylation site in mammalian adducins. Phosphorylation of ApADD at this site is also detected in vivo in the intact Aplysia nervous system and is increased 18 hr after serotonin-induced LTF. In contrast, there is no change in phosphorylation during short-term facilitation or 1 hr after initial LTF induction. Thus, ApADD is modulated specifically with later phases of LTF and provides an attractive candidate protein that contributes to structural changes accompanying long-lasting synaptic alteration.
Collapse
|
39
|
Zhao Y, Hegde AN, Martin KC. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr Biol 2003; 13:887-98. [PMID: 12781127 DOI: 10.1016/s0960-9822(03)00332-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Long-lasting forms of synaptic plasticity have been shown to depend on changes in gene expression. Although many studies have focused on the regulation of transcription and translation during learning-related synaptic plasticity, regulated protein degradation provides another common means of altering the macromolecular composition of cells. RESULTS We have investigated the role of the ubiquitin proteasome system in long-lasting forms of learning-related plasticity in Aplysia sensory-motor synapses. We find that inhibition of the proteasome produces a long-lasting (24 hr) increase in synaptic strength between sensory and motor neurons and that it dramatically enhances serotonin-induced long-term facilitation. The increase in synaptic strength produced by proteasome inhibitors is dependent on translation but not transcription. In addition to the increase in synaptic strength, proteasome inhibition leads to an increase in the number of synaptic contacts formed between the sensory and motor neurons. Blockade of the proteasome in isolated postsynaptic motor neurons produces an increase in the glutamate-evoked postsynaptic potential, and blockade of the proteasome in the isolated presynaptic sensory cells produces increases in neurite length and branching. CONCLUSIONS We conclude that both pre- and postsynaptic substrates of the ubiquitin proteasome function constitutively to regulate synaptic strength and growth and that the ubiquitin proteasome pathway functions in mature neurons as an inhibitory constraint on synaptic strengthening.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiological Sciences and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
40
|
Meems R, Munno D, van Minnen J, Syed NI. Synapse formation between isolated axons requires presynaptic soma and redistribution of postsynaptic AChRs. J Neurophysiol 2003; 89:2611-9. [PMID: 12612031 DOI: 10.1152/jn.00898.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of neuronal protein synthetic machinery and extrinsic trophic factors during synapse formation is poorly understood. Here we determine the roles of these processes by reconstructing synapses between the axons severed from identified Lymnaea neurons in cell culture, either in the presence or absence of trophic factors. We demonstrate that, although synapses are maintained between isolated pre- and postsynaptic axons for several days, the presynaptic, but not the postsynaptic, cell body, however, is required for new synapse formation between soma-axon pairs. The formation of cholinergic synapses between presynaptic soma and postsynaptic axon requires gene transcription and protein synthesis solely in the presynaptic neuron. We show that this synaptogenesis is contingent on extrinsic trophic factors present in brain conditioned medium (CM). The CM-induced excitatory synapse formation is mediated through receptor tyrosine kinases. We further demonstrate that, although the postsynaptic axon does not require new protein synthesis for synapse formation, its contact with the presynaptic cell in CM, but not in defined medium (no trophic factors), differentially alters its responsiveness to exogenously applied acetylcholine at synaptic compared with extrasynaptic sites. Together, these data suggest a synergetic action of cell-cell signaling and trophic factors to bring about specific changes in both pre- and postsynaptic neurons during synapse formation.
Collapse
Affiliation(s)
- Ryanne Meems
- Department of Molecular and Cellular Neurobiology, Research Institute Neuroscience Vrije Universiteit, Faculty of Earth and Life Sciences, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
41
|
Redistribution of syntaxin mRNA in neuronal cell bodies regulates protein expression and transport during synapse formation and long-term synaptic plasticity. J Neurosci 2003. [PMID: 12629184 DOI: 10.1523/jneurosci.23-05-01804.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Syntaxin has an important role in regulating vesicle docking and fusion essential for neurotransmitter release. Here, we demonstrate that the distribution of syntaxin mRNA in cell bodies of sensory neurons (SNs) of Aplysia maintained in cell culture is affected by synapse formation, synapse stabilization, and long-term facilitation (LTF) produced by 5-HT. The distribution of the mRNA in turn regulates expression and axonal transport of the protein. Syntaxin mRNA and protein accumulated at the axon hillock of SNs during the initial phase of synapse formation. Significant numbers of granules containing syntaxin were detected in the SN axon. When synaptic strength was stable, both mRNA and protein were targeted away from the axon hillock, and the number of syntaxin granules in the SN axon was reduced. Dramatic increases in mRNA and protein accumulation at the axon hillock and number of syntaxin granules in the SN axon were produced when cultures with stable connections were treated with 5-HT that evoked LTF. Anisomycin (protein synthesis inhibitor) or KT5720 (protein kinase A inhibitor) blocked LTF, accumulation of syntaxin mRNA and protein at the axon hillock, and the increase in syntaxin granules in SN axons. The results indicate that without significant effects on overall mRNA expression, both target interaction and 5-HT via activation of protein kinase A pathway regulate expression of syntaxin and its packaging for transport into axons by influencing the distribution of its mRNA in the SN cell body.
Collapse
|
42
|
Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ. Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in Aplysia. Neuron 2003; 37:473-84. [PMID: 12575954 DOI: 10.1016/s0896-6273(03)00030-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine kinases have been implicated in cellular processes thought to underlie learning and memory. Here we show that tyrosine kinases play a direct role in long-term synaptic facilitation (LTF) and long-term memory (LTM) for sensitization in Aplysia. Tyrosine kinase activity is required for serotonin-induced LTF of sensorimotor (SN-MN) synapses, and enhancement of endogenous tyrosine kinase activity facilitates the induction of LTF. These effects are mediated, at least in part, through mitogen-activated protein kinase (MAPK) activation and are blocked by transcriptional and translational inhibitors. Moreover, brain-derived neurotrophic factor (BDNF) also enhances the induction of LTF in a MAPK-dependent fashion. Finally, activation of endogenous tyrosine kinases enhances the induction of long-term memory for sensitization, and this enhancement also requires MAPK activation. Thus, tyrosine kinases, acting through MAPK, play a pivotal role in LTF and LTM formation.
Collapse
Affiliation(s)
- Angela L Purcell
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
43
|
Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH, Thanos D, Kandel ER. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002; 111:483-93. [PMID: 12437922 DOI: 10.1016/s0092-8674(02)01074-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the facilitatory transmitter 5-HT at one set of synapses and the inhibitory transmitter FMRFamide at another, long-term facilitation is blocked and synapse-specific long-term depression dominates. Chromatin immunoprecipitation assays show that 5-HT induces the downstream gene C/EBP by activating CREB1, which recruits CBP for histone acetylation, whereas FMRFa leads to CREB1 displacement by CREB2 and recruitment of HDAC5 to deacetylate histones. When the two transmitters are applied together, facilitation is blocked because CREB2 and HDAC5 displace CREB1-CBP, thereby deacetylating histones.
Collapse
Affiliation(s)
- Zhonghui Guan
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, California 90095-1761, USA.
| | | |
Collapse
|
45
|
Abstract
It has long been shown that protein synthesis can occur in neuronal dendrites, but its significance remained unclear until relatively recently. Studies suggest that local protein synthesis has crucial roles in synaptic plasticity, the change in neuronal communication efficiency that is probably a cellular basis of learning and memory. Induced by neuronal activity, local protein synthesis provides key factors for the modification of activated synapses. In this review, we summarize the evidence for local protein synthesis and its functions in synaptic plasticity. We also discuss the molecular mechanisms by which neuronal activity induces the synthesis of proteins that allow for changes in synaptic function.
Collapse
Affiliation(s)
- Changan Jiang
- Howard Hughes Medical Institute, Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
46
|
Abstract
In neurons, many proteins that are involved in the transduction of synaptic activity and the expression of neural plasticity are specifically localized at synapses. How these proteins are targeted is not clearly understood. One mechanism is synaptic protein synthesis. According to this idea, messenger RNA (mRNA) translation from the polyribosomes that are observed at the synaptic regions provides a local source of synaptic proteins. Although an increasing number of mRNA species has been detected in the dendrite, information about the synaptic synthesis of specific proteins in a physiological context is still limited. The physiological function of synaptic synthesis of specific proteins in synaptogenesis and neural plasticity expression remains to be shown. Experiments aimed at understanding the mechanisms and functions f synaptic protein synthesis might provide important information about the molecular nature of neural plasticity.
Collapse
Affiliation(s)
- Shao Jun Tang
- Howard Hughes Medical Institute, Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
47
|
Abstract
The dorsal striatum participates in motor function and stimulus-response or "habit" learning. Acetylcholine (ACh) is a prominent neurotransmitter in the striatum and exerts part of its actions through nicotinic cholinergic receptors. Activation of these receptors has been associated with the enhancement of learning and certainly is instrumental in habitual use of nicotine. Nicotinic receptors have also been suggested to be a possible therapeutic target for disorders of the basal ganglia. In this report we show that the activation of nicotinic acetylcholine receptors in the dorsal striatum contributes to dopamine (DA)- and activity-dependent changes in synaptic efficacy. High-frequency activation of glutamatergic synapses onto striatal neurons results in a long-term depression (LTD) of synaptic efficacy that is dependent on the activation of dopamine receptors. This stimulation also produces robust increases in extracellular dopamine concentration as well as strong activation of cholinergic striatal interneurons. Antagonists of nicotinic acetylcholine receptors inhibit striatal LTD. However, on coapplication of dopamine reuptake inhibitors with nicotinic receptor antagonists, activity-induced striatal LTD is restored. Dopamine release is modulated by activation of nicotinic receptors in the dorsal striatum, and activation of nicotinic receptors during high-frequency synaptic activation appears to be capable of interacting with dopaminergic actions that lead to striatal LTD. Our results suggest that stimulation of mechanisms involved in striatal synaptic plasticity is an important role for striatal nicotinic acetylcholine receptors and that these mechanisms may contribute to the enhancement of learning and habit formation produced by nicotine intake.
Collapse
|
48
|
Abstract
Several factors regulate export of mRNAs from neuronal cell bodies. Using in situ hybridization and RT-PCR, we examined how target interaction influences the distribution of mRNAs expressed in sensory neurons (SNs) of Aplysia maintained in cell culture. Interaction with a synaptic target has two effects on the distribution of mRNA encoding an SN-specific peptide, sensorin: the target affects the accumulation of sensorin mRNA at the axon hillock and the stability of sensorin mRNA exported to distal sites. Synapse formation with motor neuron L7 results in the accumulation of high levels of sensorin mRNA in the axon hillock of the SN and in SN neurites contacting L7. SNs cultured alone or in contact with motor neuron L11, with which no synapses form, show a more uniform distribution of sensorin mRNA in the cytoplasm of the SN cell body, with little expression in neurites. Contact with L7 or L11 had little or no effect on the distribution of two other mRNAs in the cytoplasm of SN cell bodies. Sensorin mRNA exported to SN neurites after 1 d in culture is more stable when the SN contacts L7 compared with SN neurites that contact L11. After removal of the SN cell body, the amounts of sensorin mRNA already exported to the neurites are greater when neurites contact L7 compared with neurites in contact with L11. The results indicate that target interaction and synapse formation regulate both the accumulations of specific mRNAs destined for export and their stability at distant sites.
Collapse
|
49
|
Fox LE, Lloyd PE. Mechanisms involved in persistent facilitation of neuromuscular synapses in aplysia. J Neurophysiol 2002; 87:2018-30. [PMID: 11929920 DOI: 10.1152/jn.00142.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic plasticity can last from a fraction of a second to weeks depending on how it was induced. The mechanisms that underlie short-, intermediate-, and long-term plasticity have been intensively studied at central synapses of both vertebrates and invertebrates; however, peripheral plasticity has not received as much attention. In this study, we investigated the mechanisms that contribute to a persistent form of plasticity at neuromuscular synapses in buccal muscle I3a of Aplysia. These synapses are reversibly facilitated by the small cardioactive peptide (SCP), a peptide cotransmitter that is intrinsic to the motor neurons, and persistently facilitated by serotonin (5HT) released from modulatory neurons that are extrinsic to the motor circuit. Many of the short-term effects of 5HT and SCP are mediated by the cAMP pathway, but little is known about the mechanisms that underlie persistent modulation. We were able to eliminate several possible mechanisms. One of these was the possibility that the apparent reversal of SCP's effects was due to desensitization of the SCP receptor. Superfusion for longer periods or with higher concentrations of SCP indicate that the SCP receptors do not desensitize. We also determined that new protein synthesis is not required for the persistent facilitation of EJPs. Another possibility was that 5HT was taken up and slowly re-released. Our results suggest that this mechanism is also unlikely. Activation of the cAMP pathway does not appear to mediate persistent effects; however, 5HT as well as SCP does cause persistent increases in cAMP levels that can prime I3a synapses and increase the effectiveness of activators of the cAMP pathway. Instead, the persistent effects of 5HT are mimicked by phorbol, suggesting that protein kinase C or an Aplysia homologue of unc13 may mediate these effects. These results, in combination with results from experiments on the sensory neurons that contribute to withdrawal reflexes in Aplysia, suggest that the mechanisms for intermediate- and long-term facilitation may reside in all of the synapses involved in the sensory to motor response reflex.
Collapse
Affiliation(s)
- Lyle E Fox
- Committee on Neurobiology and Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
50
|
Serotonin release evoked by tail nerve stimulation in the CNS of aplysia: characterization and relationship to heterosynaptic plasticity. J Neurosci 2002. [PMID: 11896169 DOI: 10.1523/jneurosci.22-06-02299.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Considerable experimental evidence suggests that serotonin (5-HT) at sensory neuron-->motor neuron (SN-->MN) synapses, as well as other neuronal sites, contributes importantly to simple forms of learning such as sensitization and classical conditioning in Aplysia. However, the actual release of 5-HT in the CNS induced by sensitizing stimuli such as tail shock has not been directly demonstrated. In this study, we addressed this question by (1) immunohistochemically labeling central 5-HT processes and (2) directly measuring with chronoamperometry the release of 5-HT induced by pedal tail nerve (P9) shock onto tail SNs in the pleural ganglion and their synapses onto tail MNs in the pedal ganglion. We found that numerous 5-HT-immunoreactive fibers surround both the SN cell bodies in the pleural ganglion and SN axons in the pedal ganglion. Chronoamperometric detection of 5-HT performed with carbon fiber electrodes implanted in the vicinity of tail SN somata and synapses revealed an electrochemical 5-HT signal lasting approximately 40 sec after a brief shock of P9. 5-HT release was restricted to discrete subregions (modulatory fields) of the CNS, including the vicinity of tail SN soma and synapses ipsilateral to the stimulation. Increasing P9 shock frequency augmented the amplitude of the 5-HT signal and, in parallel, increased SN excitability and SN synaptic transmission onto tail MNs. However, the relationship between the amount of 5-HT release and the two forms of SN plasticity was not uniform: SN excitability increased in a graded manner with increased 5-HT release, whereas synaptic facilitation exhibited a highly nonlinear relationship. The development of chronoamperometric techniques in Aplysia now paves the way for a more complete understanding of the contribution of the serotonergic modulatory pathway to memory processing in this system.
Collapse
|