1
|
Agahari FA, Stricker C. Modulation by serotonin reveals preferred recurrent excitatory connectivity in layer II of rat neocortex. Cereb Cortex 2025; 35:bhaf008. [PMID: 39937460 DOI: 10.1093/cercor/bhaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
We reported that in layer II pyramidal cells of rat somatosensory cortex, 10 μM serotonin (5-HT) alters miniature excitatory postsynaptic current frequency in a subset of cells (47%, "responders", RC; "non-responders", NC otherwise) via 5-HT2 receptors (5-HT2R) but in all pairs reduced evoked excitatory postsynaptic current amplitude by ~50% (Agahari FA, Stricker C. 2021. Serotonergic modulation of spontaneous and evoked transmitter release in layer II pyramidal cells of rat somatosensory cortex. Cereb Cortex. 31:1182-1200. https://doi.org/10.1093/cercor/bhaa285.) suggestive of preferential connectivity. We provide different lines of evidence that distinguish these subsets. First, after 5-HT exposure, changes in miniature excitatory postsynaptic current, spontaneous EPSC frequency, or whole-cell noise (σw) were restricted to postsynaptic cells in pairs (PO) and RC but absent in presynaptic (PR) and NC. Second, exposure caused a large change in holding current with a small variability in NC, but a small one with a large variability in PO/RC. In addition, ΔRin in PO/RC was larger than in PR/NC, with a negative correlation between ΔIhold and ΔRin in NC, a positive in PO, but none in RC. Third, an unbiased classifier identified most PO as RC and all PR as NC. Our data establish two distinct sets of pyramidal cells having a preferred connectivity from NC → RC. 5-HT2R-mediated modulation of transmitter release may likely reduce the signal-to-noise ratio in the ipsilateral but leave the output to the contralateral side unaffected.
Collapse
Affiliation(s)
- Fransiscus Adrian Agahari
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Ward Rd, Acton, ACT 2601, Australia
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida-Shi, Tokyo 194-8610, Japan
| | - Christian Stricker
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Ward Rd, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Jacobson K, Ellis-Davies GCR. Abraham Patchornik: The Contemporary Relevance of His Work for Chemistry and Biology. JACS AU 2025; 5:3-16. [PMID: 39886589 PMCID: PMC11775701 DOI: 10.1021/jacsau.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 02/01/2025]
Abstract
Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem. From 1952 to 1956 Patchornik completed his PhD at the (new) Weizmann Institute of Science with Ephraim Katchalski. After a postdoc at the NIH, he returned to the Weizmann in 1958, when he joined the Department of Biophysics. In 1972-1979, he became chairman of the new Department of Organic Chemistry at the Weizmann, and his own research was geared toward applying creative chemistry to solve biological problems. Patchornik passed away in his hometown of Ness Ziona in 2014. Patchornik was a conceptual leader in peptide and polymer chemistry. Given the importance of selective functional group protection for the construction of oligomeric molecules, he became interested in using "nonstandard", orthogonal chemistry for this purpose, i.e. photosensitive protecting groups (PPGs) in place of thermal reactions. It was R.B. Woodward who suggested this strategy to Patchornik in 1965, while Patchornik was on sabbatical leave at Harvard. However, it was not until Patchornik returned to the Weizmann that this idea of a versatile PPG to enable multistep synthesis was realized. Here, we provide an account of the early photosensitive protecting groups that Patchornik and co-workers developed, and the immense impact they have had on various fields. In particular, we survey the use of PPGs in live cell physiology (i.e., caged compounds), and the development of gene chips via light-directed solid-phase synthesis. Further, we highlight recent work applying new PPGs for "photochemical delivery" of drugs, otherwise termed photopharmacology. Finally, we discuss the relationship between caged compounds and how contemporary neuroscience uses genetically encoded chromophores to control cell function.
Collapse
Affiliation(s)
- Kenneth
A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes & Digestive
& Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Graham C. R. Ellis-Davies
- Department
of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
3
|
Sun X, Yazejian B, Peskoff A, Grinnell AD. Experimentally monitored calcium dynamics at synaptic active zones during neurotransmitter release in neuron-muscle cell cultures. Eur J Neurosci 2024; 59:2293-2319. [PMID: 38483240 DOI: 10.1111/ejn.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 05/08/2024]
Abstract
Ca2+-dependent K+ (BK) channels at varicosities in Xenopus nerve-muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 μM; with continued influx, [Ca2+]AZ reaches ~45-60 μM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N- and L-type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high-capacity, low-affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2-26 μM vs. ~36 μM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bruce Yazejian
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Arthur Peskoff
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alan D Grinnell
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Vandael D, Jonas P. Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal. Science 2024; 383:eadg6757. [PMID: 38452088 DOI: 10.1126/science.adg6757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.
Collapse
Affiliation(s)
- David Vandael
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Miyano R, Sakamoto H, Hirose K, Sakaba T. RIM-BP2 regulates Ca 2+ channel abundance and neurotransmitter release at hippocampal mossy fiber terminals. eLife 2024; 12:RP90799. [PMID: 38329474 PMCID: PMC10945523 DOI: 10.7554/elife.90799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming, and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 knockout (KO) mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of excitatory postsynaptic currents (EPSCs) and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.
Collapse
Affiliation(s)
- Rinako Miyano
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of TokyoBunkyo-kuJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoBunkyo-kuJapan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
6
|
Norman CA, Krishnakumar SS, Timofeeva Y, Volynski KE. The release of inhibition model reproduces kinetics and plasticity of neurotransmitter release in central synapses. Commun Biol 2023; 6:1091. [PMID: 37891212 PMCID: PMC10611806 DOI: 10.1038/s42003-023-05445-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the 'release-of-inhibition' model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.
Collapse
Affiliation(s)
- Christopher A Norman
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, CV4 7AL, UK
| | - Shyam S Krishnakumar
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurology, Yale Nanobiology Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Yulia Timofeeva
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| | - Kirill E Volynski
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Harvey SE, Lahiri S, Ganguli S. Universal energy-accuracy tradeoffs in nonequilibrium cellular sensing. Phys Rev E 2023; 108:014403. [PMID: 37583173 DOI: 10.1103/physreve.108.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 08/17/2023]
Abstract
We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if the estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming nonequilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two-state receptor. However, when the estimation is performed by a simple observer that measures the fraction of time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors as a function of energy consumption. We further derive and exploit explicit formulas to numerically estimate a Pareto-optimal tradeoff between accuracy and energy. We find this tradeoff can be achieved by nonuniform ring receptors with a number of states that necessarily increases with energy. Our results yield a thermodynamic uncertainty relation for the time a physical system spends in a pool of states and generalize the classic Berg-Purcell limit [H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977)0006-349510.1016/S0006-3495(77)85544-6] on cellular sensing along multiple dimensions.
Collapse
Affiliation(s)
- Sarah E Harvey
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Subhaneil Lahiri
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
9
|
Cook DC, Ryan TA. GABA BR silencing of nerve terminals. eLife 2023; 12:e83530. [PMID: 37014052 PMCID: PMC10115440 DOI: 10.7554/elife.83530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Control of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca2+) influx in the active zone. Here, using quantitative analysis of both single bouton Ca2+ influx and exocytosis, we uncovered an unexpected non-linear relationship between the magnitude of action potential driven Ca2+ influx and the concentration of external Ca2+ ([Ca2+]e). We find that this unexpected relationship is leveraged by GPCR signaling when operating at the nominal physiological set point for [Ca2+]e, 1.2 mM, to achieve complete silencing of nerve terminals. These data imply that the information throughput in neural circuits can be readily modulated in an all-or-none fashion at the single synapse level when operating at the physiological set point.
Collapse
Affiliation(s)
- Daniel C Cook
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Timothy A Ryan
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
- Department of Biochemistry, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
10
|
Wang ZW, Trussell LO, Vedantham K. Regulation of Neurotransmitter Release by K + Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:305-331. [PMID: 37615872 DOI: 10.1007/978-3-031-34229-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
11
|
Wang ZW, Riaz S, Niu L. Roles and Sources of Calcium in Synaptic Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:139-170. [PMID: 37615866 DOI: 10.1007/978-3-031-34229-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
12
|
Zhang W, Jiang HH, Luo F. Diverse organization of voltage-gated calcium channels at presynaptic active zones. Front Synaptic Neurosci 2022; 14:1023256. [PMID: 36544543 PMCID: PMC9760684 DOI: 10.3389/fnsyn.2022.1023256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Synapses are highly organized but are also highly diverse in their organization and properties to allow for optimizing the computing power of brain circuits. Along these lines, voltage-gated calcium (CaV) channels at the presynaptic active zone are heterogeneously organized, which creates a variety of calcium dynamics profiles that can shape neurotransmitter release properties of individual synapses. Extensive studies have revealed striking diversity in the subtype, number, and distribution of CaV channels, as well as the nanoscale topographic relationships to docked synaptic vesicles. Further, multi-protein complexes including RIMs, RIM-binding proteins, CAST/ELKS, and neurexins are required for coordinating the diverse organization of CaV channels at the presynaptic active zone. In this review, we highlight major advances in the studies of the functional organization of presynaptic CaV channels and discuss their physiological implications for synaptic transmission and short-term plasticity.
Collapse
Affiliation(s)
- Weijia Zhang
- Guangzhou Laboratory, Guangzhou, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - He-Hai Jiang
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China
| | - Fujun Luo
- Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory, Guangzhou, China,*Correspondence: Fujun Luo
| |
Collapse
|
13
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Linne ML, Aćimović J, Saudargiene A, Manninen T. Neuron-Glia Interactions and Brain Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:87-103. [PMID: 35471536 DOI: 10.1007/978-3-030-89439-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent evidence suggests that glial cells take an active role in a number of brain functions that were previously attributed solely to neurons. For example, astrocytes, one type of glial cells, have been shown to promote coordinated activation of neuronal networks, modulate sensory-evoked neuronal network activity, and influence brain state transitions during development. This reinforces the idea that astrocytes not only provide the "housekeeping" for the neurons, but that they also play a vital role in supporting and expanding the functions of brain circuits and networks. Despite this accumulated knowledge, the field of computational neuroscience has mostly focused on modeling neuronal functions, ignoring the glial cells and the interactions they have with the neurons. In this chapter, we introduce the biology of neuron-glia interactions, summarize the existing computational models and tools, and emphasize the glial properties that may be important in modeling brain functions in the future.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Kourosh-Arami M, Kaeidi A, Semnanian S. Extracellular Calcium Contributes to Orexin-Induced Postsynaptic Excitation of the Rat Locus Coeruleus Neurons. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Pinky PD, Pfitzer JC, Senfeld J, Hong H, Bhattacharya S, Suppiramaniam V, Qureshi I, Reed MN. Recent Insights on Glutamatergic Dysfunction in Alzheimer's Disease and Therapeutic Implications. Neuroscientist 2022:10738584211069897. [PMID: 35073787 DOI: 10.1177/10738584211069897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) poses a critical public health challenge, and there is an urgent need for novel treatment options. Glutamate, the principal excitatory neurotransmitter in the human brain, plays a critical role in mediating cognitive and behavioral functions; and clinical symptoms in AD patients are highly correlated with the loss of glutamatergic synapses. In this review, we highlight how dysregulated glutamatergic mechanisms can underpin cognitive and behavioral impairments and contribute to the progression of AD via complex interactions with neuronal and neural network hyperactivity, Aβ, tau, glial dysfunction, and other disease-associated factors. We focus on the tripartite synapse, where glutamatergic neurotransmission occurs, and evidence elucidating how the tripartite synapse can be pathologically altered in AD. We also discuss promising therapeutic approaches that have the potential to rescue these deficits. These emerging data support the development of novel glutamatergic drug candidates as compelling approaches for treating AD.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jeremiah C Pfitzer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jared Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | | | - Miranda N Reed
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
17
|
Abstract
Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly diverse synapses onto a single master curve. This universality is complemented by the capacity of the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that uniquely identify each synapse. The theory provides a means to detect cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing data sets. The theory is further applied to establish connections between molecular constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off relation between the transmission rate and fidelity shows how transmission failure can be controlled by changing the microscopic properties of the vesicle pool and SNARE complexes. The established condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of synapses are crucial determinants of the computational and information-processing functions in synaptic transmission.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Olga K Dudko
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
18
|
Eshra A, Schmidt H, Eilers J, Hallermann S. Calcium dependence of neurotransmitter release at a high fidelity synapse. eLife 2021; 10:70408. [PMID: 34612812 PMCID: PMC8494478 DOI: 10.7554/elife.70408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
The Ca2+-dependence of the priming, fusion, and replenishment of synaptic vesicles are fundamental parameters controlling neurotransmitter release and synaptic plasticity. Despite intense efforts, these important steps in the synaptic vesicles’ cycle remain poorly understood due to the technical challenge in disentangling vesicle priming, fusion, and replenishment. Here, we investigated the Ca2+-sensitivity of these steps at mossy fiber synapses in the rodent cerebellum, which are characterized by fast vesicle replenishment mediating high-frequency signaling. We found that the basal free Ca2+ concentration (<200 nM) critically controls action potential-evoked release, indicating a high-affinity Ca2+ sensor for vesicle priming. Ca2+ uncaging experiments revealed a surprisingly shallow and non-saturating relationship between release rate and intracellular Ca2+ concentration up to 50 μM. The rate of vesicle replenishment during sustained elevated intracellular Ca2+ concentration exhibited little Ca2+-dependence. Finally, quantitative mechanistic release schemes with five Ca2+ binding steps incorporating rapid vesicle replenishment via parallel or sequential vesicle pools could explain our data. We thus show that co-existing high- and low-affinity Ca2+ sensors mediate priming, fusion, and replenishment of synaptic vesicles at a high-fidelity synapse.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Rapid Ca 2+ channel accumulation contributes to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 2021; 118:2016754118. [PMID: 33622791 DOI: 10.1073/pnas.2016754118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent potentiation of neurotransmitter release is important for higher brain functions such as learning and memory. To reveal the underlying mechanisms, we applied paired pre- and postsynaptic recordings from hippocampal mossy fiber-CA3 synapses. Ca2+ uncaging experiments did not reveal changes in the intracellular Ca2+ sensitivity for transmitter release by cAMP, but suggested an increase in the local Ca2+ concentration at the release site, which was much lower than that of other synapses before potentiation. Total internal reflection fluorescence (TIRF) microscopy indicated a clear increase in the local Ca2+ concentration at the release site within 5 to 10 min, suggesting that the increase in local Ca2+ is explained by the simple mechanism of rapid Ca2+ channel accumulation. Consistently, two-dimensional time-gated stimulated emission depletion microscopy (gSTED) microscopy showed an increase in the P/Q-type Ca2+ channel cluster size near the release sites. Taken together, this study suggests a potential mechanism for the cAMP-dependent increase in transmission at hippocampal mossy fiber-CA3 synapses, namely an accumulation of active zone Ca2+ channels.
Collapse
|
20
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
21
|
Vandael D, Okamoto Y, Borges-Merjane C, Vargas-Barroso V, Suter BA, Jonas P. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nat Protoc 2021; 16:2947-2967. [PMID: 33990799 DOI: 10.1038/s41596-021-00526-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre-postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.
Collapse
Affiliation(s)
- David Vandael
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Yuji Okamoto
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Benjamin A Suter
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.
| |
Collapse
|
22
|
Distinct functional developments of surviving and eliminated presynaptic terminals. Proc Natl Acad Sci U S A 2021; 118:2022423118. [PMID: 33688051 DOI: 10.1073/pnas.2022423118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For neuronal circuits in the brain to mature, necessary synapses must be maintained and redundant synapses eliminated through experience-dependent mechanisms. However, the functional differentiation of these synapse types during the refinement process remains elusive. Here, we addressed this issue by distinct labeling and direct recordings of presynaptic terminals fated for survival and for elimination in the somatosensory thalamus. At surviving terminals, the number of total releasable vesicles was first enlarged, and then calcium channels and fast-releasing synaptic vesicles were tightly coupled in an experience-dependent manner. By contrast, transmitter release mechanisms did not mature at terminals fated for elimination, irrespective of sensory experience. Nonetheless, terminals fated for survival and for elimination both exhibited developmental shortening of action potential waveforms that was experience independent. Thus, we dissected experience-dependent and -independent developmental maturation processes of surviving and eliminated presynaptic terminals during neuronal circuit refinement.
Collapse
|
23
|
Reva M, DiGregorio DA, Grebenkov DS. A first-passage approach to diffusion-influenced reversible binding and its insights into nanoscale signaling at the presynapse. Sci Rep 2021; 11:5377. [PMID: 33686123 PMCID: PMC7940439 DOI: 10.1038/s41598-021-84340-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission between neurons is governed by a cascade of stochastic calcium ion reaction–diffusion events within nerve terminals leading to vesicular release of neurotransmitter. Since experimental measurements of such systems are challenging due to their nanometer and sub-millisecond scale, numerical simulations remain the principal tool for studying calcium-dependent neurotransmitter release driven by electrical impulses, despite the limitations of time-consuming calculations. In this paper, we develop an analytical solution to rapidly explore dynamical stochastic reaction–diffusion problems based on first-passage times. This is the first analytical model that accounts simultaneously for relevant statistical features of calcium ion diffusion, buffering, and its binding/unbinding reaction with a calcium sensor for synaptic vesicle fusion. In particular, unbinding kinetics are shown to have a major impact on submillisecond sensor occupancy probability and therefore cannot be neglected. Using Monte Carlo simulations we validated our analytical solution for instantaneous calcium influx and that through voltage-gated calcium channels. We present a fast and rigorous analytical tool that permits a systematic exploration of the influence of various biophysical parameters on molecular interactions within cells, and which can serve as a building block for more general cell signaling simulators.
Collapse
Affiliation(s)
- Maria Reva
- Unit of Synapse and Circuit Dynamics, CNRS UMR 3571, Institut Pasteur, Paris, France.,ED3C, Sorbonne University, Paris, France
| | - David A DiGregorio
- Unit of Synapse and Circuit Dynamics, CNRS UMR 3571, Institut Pasteur, Paris, France.
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
24
|
Tyurikova O, Zheng K, Nicholson E, Timofeeva Y, Semyanov A, Volynski KE, Rusakov DA. Fluorescence lifetime imaging reveals regulation of presynaptic Ca 2+ by glutamate uptake and mGluRs, but not somatic voltage in cortical neurons. J Neurochem 2021; 156:48-58. [PMID: 32418206 PMCID: PMC8436763 DOI: 10.1111/jnc.15094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Brain function relies on vesicular release of neurotransmitters at chemical synapses. The release probability depends on action potential-evoked presynaptic Ca2+ entry, but also on the resting Ca2+ level. Whether these basic aspects of presynaptic calcium homeostasis show any consistent trend along the axonal path, and how they are controlled by local network activity, remains poorly understood. Here, we take advantage of the recently advanced FLIM-based method to monitor presynaptic Ca2+ with nanomolar sensitivity. We find that, in cortical pyramidal neurons, action potential-evoked calcium entry (range 10-300 nM), but not the resting Ca2+ level (range 10-100 nM), tends to increase with higher order of axonal branches. Blocking astroglial glutamate uptake reduces evoked Ca2+ entry but has little effect on resting Ca2+ whereas both appear boosted by the constitutive activation of group 1/2 metabotropic glutamate receptors. We find no consistent effect of transient somatic depolarization or hyperpolarization on presynaptic Ca2+ entry or its basal level. The results unveil some key aspects of presynaptic machinery in cortical circuits, shedding light on basic principles of synaptic connectivity in the brain.
Collapse
Affiliation(s)
- Olga Tyurikova
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Kaiyu Zheng
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Yulia Timofeeva
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Computer Science, Centre for Complexity Science, University of WarwickCoventryUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Dmitri A. Rusakov
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
25
|
Popek M, Bobula B, Sowa J, Hess G, Frontczak-Baniewicz M, Albrecht J, Zielińska M. Physiology and Morphological Correlates of Excitatory Transmission are Preserved in Glutamine Transporter SN1-Depleted Mouse Frontal Cortex. Neuroscience 2020; 446:124-136. [DOI: 10.1016/j.neuroscience.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
|
26
|
López-Murcia FJ, Reim K, Jahn O, Taschenberger H, Brose N. Acute Complexin Knockout Abates Spontaneous and Evoked Transmitter Release. Cell Rep 2020; 26:2521-2530.e5. [PMID: 30840877 DOI: 10.1016/j.celrep.2019.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative "fusion clamp"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause "unclamping" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for "fusion clamping" in mammalian forebrain neurons.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| |
Collapse
|
27
|
Malagon G, Miki T, Tran V, Gomez LC, Marty A. Incomplete vesicular docking limits synaptic strength under high release probability conditions. eLife 2020; 9:e52137. [PMID: 32228859 PMCID: PMC7136020 DOI: 10.7554/elife.52137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 01/17/2023] Open
Abstract
Central mammalian synapses release synaptic vesicles in dedicated structures called docking/release sites. It has been assumed that when voltage-dependent calcium entry is sufficiently large, synaptic output attains a maximum value of one synaptic vesicle per action potential and per site. Here we use deconvolution to count synaptic vesicle output at single sites (mean site number per synapse: 3.6). When increasing calcium entry with tetraethylammonium in 1.5 mM external calcium concentration, we find that synaptic output saturates at 0.22 vesicle per site, not at 1 vesicle per site. Fitting the results with current models of calcium-dependent exocytosis indicates that the 0.22 vesicle limit reflects the probability of docking sites to be occupied by synaptic vesicles at rest, as only docked vesicles can be released. With 3 mM external calcium, the maximum output per site increases to 0.47, indicating an increase in docking site occupancy as a function of external calcium concentration.
Collapse
Affiliation(s)
- Gerardo Malagon
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
- Department of Cell Biology and Physiology, Washington UniversitySt. LouisUnited States
| | - Takafumi Miki
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Laura C Gomez
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| |
Collapse
|
28
|
Kobbersmed JR, Grasskamp AT, Jusyte M, Böhme MA, Ditlevsen S, Sørensen JB, Walter AM. Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca 2+ channel distances. eLife 2020; 9:51032. [PMID: 32077852 PMCID: PMC7145420 DOI: 10.7554/elife.51032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Chemical synaptic transmission relies on the Ca2+-induced fusion of transmitter-laden vesicles whose coupling distance to Ca2+ channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the Drosophila neuromuscular junction we quantitatively map vesicle:Ca2+ channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca2+-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms. Cells in the nervous system of all animals communicate by releasing and sensing chemicals at contact points named synapses. The ‘talking’ (or pre-synaptic) cell stores the chemicals close to the synapse, in small spheres called vesicles. When the cell is activated, calcium ions flow in and interact with the release-ready vesicles, which then spill the chemicals into the synapse. In turn, the ‘listening’ (or post-synaptic) cell can detect the chemicals and react accordingly. When the pre-synaptic cell is activated many times in a short period, it can release a greater quantity of chemicals, allowing a bigger reaction in the post-synaptic cell. This phenomenon is known as facilitation, but it is still unclear how exactly it can take place. This is especially the case when many of the vesicles are not ready to respond, for example when they are too far from where calcium flows into the cell. Computer simulations have been created to model facilitation but they have assumed that all vesicles are placed at the same distance to the calcium entry point: Kobbersmed et al. now provide evidence that this assumption is incorrect. Two high-resolution imaging techniques were used to measure the actual distances between the vesicles and the calcium source in the pre-synaptic cells of fruit flies: this showed that these distances are quite variable – some vesicles sit much closer to the source than others. This information was then used to create a new computer model to simulate facilitation. The results from this computing work led Kobbersmed et al. to suggest that facilitation may take place because a calcium-based mechanism in the cell increases the number of vesicles ready to release their chemicals. This new model may help researchers to better understand how the cells in the nervous system work. Ultimately, this can guide experiments to investigate what happens when information processing at synapses breaks down, for example in diseases such as epilepsy.
Collapse
Affiliation(s)
- Janus Rl Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark.,Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Andreas T Grasskamp
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Meida Jusyte
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| | - Mathias A Böhme
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark
| | | | - Alexander M Walter
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| |
Collapse
|
29
|
Ge D, Noakes PG, Lavidis NA. What are Neurotransmitter Release Sites and Do They Interact? Neuroscience 2020; 425:157-168. [DOI: 10.1016/j.neuroscience.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
|
30
|
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat Commun 2019; 10:3904. [PMID: 31467284 PMCID: PMC6715626 DOI: 10.1038/s41467-019-11873-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.
Collapse
|
31
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
32
|
Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, Krishnakumar SS. Structural basis for the clamping and Ca 2+ activation of SNARE-mediated fusion by synaptotagmin. Nat Commun 2019; 10:2413. [PMID: 31160571 PMCID: PMC6546687 DOI: 10.1038/s41467-019-10391-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the 'primary' interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1-SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.
Collapse
Affiliation(s)
- Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jing Wang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London, WC1 3BG, UK.
| |
Collapse
|
33
|
Zbili M, Debanne D. Past and Future of Analog-Digital Modulation of Synaptic Transmission. Front Cell Neurosci 2019; 13:160. [PMID: 31105529 PMCID: PMC6492051 DOI: 10.3389/fncel.2019.00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Action potentials (APs) are generally produced in response to complex summation of excitatory and inhibitory synaptic inputs. While it is usually considered as a digital event, both the amplitude and width of the AP are significantly impacted by the context of its emission. In particular, the analog variations in subthreshold membrane potential determine the spike waveform and subsequently affect synaptic strength, leading to the so-called analog-digital modulation of synaptic transmission. We review here the numerous evidence suggesting context-dependent modulation of spike waveform, the discovery analog-digital modulation of synaptic transmission in invertebrates and its recent validation in mammals. We discuss the potential roles of analog-digital transmission in the physiology of neural networks.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR 1072, INSERM AMU, Marseille, France.,CRNL, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France
| | | |
Collapse
|
34
|
Bornschein G, Schmidt H. Synaptotagmin Ca 2+ Sensors and Their Spatial Coupling to Presynaptic Ca v Channels in Central Cortical Synapses. Front Mol Neurosci 2019; 11:494. [PMID: 30697148 PMCID: PMC6341215 DOI: 10.3389/fnmol.2018.00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Ca2+ concentrations drop rapidly over a distance of a few tens of nanometers from an open voltage-gated Ca2+ channel (Cav), thereby, generating a spatially steep and temporally short-lived Ca2+ gradient that triggers exocytosis of a neurotransmitter filled synaptic vesicle. These non-steady state conditions make the Ca2+-binding kinetics of the Ca2+ sensors for release and their spatial coupling to the Cavs important parameters of synaptic efficacy. In the mammalian central nervous system, the main release sensors linking action potential mediated Ca2+ influx to synchronous release are Synaptotagmin (Syt) 1 and 2. We review here quantitative work focusing on the Ca2+ kinetics of Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated release. In addition to triggering release, Ca2+ remaining bound to Syt after the first of two successive high-frequency activations was found to be capable of facilitating release during the second activation. More recently, the Ca2+ sensor Syt7 was identified as additional facilitation sensor. We further review how several recent functional studies provided quantitative insights into the spatial topographical relationships between Syts and Cavs and identified mechanisms regulating the sensor-to-channel coupling distances at presynaptic active zones. Most synapses analyzed in matured cortical structures were found to operate at tight, nanodomain coupling. For fast signaling synapses a developmental switch from loose, microdomain to tight, nanodomain coupling was found. The protein Septin5 has been known for some time as a developmentally down-regulated “inhibitor” of tight coupling, while Munc13-3 was found only recently to function as a developmentally up-regulated mediator of tight coupling. On the other hand, a highly plastic synapse was found to operate at loose coupling in the matured hippocampus. Together these findings suggest that the coupling topography and its regulation is a specificity of the type of synapse. However, to definitely draw such conclusion our knowledge of functional active zone topographies of different types of synapses in different areas of the mammalian brain is too incomplete.
Collapse
Affiliation(s)
- Grit Bornschein
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
|
36
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
37
|
The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Hear Res 2018; 376:33-46. [PMID: 30606624 DOI: 10.1016/j.heares.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.
Collapse
|
38
|
Lübbert M, Goral RO, Keine C, Thomas C, Guerrero-Given D, Putzke T, Satterfield R, Kamasawa N, Young SM. Ca V2.1 α 1 Subunit Expression Regulates Presynaptic Ca V2.1 Abundance and Synaptic Strength at a Central Synapse. Neuron 2018; 101:260-273.e6. [PMID: 30545599 DOI: 10.1016/j.neuron.2018.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The abundance of presynaptic CaV2 voltage-gated Ca2+ channels (CaV2) at mammalian active zones (AZs) regulates the efficacy of synaptic transmission. It is proposed that presynaptic CaV2 levels are saturated in AZs due to a finite number of slots that set CaV2 subtype abundance and that CaV2.1 cannot compete for CaV2.2 slots. However, at most AZs, CaV2.1 levels are highest and CaV2.2 levels are developmentally reduced. To investigate CaV2.1 saturation states and preference in AZs, we overexpressed the CaV2.1 and CaV2.2 α1 subunits at the calyx of Held at immature and mature developmental stages. We found that AZs prefer CaV2.1 to CaV2.2. Remarkably, CaV2.1 α1 subunit overexpression drove increased CaV2.1 currents and channel numbers and increased synaptic strength at both developmental stages examined. Therefore, we propose that CaV2.1 levels in the AZ are not saturated and that synaptic strength can be modulated by increasing CaV2.1 levels to regulate neuronal circuit output. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Matthias Lübbert
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - R Oliver Goral
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Christian Keine
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Connon Thomas
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Debbie Guerrero-Given
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Rachel Satterfield
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Samuel M Young
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, Iowa Neuroscience Institute, Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Two-component latency distributions indicate two-step vesicular release at simple glutamatergic synapses. Nat Commun 2018; 9:3943. [PMID: 30258069 PMCID: PMC6158186 DOI: 10.1038/s41467-018-06336-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023] Open
Abstract
It is often assumed that only stably docked synaptic vesicles can fuse following presynaptic action potential stimulation. However, during action potential trains docking sites are increasingly depleted, raising the question of the source of synaptic vesicles during sustained release. We have recently developed methods to reliably measure release latencies during high frequency trains at single synapses between parallel fibers and molecular layer interneurons. The latency distribution exhibits a single fast component at train onset but contains both a fast and a slow component later in the train. The contribution of the slow component increases with stimulation frequency and with release probability and decreases when blocking the docking step with latrunculin. These results suggest that the slow component reflects sequential docking and release in immediate succession. The transition from fast to slow component, as well as a later transition to asynchronous release, appear as successive adaptations of the synapse to maintain fidelity at the expense of time accuracy.
Collapse
|
40
|
Katti S, Her B, Srivastava AK, Taylor AB, Lockless SW, Igumenova TI. High affinity interactions of Pb 2+ with synaptotagmin I. Metallomics 2018; 10:1211-1222. [PMID: 30063057 DOI: 10.1039/c8mt00135a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lead (Pb) is a potent neurotoxin that disrupts synaptic neurotransmission. We report that Synaptotagmin I (SytI), a key regulator of Ca2+-evoked neurotransmitter release, has two high-affinity Pb2+ binding sites that belong to its cytosolic C2A and C2B domains. The crystal structures of Pb2+-complexed C2 domains revealed that protein-bound Pb2+ ions have holodirected coordination geometries and all-oxygen coordination spheres. The on-rate constants of Pb2+ binding to the C2 domains of SytI are comparable to those of Ca2+ and are diffusion-limited. In contrast, the off-rate constants are at least two orders of magnitude smaller, indicating that Pb2+ can serve as both a thermodynamic and kinetic trap for the C2 domains. We demonstrate, using NMR spectroscopy, that population of these sites by Pb2+ ions inhibits further Ca2+ binding despite the existing coordination vacancies. Our work offers a unique insight into the bioinorganic chemistry of Pb(ii) and suggests a mechanism by which low concentrations of Pb2+ ions can interfere with the Ca2+-dependent function of SytI in the cell.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hao L, Yang Z, Gong P, Lei J. Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression. Cogn Neurodyn 2018; 12:403-416. [PMID: 30137877 DOI: 10.1007/s11571-018-9479-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 12/28/2022] Open
Abstract
Experiments have demonstrated that in mice, the PVT strongly projects to the CeL and participates in the formation of fear memories by synaptic potentiation in the amygdala. Herein, we propose a mathematical model based on a positive feedback loop of BDNF expression and signaling to investigate PVT manipulation of synaptic potentiation. The model is validated by comparisons with experimental observations. We find that a high postsynaptic firing frequency after stimulation is induced by presynaptic Ca2+ when the rates of BDNF secretion from PVT and LA neurons to the CeL are above a threshold value. Moreover, the positive feedback of postsynaptic BDNF production is important for the maintenance of the high excitability of the SOM+ CeL neuron after stimulation. The model brings insight into the underlying mechanisms of PVT modulation of synaptic potentiation at LA-CeL synapses and provides a framework of understanding other similar processes associated with synaptic plasticity.
Collapse
Affiliation(s)
- Lijie Hao
- 1School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191 China
| | - Zhuoqin Yang
- 1School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191 China.,2School of Physics, University of Sydney, Sydney, NSW 2006 Australia
| | - Pulin Gong
- 2School of Physics, University of Sydney, Sydney, NSW 2006 Australia
| | - Jinzhi Lei
- 3Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
42
|
Nunes D, Kuner T. Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination. PLoS Biol 2018; 16:e2003816. [PMID: 30125271 PMCID: PMC6117082 DOI: 10.1371/journal.pbio.2003816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrodendritic synaptic interactions between olfactory bulb mitral and granule cells represent a key neuronal mechanism of odor discrimination. Dendritic release of gamma-aminobutyric acid (GABA) from granule cells contributes to stimulus-dependent, rapid, and accurate odor discrimination, yet the physiological mechanisms governing this release and its behavioral relevance are unknown. Here, we show that granule cells express the voltage-gated sodium channel α-subunit NaV1.2 in clusters distributed throughout the cell surface including dendritic spines. Deletion of NaV1.2 in granule cells abolished spiking and GABA release as well as inhibition of synaptically connected mitral cells (MCs). As a consequence, mice required more time to discriminate highly similar odorant mixtures, while odor discrimination learning remained unaffected. In conclusion, we show that expression of NaV1.2 in granule cells is crucial for physiological dendritic GABA release and rapid discrimination of similar odorants with high accuracy. Hence, our data indicate that neurotransmitter-releasing dendritic spines function just like axon terminals. In axonal nerve terminals, neurotransmitter release is triggered by a localized Ca2+ nanodomain generated by voltage-gated calcium channels in response to an action potential, which in turn is mediated by voltage-gated sodium channels. Dendritic neurotransmitter release has been thought to work differently, mainly depending on Ca2+ entering directly through N-methyl-D-aspartate (NMDA) receptors, a subtype of ligand-gated ion channel. To further investigate how dendritic neurotransmitter is released, we studied granule cells in the olfactory bulb of mice, which establish inhibitory dendrodendritic synapses with mitral cells. We show that granule cells express voltage-gated sodium channels predominantly localized in dendrites and spines. Down-regulation of these channels precludes action potential firing in granule cells and strongly reduces mitral cell inhibition. Behaviorally, these mice require more time to discriminate highly similar odorants at maximal accuracy. Therefore, the inhibition of mitral cells relies on neurotransmitter released from the dendrites of granule cells by a mechanism that resembles axonal neurotransmitter release much more than previously thought.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| | - Thomas Kuner
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| |
Collapse
|
43
|
Synergistic control of neurotransmitter release by different members of the synaptotagmin family. Curr Opin Neurobiol 2018; 51:154-162. [DOI: 10.1016/j.conb.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
|
44
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
45
|
Tran V, Stricker C. Diffusion of Ca 2+ from Small Boutons en Passant into the Axon Shapes AP-Evoked Ca 2+ Transients. Biophys J 2018; 115:1344-1356. [PMID: 30103908 DOI: 10.1016/j.bpj.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023] Open
Abstract
Not only the amplitude but also the time course of a presynaptic Ca2+ transient determine multiple aspects of synaptic transmission. In small bouton-type synapses, the mechanisms underlying the Ca2+ decay kinetics have not been fully investigated. Here, factors that shape an action-potential-evoked Ca2+ transient were quantitatively studied in synaptic boutons of neocortical layer 5 pyramidal neurons. Ca2+ transients were measured with different concentrations of fluorescent Ca2+ indicators and analyzed based on a single-compartment model. We found a small endogenous Ca2+-binding ratio (7 ± 2) and a high activity of Ca2+ transporters (0.64 ± 0.03 ms-1), both of which enable rapid clearance of Ca2+ from the boutons. However, contrary to predictions of the single-compartment model, the decay time course of the measured Ca2+ transients was biexponential and became prolonged during repetitive stimulation. Measurements of [Ca2+]i along the adjoining axon, together with an experimentally constrained model, showed that the initial fast decay of the Ca2+ transients predominantly arose from the diffusion of Ca2+ from the boutons into the axon. Therefore, for small boutons en passant, factors like terminal volume, axon diameter, and the concentration of mobile Ca2+-binding molecules are critical determinants of Ca2+ dynamics and thus Ca2+-dependent processes, including short-term synaptic plasticity.
Collapse
Affiliation(s)
- Van Tran
- Eccles Institute of Neuroscience, JCSMR.
| | - Christian Stricker
- Eccles Institute of Neuroscience, JCSMR; ANU Medical School, ANU, Acton, Australian Capital Territory, Australia
| |
Collapse
|
46
|
An improved measurement of the Ca2+-binding affinity of fluorescent Ca2+ indicators. Cell Calcium 2018; 71:86-94. [DOI: 10.1016/j.ceca.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 01/18/2023]
|
47
|
Lou X. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling. Front Cell Neurosci 2018; 12:66. [PMID: 29593500 PMCID: PMC5861208 DOI: 10.3389/fncel.2018.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.
Collapse
Affiliation(s)
- Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
48
|
Abstract
According to a broad range of research, opioids consumption can lead to pathological memory formation. Experimental observations suggested that hippocampal glutamatergic synapses play an indispensable role in forming such a pathological memory. It has been suggested that memory formation at the synaptic level is developed through LTP induction. Here, we attempt to computationally indicate how morphine induces pathological LTP at hippocampal CA3-CA1 synapses. Then, based on simulations, we will suggest how one can prevent this type of pathological LTP. To this purpose, a detailed computational model is presented, which consists of one pyramidal neuron and one interneuron both from CA3, one CA1 pyramidal neuron, and one astrocyte. Based on experimental findings morphine affects the hippocampal neurons in three primary ways: 1) disinhibitory mechanism of interneurons in CA3, 2) enhancement of NMDARs current by μ Opioid Receptor (μOR) activation and 3) by attenuation of astrocytic glutamate reuptake ability. By utilizing these effects, simulations were implemented. Our results indicate that morphine can induce LTP by all aforementioned possible mechanisms. Based on our simulation results, attenuation of pathologic LTP achieved mainly by stimulation of astrocytic glutamate transporters, down-regulation of the astrocytic metabotropic glutamate receptors (mGlurs) or by applying NMDAR’s antagonist. Based on our observations, we suggest that astrocyte has a dominant role in forming addiction-related memories. This finding may help researchers in exploring drug actions for preventing relapse.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
- * E-mail:
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
50
|
Pulido C, Marty A. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Physiol Rev 2017; 97:1403-1430. [DOI: 10.1152/physrev.00032.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at “reactive sites” where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| |
Collapse
|