1
|
Minnick MF. Functional Roles and Genomic Impact of Miniature Inverted-Repeat Transposable Elements (MITEs) in Prokaryotes. Genes (Basel) 2024; 15:328. [PMID: 38540387 PMCID: PMC10969869 DOI: 10.3390/genes15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.
Collapse
Affiliation(s)
- Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Kienzle L, Bettinazzi S, Choquette T, Brunet M, Khorami HH, Jacques JF, Moreau M, Roucou X, Landry CR, Angers A, Breton S. A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics. BMC Biol 2023; 21:111. [PMID: 37198654 DOI: 10.1186/s12915-023-01609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Collapse
Affiliation(s)
- Laura Kienzle
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marie Brunet
- Service de génétique médicale, Département de pédiatrie, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | | | - Jean-François Jacques
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathilde Moreau
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
3
|
Gauthier DT, Karpathy SE, Grizzard SL, Batra D, Rowe LA, Paddock CD. Characterization of a novel transitional group Rickettsia species ( Rickettsia tillamookensis sp. nov.) from the western black-legged tick, Ixodes pacificus. Int J Syst Evol Microbiol 2021; 71. [PMID: 34214027 DOI: 10.1099/ijsem.0.004880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previously unrecognized Rickettsia species was isolated in 1976 from a pool of Ixodes pacificus ticks collected in 1967 from Tillamook County, Oregon, USA. The isolate produced low fever and mild scrotal oedema following intraperitoneal injection into male guinea pigs (Cavia porcellus). Subsequent serotyping characterized this isolate as distinct from recognized typhus and spotted fever group Rickettsia species; nonetheless, the isolate remained unevaluated by molecular techniques and was not identified to species level for the subsequent 30 years. Ixodes pacificus is the most frequently identified human-biting tick in the western United States, and as such, formal identification and characterization of this potentially pathogenic Rickettsia species is warranted. Whole-genome sequencing of the Tillamook isolate revealed a genome 1.43 Mbp in size with 32.4 mol% G+C content. Maximum-likelihood phylogeny of core proteins places it in the transitional group of Rickettsia basal to both Rickettsia felis and Rickettsia asembonensis. It is distinct from existing named species, with maximum average nucleotide identity of 95.1% to R. asembonensis and maximum digital DNA-DNA hybridization score similarity to R. felis at 80.1%. The closest similarity at the 16S rRNA gene (97.9%) and sca4 (97.5%/97.6% respectively) is to Candidatus 'Rickettsia senegalensis' and Rickettsia sp. cf9, both isolated from cat fleas (Ctenocephalides felis). We characterized growth at various temperatures and in multiple cell lines. The Tillamook isolate grows aerobically in Vero E6, RF/6A and DH82 cells, and growth is rapid at 28 °C and 32 °C. Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23. Strain Tillamook 23 is available from the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (WDCM 1093), Atlanta, GA, USA (CRIRC accession number RTI001T) and the Collection de Souches de l'Unité des Rickettsies (WDCM 875), Marseille, France (CSUR accession number R5043). Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23 (=CRIRC RTI001=R5043).
Collapse
Affiliation(s)
- David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, 30329, USA
| | - Stephanie L Grizzard
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, 30329, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, 30329, USA
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, 30329, USA
| |
Collapse
|
4
|
Coimbra-Dores MJ, Jaarsma RI, Carmo AO, Maia-Silva M, Fonville M, da Costa DFF, Brandão RML, Azevedo F, Casero M, Oliveira AC, Afonso SMDS, Sprong H, Rosa F, Dias D. Mitochondrial sequences of Rhipicephalus and Coxiella endosymbiont reveal evidence of lineages co-cladogenesis. FEMS Microbiol Ecol 2020; 96:5824628. [PMID: 32329790 DOI: 10.1093/femsec/fiaa072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Rhipicephalus ticks are competent vectors of several pathogens, such as Spotted Fever Group Rickettsiae (SFGR) and many Babesia species. Within this genus, different R. sanguineus s.l. lineages show an unequal vector competence and resistance regarding some pathogenic strains. Current literature supports that tick endosymbionts may play an essential role in the transmission ability of a vector. Indeed, the microbial community of Rhipicephalus seems to be dominated by Coxiella-like endosymbionts (CLE). Still, their co-evolutionary associations with the complicated phylogeny of Rhipicephalus lineages and their transmissible pathogens remain unclear. We performed a phylogenetic congruence analysis to address whether divergent R. sanguineus s.l. lineages had a different symbiont composition. For that, we applied a PCR based approach to screen part of the microbial community present in 279 Rhipicephalus ticks from the Iberian Peninsula and Africa. Our analyses detected several qPCR-positive signals for both SFGR and Babesia species, of which we suggest R. sanguineus-tropical lineage as a natural vector of Babesia vogeli and R. sanguineus-temperate lineage of SFGR. The acquisition of 190 CLE sequences allowed to evaluate co-phylogenetic associations between the tick and the symbiont. With this data, we observed a strong but incomplete co-cladogenesis between CLE strains and their Rhipicephalus tick lineages hosts.
Collapse
Affiliation(s)
- Maria João Coimbra-Dores
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ryanne Isolde Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Anderson Oliveira Carmo
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Maia-Silva
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manoj Fonville
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | | | - Ricardo Manuel Lemos Brandão
- Wild Animal Ecology, Rehabilitation and Surveillance Center (CERVAS), Serra da Estrela Natural Park, 6290-909 Gouveia, Portugal
| | - Fábia Azevedo
- Wildlife Rehabilitation and Investigation Center (RIAS), Ria Formosa Natural Park, 8700-225 Olhão, Portugal
| | - María Casero
- Wildlife Rehabilitation and Investigation Center (RIAS), Ria Formosa Natural Park, 8700-225 Olhão, Portugal
| | - Ana Cristina Oliveira
- Casa dos Animais Veterinary Clinic, Travessa Quinta da Rosa Linda, Morro Bento, Luanda, Angola
| | | | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Fernanda Rosa
- Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.,Centre for Environmental and Marine Studies (CESAM), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Deodália Dias
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Mikhailov KV, Efeykin BD, Panchin AY, Knorre DA, Logacheva MD, Penin AA, Muntyan MS, Nikitin MA, Popova OV, Zanegina ON, Vyssokikh MY, Spiridonov SE, Aleoshin VV, Panchin YV. Coding palindromes in mitochondrial genes of Nematomorpha. Nucleic Acids Res 2020; 47:6858-6870. [PMID: 31194871 PMCID: PMC6649704 DOI: 10.1093/nar/gkz517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.
Collapse
Affiliation(s)
- Kirill V Mikhailov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Boris D Efeykin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation.,Severtsov Institute of Ecology and Evolution, Moscow 119071, Russian Federation
| | - Alexander Y Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russian Federation
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Maria S Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Olga V Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Olga N Zanegina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Mikhail Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation
| | - Sergei E Spiridonov
- Severtsov Institute of Ecology and Evolution, Moscow 119071, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| | - Yuri V Panchin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russian Federation
| |
Collapse
|
6
|
|
7
|
Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect 2018; 20:401-409. [DOI: 10.1016/j.micinf.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
|
8
|
Wachter S, Raghavan R, Wachter J, Minnick MF. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution. BMC Genomics 2018; 19:247. [PMID: 29642859 PMCID: PMC5896051 DOI: 10.1186/s12864-018-4608-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Background Coxiella burnetii is a Gram-negative gammaproteobacterium and zoonotic agent of Q fever. C. burnetii’s genome contains an abundance of pseudogenes and numerous selfish genetic elements. MITEs (miniature inverted-repeat transposable elements) are non-autonomous transposons that occur in all domains of life and are thought to be insertion sequences (ISs) that have lost their transposase function. Like most transposable elements (TEs), MITEs are thought to play an active role in evolution by altering gene function and expression through insertion and deletion activities. However, information regarding bacterial MITEs is limited. Results We describe two MITE families discovered during research on small non-coding RNAs (sRNAs) of C. burnetii. Two sRNAs, Cbsr3 and Cbsr13, were found to originate from a novel MITE family, termed QMITE1. Another sRNA, CbsR16, was found to originate from a separate and novel MITE family, termed QMITE2. Members of each family occur ~ 50 times within the strains evaluated. QMITE1 is a typical MITE of 300-400 bp with short (2-3 nt) direct repeats (DRs) of variable sequence and is often found overlapping annotated open reading frames (ORFs). Additionally, QMITE1 elements possess sigma-70 promoters and are transcriptionally active at several loci, potentially influencing expression of nearby genes. QMITE2 is smaller (150-190 bps), but has longer (7-11 nt) DRs of variable sequences and is mainly found in the 3′ untranslated region of annotated ORFs and intergenic regions. QMITE2 contains a GTAG repetitive extragenic palindrome (REP) that serves as a target for IS1111 TE insertion. Both QMITE1 and QMITE2 display inter-strain linkage and sequence conservation, suggesting that they are adaptive and existed before divergence of C. burnetii strains. Conclusions We have discovered two novel MITE families of C. burnetii. Our finding that MITEs serve as a source for sRNAs is novel. QMITE2 has a unique structure and occurs in large or small versions with unique DRs that display linkage and sequence conservation between strains, allowing for tracking of genomic rearrangements. QMITE1 and QMITE2 copies are hypothesized to influence expression of neighboring genes involved in DNA repair and virulence through transcriptional interference and ribonuclease processing. Electronic supplementary material The online version of this article (10.1186/s12864-018-4608-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaun Wachter
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Rahul Raghavan
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Jenny Wachter
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St, Hamilton, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
9
|
Delihas N. Enterobacterial Small Mobile Sequences Carry Open Reading Frames and are Found Intragenically–-Evolutionary Implications for Formation of New Peptides. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intergenic repeat units of 127-bp (RU-1) and 168-bp (RU-2), as well as a newly-found class of 103-bp (RU-3), represent small mobile sequences in enterobacterial genomes present in multiple intergenic regions. These repeat sequences display similarities to eukaryotic miniature inverted-repeat transposable elements (MITE). The RU mobile elements have not been reported to encode amino acid sequences. An in silico approach was used to scan genomes for location of repeat units. RU sequences are found to have open reading frames, which are present in annotated gene loci whereby the RU amino acid sequence is maintained. Gene loci that display repeat units include those that encode large proteins which are part of super families that carry conserved domains and those that carry predicted motifs such as signal peptide sequences and transmembrane domains. A putative exported protein in Y. pestis and a phylogenetically conserved putative inner membrane protein in Salmonella species represent some of the more interesting constructs. We hypothesize that a major outcome of RU open reading frame fusions is the evolutionary emergence of new proteins.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, U.S.A
| |
Collapse
|
10
|
Cimmino T, Le Page S, Raoult D, Rolain JM. Contemporary challenges and opportunities in the diagnosis and outbreak detection of multidrug-resistant infectious disease. Expert Rev Mol Diagn 2016; 16:1163-1175. [PMID: 27690721 DOI: 10.1080/14737159.2016.1244005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The dissemination of multi-drug resistant bacteria (MDRB) has become a major public health concern worldwide because of the increase in infections caused by MDRB, the difficulty in treating them, and expenditures in patient care. Areas covered: We have reviewed challenges and contemporary opportunities for rapidly confronting infections caused by MDRB in the 21st century, including surveillance, detection, identification of resistance mechanisms, and action steps. Expert commentary: In this context, the first critical point for clinical microbiologists is to be able to rapidly detect an abnormal event, an outbreak and/or the spread of a MDRB with surveillance tools so that healthcare policies and therapies adapted to a new stochastic event that will certainly occur again in the future can be implemented.
Collapse
Affiliation(s)
- Teresa Cimmino
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Stéphanie Le Page
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Didier Raoult
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| | - Jean-Marc Rolain
- a URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille University , Marseille , France
| |
Collapse
|
11
|
Seligmann H, Raoult D. Unifying view of stem–loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 2016; 31:1-8. [DOI: 10.1016/j.mib.2015.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
|
12
|
Ge Y, Yin H, Rikihisa Y, Pan W, Yin H. Molecular Detection of Tick-BorneRickettsialesin Goats and Sheep from Southeastern China. Vector Borne Zoonotic Dis 2016; 16:309-16. [DOI: 10.1089/vbz.2015.1884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yan Ge
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai, China
| | - Hongmei Yin
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai, China
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Weiqing Pan
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai, China
| | - Hong Yin
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, China
| |
Collapse
|
13
|
Yssouf A, Almeras L, Berenger JM, Laroche M, Raoult D, Parola P. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick Borne Dis 2015; 6:579-86. [PMID: 26051210 DOI: 10.1016/j.ttbdis.2015.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is increasingly emerging tool for identification of arthropods including tick vectors using whole or body part of specimens. The challenges of the present study were to assess MALDI-TOF MS profiling for the both identification of tick species and Rickettsia spp. in infected ticks using hemolymph as protein mixture. METHODS Firstly, hemolymph protein mixture from legs of 5 tick species, Rhipicephalus sanguineus, Rhipicephalus bursa, Dermacentor marginatus, Hyalomma marginatum rufipes and Amblyomma variegatum infected by Rickettsia africae were submitted to MALDI-TOF MS to assess tick species identification ability. Secondly, hemolymph MS spectra from Rh. sanguineus infected or not by Rickettsia c. conorii were compared to detect protein profiles changes. Finally, leg hemolymph MS spectra from new specimens of the 5 tick species were tested blindly including ticks infected by R. c. conorii. Discriminating mass peaks distinguishing the R. c. conorii infected and non-infected Rh sanguineus were determined. RESULTS Consistent and reproducible MS profiles were obtained into each tick species. Comparison of MS spectra revealed distinct hemolymph protein profiles according to tick species. MS spectra changes were observed between hemolymphs from R. c. conorii-infected and non-infected Rh. sanguineus specimens, revealing 17 discriminating mass peaks. Clustering analysis based on MS protein profiles highlighted that hemolymph samples were grouped according to tick species. All tick hemolymph samples blindly tested against our home-made arthropod MS reference database were correctly identified at the species distinguishing also R. c. conorii-infected from Rickettsia-free Rh. sanguineus specimens. CONCLUSION The present study demonstrated the use of hemolymph MS profiles for dual identification of tick species and associated pathogens. This concomitant identification could be helpful for tick entomological diagnosis, notably for specimens removed directly on patients.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Michel Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Maureen Laroche
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
14
|
Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl Trop Dis 2015; 9:e0003473. [PMID: 25659152 PMCID: PMC4319929 DOI: 10.1371/journal.pntd.0003473] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. METHODOLOGY/PRINCIPAL FINDINGS The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. CONCLUSIONS/SIGNIFICANCE Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Jérôme Terras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
15
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Utsuki T, Husseneder C, Chouljenko VN, Azad AF, Macaluso KR. Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol 2014; 7:35-56. [PMID: 25477419 PMCID: PMC4316617 DOI: 10.1093/gbe/evu262] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Victoria I Verhoeve
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Tadanobu Utsuki
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kevin R Macaluso
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| |
Collapse
|
16
|
Hernández-López A, Chabrol O, Royer-Carenzi M, Merhej V, Pontarotti P, Raoult D. To tree or not to tree? Genome-wide quantification of recombination and reticulate evolution during the diversification of strict intracellular bacteria. Genome Biol Evol 2014; 5:2305-17. [PMID: 24259310 PMCID: PMC3879967 DOI: 10.1093/gbe/evt178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is well known that horizontal gene transfer (HGT) is a major force in the evolution of prokaryotes. During the adaptation of a bacterial population to a new ecological niche, and particularly for intracellular bacteria, selective pressures are shifted and ecological niches reduced, resulting in a lower rate of genetic connectivity. HGT and positive selection are therefore two important evolutionary forces in microbial pathogens that drive adaptation to new hosts. In this study, we use genomic distance analyses, phylogenomic networks, tree topology comparisons, and Bayesian inference methods to investigate to what extent HGT has occurred during the evolution of the genus Rickettsia, the effect of the use of different genomic regions in estimating reticulate evolution and HGT events, and the link of these to host range. We show that ecological specialization restricts recombination occurrence in Rickettsia, but other evolutionary processes and genome architecture are also important for the occurrence of HGT. We found that recombination, genomic rearrangements, and genome conservation all show evidence of network-like evolution at whole-genome scale. We show that reticulation occurred mainly, but not only, during the early Rickettsia radiation, and that core proteome genes of every major functional category have experienced reticulated evolution and possibly HGT. Overall, the evolution of Rickettsia bacteria has been tree-like, with evidence of HGT and reticulated evolution for around 10–25% of the core Rickettsia genome. We present evidence of extensive recombination/incomplete lineage sorting (ILS) during the radiation of the genus, probably linked with the emergence of intracellularity in a wide range of hosts.
Collapse
Affiliation(s)
- Antonio Hernández-López
- Aix-Marseille Université, LATP UMR - CNRS 7353, Evolution Biologique et Modélisation, Marseille, France
| | | | | | | | | | | |
Collapse
|
17
|
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. INFECTION GENETICS AND EVOLUTION 2014; 25:122-37. [DOI: 10.1016/j.meegid.2014.03.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023]
|
18
|
Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol 2014; 22:147-56. [DOI: 10.1016/j.tim.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
|
19
|
Complete genomic DNA sequence of the East Asian spotted fever disease agent Rickettsia japonica. PLoS One 2013; 8:e71861. [PMID: 24039725 PMCID: PMC3767692 DOI: 10.1371/journal.pone.0071861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/05/2013] [Indexed: 12/04/2022] Open
Abstract
Rickettsia japonica is an obligate intracellular alphaproteobacteria that causes tick-borne Japanese spotted fever, which has spread throughout East Asia. We determined the complete genomic DNA sequence of R. japonica type strain YH (VR-1363), which consists of 1,283,087 base pairs (bp) and 971 protein-coding genes. Comparison of the genomic DNA sequence of R. japonica with other rickettsiae in the public databases showed that 2 regions (4,323 and 216 bp) were conserved in a very narrow range of Rickettsia species, and the shorter one was inserted in, and disrupted, a preexisting open reading frame (ORF). While it is unknown how the DNA sequences were acquired in R. japonica genomes, it may be a useful signature for the diagnosis of Rickettsia species. Instead of the species-specific inserted DNA sequences, rickettsial genomes contain Rickettsia-specific palindromic elements (RPEs), which are also capable of locating in preexisting ORFs. Precise alignments of protein and DNA sequences involving RPEs showed that when a gene contains an inserted DNA sequence, each rickettsial ortholog carried an inserted DNA sequence at the same locus. The sequence, ATGAC, was shown to be highly frequent and thus characteristic in certain RPEs (RPE-4, RPE-6, and RPE-7). This finding implies that RPE-4, RPE-6, and RPE-7 were derived from a common inserted DNA sequence.
Collapse
|
20
|
Wang X, Tan J, Bai Z, Su H, Deng X, Li Z, Zhou C, Chen J. Detection and characterization of miniature inverted-repeat transposable elements in “Candidatus Liberibacter asiaticus”. J Bacteriol 2013; 195:3979-86. [PMID: 23813735 PMCID: PMC3754606 DOI: 10.1128/jb.00413-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/25/2013] [Indexed: 02/02/2023] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are nonautonomous transposons (devoid of the transposase gene tps) that affect gene functions through insertion/deletion events. No transposon has yet been reported to occur in “Candidatus Liberibacter asiaticus,” an alphaproteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease). In this study, two MITEs, MCLas-A and MCLas-B, in “Ca. Liberibacter asiaticus” were detected, and the genome was characterized using 326 isolates collected in China and Florida. MCLas-A had three variants, ranging from 237 to 325 bp, and was inserted into a TTTAGG site of a prophage region. MCLas-A had a pair of 54-bp terminal inverted repeats (TIRs), which contained three tandem repeats of TGGTAACCAC. Both “filled” (with MITE) and “empty” (without MITE) states were detected, suggesting the MITE mobility. The empty sites of all bacterial isolates had TIR tandem repeat remnants (TRR). Frequencies of TRR types varied according to geographical origins. MCLas-B had four variants, ranging from 238 to 250 bp, and was inserted into a TA site of another “Ca. Liberibacter” prophage. The MITE, MCLas-B, had a pair of 23-bp TIRs containing no tandem repeats. No evidence of MCLas-B mobility was found. An identical open reading frame was found upstream of MCLas-A (229 bp) and MCLas-B (232 bp) and was predicted to be a putative tps, suggesting an in cis tps-MITE configuration. MCLas-A and MCLas-B were predominantly copresent in Florida isolates, whereas MCLas-A alone or MCLas-B alone was found in Chinese isolates.
Collapse
Affiliation(s)
- Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Services, U.S. Department of Agriculture, Parlier, California, USA
| | - Jin Tan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Ziqin Bai
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Huanan Su
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Xiaoling Deng
- Citrus Huanglongbing Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zhongan Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Services, U.S. Department of Agriculture, Parlier, California, USA
| |
Collapse
|
21
|
Imešek M, Pleše B, Lukić-Bilela L, Lelo S, Ćetković H. Mitochondrial genomes of the genus Ephydatia Lamouroux, 1816: can palindromic elements be used in species-level studies? ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0118-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kajiwara H, Toda M, Mine T, Nakada H, Yamamoto T. Isolation of fucosyltransferase-producing bacteria from marine environments. Microbes Environ 2012; 27:515-8. [PMID: 23100020 PMCID: PMC4103564 DOI: 10.1264/jsme2.me12058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fucose-containing oligosaccharides on the cell surface of some pathogenic bacteria are thought to be important for host-microbe interactions and to play a major role in the pathogenicity of bacterial pathogens. Here, we screened marine bacteria for glycosyltransferases using two methods: a one-pot glycosyltransferase assay method and a lectin-staining method. Using this approach, we isolated marine bacteria with fucosyltransferase activity. There have been no previous reports of marine bacteria producing fucosyltransferase. This paper thus represents the first report of fucosyltransferase-producing marine bacteria.
Collapse
Affiliation(s)
- Hitomi Kajiwara
- Glycotechnology Business Unit, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka 438–0802, Japan
| | | | | | | | | |
Collapse
|
23
|
Merhej V, Raoult D. Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Infect Microbiol 2012; 2:113. [PMID: 22973559 PMCID: PMC3428605 DOI: 10.3389/fcimb.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022] Open
Abstract
Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the “survival of the fittest.” The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of “descent with modification” according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the “biological changes over time.” The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships among species.
Collapse
Affiliation(s)
- Vicky Merhej
- URMITE, UM63, CNRS 7278, IRD 198, INSERM U1095, Aix Marseille Université Marseille, France
| | | |
Collapse
|
24
|
Kempf M, Rolain JM, Diatta G, Azza S, Samb B, Mediannikov O, Gassama Sow A, Diene SM, Fenollar F, Raoult D. Carbapenem resistance and Acinetobacter baumannii in Senegal: the paradigm of a common phenomenon in natural reservoirs. PLoS One 2012; 7:e39495. [PMID: 22745768 PMCID: PMC3380006 DOI: 10.1371/journal.pone.0039495] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022] Open
Abstract
Incidence of carbapenem-resistant Acinetobacter baumannii is rising in several parts of the world. In Africa, data concerning this species and its resistance to carbapenems are limited. The objective of the present study was to identify the presence of A. baumannii carbapenem-resistant encoding genes in natural reservoirs in Senegal, where antibiotic pressure is believed to be low. From October 2010 to January 2011, 354 human head lice, 717 human fecal samples and 118 animal fecal samples were screened for the presence of A. baumannii by real time PCR targeting bla(OXA51-like) gene. For all samples positive for A. baumannii, the carbapenemase-hydrolysing oxacillinases bla(OXA23-like) and bla(OXA24-like) were searched for and sequenced, and the isolates harbouring an oxacillinase were genotyped using PCR amplification and sequencing of recA gene. The presence of A. baumannii was detected in 4.0% of the head lice, in 5.4% of the human stool samples and in 5.1% of the animal stool samples tested. No bla(OXA24) gene was detected but six fecal samples and three lice were positive for bla(OXA23-like) gene. The bla(OXA23-like) gene isolated in lice was likely a new oxacillinase sequence. Finally, the A. baumannii detected in stools were all of recA genotype 3 and those detected in lice, of recA genotype 4. This study shows for the first time a reservoir of bla(OXA23-like)-positive gene in human head lice and stool samples in Senegal.
Collapse
Affiliation(s)
- Marie Kempf
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Georges Diatta
- Institut de Recherche pour le Développement, URMITE, Dakar, Sénégal
| | - Saïd Azza
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Bissoum Samb
- Unité de Bactériologie Expérimentale Institut Pasteur, Dakar, Sénégal
| | - Oleg Mediannikov
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Amy Gassama Sow
- Unité de Bactériologie Expérimentale Institut Pasteur, Dakar, Sénégal
| | - Seydina M. Diene
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Florence Fenollar
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS-6236, Aix Marseille Université, Marseille, France
| |
Collapse
|
25
|
Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges. Gene 2012; 505:91-9. [PMID: 22669046 DOI: 10.1016/j.gene.2012.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/31/2022]
Abstract
Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L. baicalensis and the most closely related cosmopolitan freshwater sponge Ephydatia muelleri. Here we report mitochondrial genomes of three additional species of Lake Baikal sponges: Swartschewskia papyracea, Rezinkovia echinata and Baikalospongia intermedia morpha profundalis (Demospongiae, Haplosclerida, Lubomirskiidae) and from a more distantly related freshwater sponge Corvomeyenia sp. (Demospongiae, Haplosclerida, Metaniidae). We use these additional sequences to explore mtDNA evolution in Baikalian sponges, paying particular attention to the variation in the rates of nucleotide substitutions and the distribution of hairpins, abundant in these genomes. We show that most of the changes in Lubomirskiidae mitochondrial genomes are due to insertion/deletion/duplication of these elements rather than single nucleotide substitutions. Thus inverted repeats can act as an important force in evolution of mitochondrial genome architecture and be a valuable marker for population- and species-level studies in this group. In addition, we infer (((Rezinkovia+Lubomirskia)+Swartschewskia)+Baikalospongia) phylogeny for the family Lubomirskiidae based on the analysis of mitochondrial coding sequences from freshwater sponges.
Collapse
|
26
|
Novel miniature transposable elements in thermophilic Synechococcus strains and their impact on an environmental population. J Bacteriol 2012; 194:3636-42. [PMID: 22563047 DOI: 10.1128/jb.00333-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genomes of the two closely related freshwater thermophilic cyanobacteria Synechococcus sp. strain JA-3-3Ab and Synechococcus sp. strain JA-2-3B'a(2-13) each host several families of insertion sequences (ISSoc families) at various copy numbers, resulting in an overall high abundance of insertion sequences in the genomes. In addition to full-length copies, a large number of internal deletion variants have been identified. ISSoc2 has two variants (ISSoc2∂-1 and ISSoc2∂-2) that are observed to have multiple near-exact copies. Comparison of environmental metagenomic sequences to the Synechococcus genomes reveals novel placement of copies of ISSoc2, ISSoc2∂-1, and ISSoc2∂-2. Thus, ISSoc2∂-1 and ISSoc2∂-2 appear to be active nonautonomous mobile elements derived by internal deletion from ISSoc2. Insertion sites interrupting genes that are likely critical for cell viability were detected; however, most insertions either were intergenic or were within genes of unknown function. Most novel insertions detected in the metagenome were rare, suggesting a stringent selective environment. Evidence for mobility of internal deletion variants of other insertion sequences in these isolates suggests that this is a general mechanism for the formation of miniature insertion sequences.
Collapse
|
27
|
Merhej V, Notredame C, Royer-Carenzi M, Pontarotti P, Raoult D. The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol Biol Evol 2012; 28:3213-23. [PMID: 22024628 DOI: 10.1093/molbev/msr239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intracellular flea symbiont, Rickettsia felis, may meet other organisms intracellularly such as R. typhi. We used a single-gene phylogenetic approach of the 1375 R. felis genes to look for horizontal transfers that occurred as a result of the bacterial promiscuity with other organisms. Our results showed that besides genes that are linked to the Spotted Fever Group, 165 genes have a different history and are linked to other Rickettsia such as R. bellii (107 genes), R. typhi (15 genes), or to other bacteria such as Legionella sp. and Francisella sp. or to eukaryotes. Among these genes, we identified 73 individual genes and 34 spatial clusters containing 2-4 adjacent genes, a total of 79 genes, with evidence of en bloc transfer. We described 13 chimeric genes resulting from gene recombination with sympatric R. typhi. The transferred DNA sequences present different sizes and functions, suggesting that the horizontal transfer in R. felis is random and neutral within its specific host. Our study shows that the strict intracellular bacteria R. felis exhibits a mosaic genome. We therefore developed a new representation for the evolutionary history of R. felis showing its different putative ancestors in the form of a rhizome.
Collapse
Affiliation(s)
- Vicky Merhej
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
MCL is a general purpose cluster algorithm for both weighted and unweighted networks. The algorithm utilises network topology as well as edge weights, is highly scalable and has been applied in a wide variety of bioinformatic methods. In this chapter, we give protocols and case studies for clustering of networks derived from, respectively, protein sequence similarities and gene expression profile correlations.
Collapse
Affiliation(s)
- Stijn van Dongen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | | |
Collapse
|
29
|
Abstract
Intergenic regions of prokaryotic genomes carry multiple copies of terminal inverted repeat (TIR) sequences, the nonautonomous miniature inverted-repeat transposable element (MITE). In addition, there are the repetitive extragenic palindromic (REP) sequences that fold into a small stem loop rich in G–C bonding. And the clustered regularly interspaced short palindromic repeats (CRISPRs) display similar small stem loops but are an integral part of a complex genetic element. Other classes of repeats such as the REP2 element do not have TIRs but show other signatures. With the current availability of a large number of whole-genome sequences, many new repeat elements have been discovered. These sequences display diverse properties. Some show an intimate linkage to integrons, and at least one encodes a small RNA. Many repeats are found fused with chromosomal open reading frames, and some are located within protein coding sequences. Small repeat units appear to work hand in hand with the transcriptional and/or post-transcriptional apparatus of the cell. Functionally, they are multifaceted, and this can range from the control of gene expression, the facilitation of host/pathogen interactions, or stimulation of the mammalian immune system. The CRISPR complex displays dramatic functions such as an acquired immune system that defends against invading viruses and plasmids. Evolutionarily, mobile repeat elements may have influenced a cycle of active versus inactive genes in ancestral organisms, and some repeats are concentrated in regions of the chromosome where there is significant genomic plasticity. Changes in the abundance of genomic repeats during the evolution of an organism may have resulted in a benefit to the cell or posed a disadvantage, and some present day species may reflect a purification process. The diverse structure, eclectic functions, and evolutionary aspects of repeat elements are described.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY, USA.
| |
Collapse
|
30
|
Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F, Görtz HD, Verni F, Petroni G. "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 2011; 56:119-29. [PMID: 19457052 DOI: 10.1111/j.1550-7408.2008.00377.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsia-like organisms (RLO) are obligate, often highly fastidious, intracellular bacterial parasites associated with a variety of vertebrate and invertebrate hosts. Despite their importance as causative agents of severe mortality outbreaks in farmed aquatic species, little is known about their life cycle and their host range. The present work reports the characterization of "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like bacterium associated with the common ciliate species Pseudomicrothorax dubius by means of the "Full-Cycle rRNA Approach" and ultrastructural observations. The morphological description by in vivo and scanning electron microscopy and the 18S rRNA gene sequence of the host species is provided as well. Phylogenetic analysis based on the 16S rRNA gene supports the inclusion of "Candidatus Cryptoprodotis polytropus" within the family Rickettsiaceae (cl. Alphaproteobacteria) together with the genera Rickettsia and Orientia. Observations on natural ciliate populations account for the occasional nature of this likely parasitic association. The presence of a previously unknown RLO in ciliates sheds a new light on the possible role of protists as transient hosts, vectors or natural reservoir for some economically important pathogens.
Collapse
Affiliation(s)
- Filippo Ferrantini
- Department of Biology, Protistology and Zoology Unit, University of Pisa, Via A. Volta 4/6, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Reductive divergence of enterobacterial repetitive intergenic consensus sequences among Gammaproteobacteria genomes. J Microbiol 2011; 49:35-45. [PMID: 21369977 DOI: 10.1007/s12275-011-1024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
Enterobacterial repetitive intergenic consensus (ERIC) sequence is a transcription-modulating, nonautonomous, miniature inverted-repeat transposable element. Its origin and the mechanism of highly varying incidences, limited to Enterobacteriaceae and Vibrionaceae, have not been identified. In this study, distribution and divergence of ERICs along bacterial taxonomie units were analyzed. ERICs were found among five families of gammaproteobacteria, with the copy numbers varying with exponential increments. The variability was explained by genus (45%) and species (36%) affiliations, indicating that copy numbers are specific to sub-family taxa. ERICs were interspersed in genomes with considerable divergences. Locations of ERICs in a genome appeared to be strongly conserved in a strain, moderately in a species or a genus, and weakly in a family. ERICs in different species of a genus were from the identical population of sequences while ERICs in different genera of a family were nearly identical. However, ERICs in different families formed distinct monophylectic groups, implying vertical transmission of diverging population of sequences. In spite of large difference in copy numbers, overall intra-genome evolutionary distances among ERICs were similar among different species, except for a few genomes. The exceptions substantiated hypotheses of genetic drifts and horizontal gene transfers of mobility capacity. Therefore, the confined, variable distribution of ERIC could be explained as a two-step evolution: introduction and proliferation of ERIC in one of the progenitors of gammaproteobacteria, followed by vertical transmission under negative selection. Deterioration of sequences and reduction in copy number were concluded to be the predominant patterns in the evolution of ERIC loci.
Collapse
|
32
|
Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics 2011; 12:120. [PMID: 21333003 PMCID: PMC3049150 DOI: 10.1186/1471-2164-12-120] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. Results Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. Conclusions BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | |
Collapse
|
33
|
Kristoffersen SM, Tourasse NJ, Kolstø AB, Økstad OA. Interspersed DNA repeats bcr1-bcr18 of Bacillus cereus group bacteria form three distinct groups with different evolutionary and functional patterns. Mol Biol Evol 2010; 28:963-83. [PMID: 20961964 DOI: 10.1093/molbev/msq269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many short (<400 bp) interspersed sequence repeats exist in bacteria, yet little is known about their origins, mode of generation, or possible function. Here, we present a comprehensive analysis of 18 different previously identified repeated DNA elements, bcr1-bcr18 (Økstad OA, Hegna I, Lindback T, Rishovd AL, Kolstø AB. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology. 145:621-631.; Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 101:579-593.), in 36 sequenced genomes from the Bacillus cereus group of bacteria. This group consists of genetically closely related species with variable pathogenic specificity toward different hosts and includes among others B. anthracis, B. cereus, and B. thuringiensis. The B. cereus group repeat elements could be classified into three categories with different properties: Group A elements (bcr1-bcr3) exhibited highly variable copy numbers ranging from 4 to 116 copies per strain, showed a nonconserved chromosomal distribution pattern between strains, and displayed several features characteristic of mobile elements. Group B repeats (bcr4-bcr6) were present in 0-10 copies per strain and were associated with strain-specific genes and disruptions of genome synteny, implying a possible contribution to genome rearrangements and/or horizontal gene transfer events. bcr5, in particular, was associated with large gene clusters showing resemblance to integrons. In agreement with their potentially mobile nature or involvement in horizontal transfers, the sequences of the repeats from Groups A and B (bcr1-bcr6) followed a phylogeny different from that of the host strains. Conversely, repeats from Group C (bcr7-bcr18) had a conserved chromosomal location and orthologous gene neighbors in the investigated B. cereus group genomes, and their phylogeny matched that of the host chromosome. Several of the group C repeats exhibited a conserved secondary structure or had parts of the structure conserved, possibly indicating functional RNAs. Accordingly, five of the repeats in group C overlapped regions encoding previously characterized riboswitches. Similarly, other group C repeats could represent novel riboswitches, encode small RNAs, and/or constitute other types of regulatory elements with specific biological functions. The current analysis suggests that the multitude of repeat elements identified in the B. cereus group promote genome dynamics and plasticity and could contribute to the flexible and adaptive life style of these bacteria.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
34
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Röske K, Foecking MF, Yooseph S, Glass JI, Calcutt MJ, Wise KS. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes. BMC Genomics 2010; 11:430. [PMID: 20626840 PMCID: PMC2996958 DOI: 10.1186/1471-2164-11-430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023] Open
Abstract
Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.
Collapse
Affiliation(s)
- Kerstin Röske
- Saxony Academy of Sciences Leipzig, D-04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Lavrov DV. Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis. Mol Biol Evol 2009; 27:757-60. [PMID: 20026479 DOI: 10.1093/molbev/msp317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animal mitochondrial DNA (mtDNA) is a remarkably compact molecule largely because of the scarcity of noncoding "selfish" DNA. Recently, however, we found that mitochondrial genomes of several phylogenetically diverse species of demosponges contain small repetitive palindromic sequences, interspersed within intergenic regions and fused in protein and ribosomal RNA genes. Here, I report and analyze the proliferation of such elements in the mitochondrial genome of the endemic sponge of Lake Baikal Lubomirskia baicalensis. Because Baikal sponges are closely related to the circumglobally distributed freshwater sponge Ephydatia muelleri with which they shared a common ancestor approximately 3-10 Ma, both the rate of single nucleotide substitutions and the rate of palindromic repeat insertions can be calculated in this system. I found the rate of nucleotide substitutions in mtDNA of freshwater sponges to be extremely low (0.5-1.6 x 10(-9) per site per year), more similar to that in plants than bilaterian animals. By contrast, the per/nucleotide rate of insertions of repetitive elements is at least four times higher. This rapid rate of proliferation combined with the broad phylogenetic distribution of hairpin elements can make them a defining force in the evolution of mitochondrial genomes of demosponges.
Collapse
|
37
|
|
38
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
39
|
Chen Y, Zhou F, Li G, Xu Y. MUST: A system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene 2009; 436:1-7. [DOI: 10.1016/j.gene.2009.01.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/23/2009] [Accepted: 01/24/2009] [Indexed: 01/30/2023]
|
40
|
Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrob Agents Chemother 2009; 53:2492-8. [PMID: 19332679 DOI: 10.1128/aac.00033-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene.
Collapse
|
41
|
Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC, Sobral BS, Azad AF. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 2009; 4:e4833. [PMID: 19279686 PMCID: PMC2653234 DOI: 10.1371/journal.pone.0004833] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known. RESULTS Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells. CONCLUSION We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
44
|
Frutos R, Viari A, Vachiery N, Boyer F, Martinez D. Ehrlichia ruminantium: genomic and evolutionary features. Trends Parasitol 2007; 23:414-9. [PMID: 17652027 DOI: 10.1016/j.pt.2007.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/25/2007] [Accepted: 07/09/2007] [Indexed: 11/21/2022]
Abstract
Ehrlichia ruminantium is the causative agent of heartwater, an important tick-borne disease of livestock in Africa and the Caribbean that threatens the American mainland. The genome sequences of three strains of E. ruminantium have recently been published, revealing the presence of specific features related to genomic plasticity. E. ruminantium strains have traces of active genomic modifications, such as high substitution rates, truncated genes and the presence of pseudogenes and many tandem repeats. The most specific feature is the presence in all Ehrlichia of independent long-period tandem repeats, which are associated with expansion or contraction of intergenic regions.
Collapse
Affiliation(s)
- Roger Frutos
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), TA30/G, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
45
|
Fournier PE, Raoult D. Identification of rickettsial isolates at the species level using multi-spacer typing. BMC Microbiol 2007; 7:72. [PMID: 17662158 PMCID: PMC1950309 DOI: 10.1186/1471-2180-7-72] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 07/30/2007] [Indexed: 11/26/2022] Open
Abstract
Background In order to estimate whether multi-spacer typing (MST), based on the sequencing of variable intergenic spacers, could serve for the identification of Rickettsia at the species level, we applied it to 108 rickettsial isolates or arthropod amplicons that include representatives of 23 valid Rickettsia species. Results MST combining the dksA-xerC, mppA-purC, and rpmE-tRNAfMet spacer sequences identified 61 genotypes, allowing the differentiation of each species by at least one distinct genotype. In addition, MST was discriminatory at the strain level in six species for which several isolates or arthropod amplicons were available. Conclusion MST proved to be a reproducible and high-resolution genotyping method allowing clear identification of rickettsial isolates at the species level and further additional differentiation of strains within some species.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité des rickettsies, IFR 48, CNRS UMR 6020, Faculté de médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Didier Raoult
- Unité des rickettsies, IFR 48, CNRS UMR 6020, Faculté de médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| |
Collapse
|
46
|
|
47
|
Ogawa M, Renesto P, Azza S, Moinier D, Fourquet P, Gorvel JP, Raoult D. Proteome analysis ofRickettsia felis highlights the expression profile of intracellular bacteria. Proteomics 2007; 7:1232-48. [PMID: 17385819 DOI: 10.1002/pmic.200600721] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteome of Rickettsia felis, an obligate intracellular bacterium responsible for spotted fever, was analyzed using two complementary proteomic approaches: 2-DE coupled with MALDI-TOF, and SDS-PAGE with nanoLC-MS/MS. This strategy allowed identification of 165 proteins and helped to answer some questions raised by the genome sequence of this bacterium. We successfully identified potential virulence factors including two putative adhesins, four proteins of the type IV secretion system, four Sca autotransporters, four components of ABC transporters, some R. felis-specific proteins, and one antitoxin of the toxin-antitoxin system. Notably, the antitoxin was the first to be identified in intracellular bacteria. Only one protein containing rickettsia palindromic repeats was found, whereas none of the split genes, transposases, or tetratricopeptide/ankyrin repeats were detectably expressed. Comparison of the protein expression profiles of R. felis and 23 other bacterial species according to functional categories showed that intracellular bacteria express more proteins related to translation, especially ribosomal proteins. However, the remaining bacteria express more proteins related to energy production and carbohydrate/amino acid metabolism. In conclusion, this study reveals R. felis virulence factor expression and highlights the unique protein expression profile of intracellular bacteria.
Collapse
Affiliation(s)
- Motohiko Ogawa
- Unité des Rickettsies, CNRS-UMR 6020, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Lang AS, Beatty JT. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol 2007; 15:54-62. [PMID: 17184993 DOI: 10.1016/j.tim.2006.12.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/13/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) is a model for several virus-like elements that seem to function solely for mediating gene exchange. Several genes that encode RcGTA are clearly related to bacteriophage genes but the cellular regulatory mechanisms that control RcGTA production indicate that RcGTA is more than just a defective prophage. Genome sequencing projects show that seemingly functional RcGTA-like structural gene clusters are present in many other species of alpha-proteobacteria, which might also produce RcGTA-like particles. Here, we use the genomic sequence data that are currently available to identify candidate GTA-producing species and propose an evolutionary scheme for RcGTA-like elements in the alpha-proteobacteria.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | | |
Collapse
|
49
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
50
|
Abergel C, Blanc G, Monchois V, Renesto P, Sigoillot C, Ogata H, Raoult D, Claverie JM. Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity. Mol Biol Evol 2006; 23:2112-22. [PMID: 16891376 DOI: 10.1093/molbev/msl082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomic sequencing of Rickettsia conorii revealed a new family of Rickettsia-specific palindromic elements (RPEs) capable of in-frame insertion in preexisting open reading frames (ORFs). Many of these altered ORFs correspond to proteins with well-characterized or essential functions in other microorganisms. Previous experiments indicated that RPE-containing genes are normally transcribed and that no excision of the repeat occurs at the mRNA level. Using mass spectrometry, we now confirmed the retention of the RPE-derived amino acid residues in 4 proteins successfully expressed in Escherichia coli, raising the general question of the consequences of this common insertion event on the fitness of Rickettsia enzymes. The predicted guanylate kinase activity of the R. conorii gmk gene product was measured both on the RPE-containing and RPE-excised recombinant proteins. We show that the 2 proteins are active but exhibit substantial differences in their affinity for adenosine triphosphate, guanosine monophosphate, and catalytic constants. The distribution of the RPEgmk insert among Rickettsia species indicates that the insertion event is ancient and occurred after the divergence of Rickettsia felis and R. conorii but before that of Rickettsia helvetica and R. conorii. We found no evidence that the gmk gene fixed adaptive changes to compensate the RPE peptide insertion. Furthermore, the analysis of the rates of divergence in 23 RPE-containing genes indicates that coding RPE repeats tend to evolve under weak selective constraint, at a rate similar to intergenic noncoding RPE sequences. Altogether, these results suggest that the insertion of RPE-encoded "selfish peptides," although respecting the original fold and activity of the host proteins, might be slightly detrimental to the enzyme efficiency within limits tolerable for slow-growing intracellular parasites such as Rickettsia.
Collapse
Affiliation(s)
- Chantal Abergel
- Information Génomique & Structurale, CNRS UPR 2589, IBSM, Marseille cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|