1
|
He Y, Xiong C, Lv L, Li D, Shi S, Xue C, Ji H. Advancing Propylene Epoxidation: the Role of Ethyl Acetate Autoxidation via Cobalt-Nickel Catalyzed C(acyl)─O Bond Scission. Angew Chem Int Ed Engl 2025:e202500384. [PMID: 40034004 DOI: 10.1002/anie.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The selective autoxidation for the synthesis of valuable oxygenates has provoked keen interest from both academic and industrial sectors. Although the generation of reactive oxygen species via oxygen attack on C─H bonds near ester linkages is well-established, research into aliphatic ester oxidation has primarily focused on combustion, neglecting their potential utility in oxidation processes. Herein, a protocol for producing propylene oxide through the autoxidation of ethyl acetate in tandem with propylene epoxidation is demonstrated. The ethoxy radical, generated by ester C(acyl)─O bond cleavage in situ, subsequently underwent proton-coupled electron transfer with the Co(OAc)(μ-H2O)2Ni, followed by the formation of the peracetic acid optimally suited for the epoxidation reaction. The research not only eliminates the need for co-substrates in the epoxidation process but also fills the application gap in bulk-ester autoxidation, offering insights into the effective utilization of oxy-intermediates in autoxidation reactions.
Collapse
Affiliation(s)
- Yaorong He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luotian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongpo Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sixuan Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Qiao M, Zhou X, Du Z, Wu P, Zong B. Chemical and engineering bases for green H 2O 2 production and related oxidation and ammoximation of olefins and analogues. Natl Sci Rev 2024; 11:nwae243. [PMID: 39171274 PMCID: PMC11337010 DOI: 10.1093/nsr/nwae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Plastics, fibers and rubber are three mainstream synthetic materials that are essential to our daily lives and contribute significantly to the quality of our lives. The production of the monomers of these synthetic polymers usually involves oxidation or ammoximation reactions of olefins and analogues. However, the utilization of C, O and N atoms in current industrial processes is <80%, which represents the most environmentally polluting processes for the production of basic chemicals. Through innovation and integration of catalytic materials, new reaction pathways, and reaction engineering, the Research Institute of Petroleum Processing, Sinopec Co., Ltd. (RIPP) and its collaborators have developed unique H2O2-centered oxidation/ammoximation technologies for olefins and analogues, which has resulted in a ¥500 billion emerging industry and driven trillions of ¥s' worth of downstream industries. The chemical and engineering bases of the production technologies mainly involve the integration of slurry-bed reactors and microsphere catalysts to enhance H2O2 production, H2O2 propylene/chloropropylene epoxidation for the production of propylene oxide/epichlorohydrin, and integration of H2O2 cyclohexanone ammoximation and membrane separation to innovate the caprolactam production process. This review briefly summarizes the whole process from the acquisition of scientific knowledge to the formation of an industrial production technology by RIPP. Moreover, the scientific frontiers of H2O2 production and related oxidation/ammoximation processes of olefins and analogues are reviewed, and new technological growth points are envisaged, with the aim of maintaining China's standing as a leader in the development of the science and technologies of H2O2 production and utilization.
Collapse
Affiliation(s)
- Minghua Qiao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zexue Du
- State Key Laboratory of Petroleum Molecular & Process Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Peng Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Baoning Zong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
3
|
Hasegawa S, Harano K, Motokura K. RhRu Bimetallic Oxide Cluster Catalysts for Cross-Dehydrogenative Coupling of Arenes and Carboxylic Acids. J Am Chem Soc 2024; 146:19059-19069. [PMID: 38842195 DOI: 10.1021/jacs.4c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Noble-metal-based bimetallic oxide clusters are promising novel catalysts. In this study, we developed carbon-supported RhRu bimetallic oxide clusters (RhRuOx/C) with a mean diameter of 1.2 nm, which showed remarkable catalytic activity for the cross-dehydrogenative coupling (CDC) of arenes and carboxylic acids with O2 as the sole oxidant. RhRu bimetallic oxide cluster formation was confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and synchrotron X-ray absorption spectroscopy. Kinetic isotope and substituent effects indicated that arene C-H bond cleavage was the rate-determining step and proceeded via electrophilic concerted metalation-deprotonation mechanism, with a carboxylate as an internal base. Density functional theory calculations supported the proposed mechanism and indicated that the active center for C-H bond activation was Rh(V) rather than Rh(III), while Ru enhanced the electrophilicity of the Rh(V) site by decreasing the negative charge of the surrounding oxygen atoms. Electron-rich arenes showed relatively high reactivity for the RhRuOx/C-catalyzed CDC reaction, and both aliphatic and aromatic carboxylic acids were applicable to the reaction. The RhRuOx/C catalyst is promising for the CDC reaction of arenes and carboxylic acids to produce aryl esters. This work promotes the development of noble-metal-based bimetallic oxide clusters for C-H bond activation reactions.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
4
|
Chi M, Ke J, Liu Y, Wei M, Li H, Zhao J, Zhou Y, Gu Z, Geng Z, Zeng J. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis. Nat Commun 2024; 15:3646. [PMID: 38684683 PMCID: PMC11059342 DOI: 10.1038/s41467-024-48070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), National Science Fund for Distinguished Young Scholars (21925204), NSFC (U19A2015, 22221003, 22250007, and 22209161), Provincial Key Research and Development Program of Anhui (202004a05020074), CAS project for young scientists in basic research (YSBR-051), K. C. Wong Education (GJTD-2020-15), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC), USTC Research Funds of the Double First-Class Initiative (YD2340002002, YD9990002014), and Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Miaojin Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yuxuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
5
|
Ju HB, Zhang LZ, Li DB, Geng T, Jiang YJ, Wang YK. The influence of hydrogen bonding on the structure of organic-inorganic hybrid catalysts and its application in the solvent-free epoxidation of α-olefins. RSC Adv 2024; 14:12853-12863. [PMID: 38650685 PMCID: PMC11033607 DOI: 10.1039/d4ra01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
In this study, two types of catalysts were prepared by the combination of gemini quaternary ammonium salt with two distinct species of phosphotungstic acid. Catalysts prepared by the Wells-Dawson type of phosphotungstic acid and Keggin-type phosphotungstic acid both exhibited dual-phase catalytic behavior, demonstrating both heterogeneous and homogeneous catalytic activities. In comparison to the catalyst prepared by the Keggin-type phosphotungstic acid, due to the higher size of Wells-Dawson type of phosphotungstic acid, hydrogen bonding could not effectively affect the catalyst prepared by H6P2W18O62. Subsequently, the influential factors on the catalytic reaction were investigated. Through the utilization of techniques such as XPS, FT-IR, Raman spectra and other characterization methods, two distinct structure and reaction mechanisms for these catalysts were elucidated under the influence of hydrogen bonding.
Collapse
Affiliation(s)
- Hong-Bin Ju
- Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 Shanxi China
- China Research Institute of Daily Chemistry Co., Ltd Taiyuan 030001 Shanxi China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanxi Key Laboratory of Functional Surfactants Taiyuan 030001 Shanxi China
| | - Li-Zhi Zhang
- China Research Institute of Daily Chemical Industry Taiyuan 030001 Shanxi China
- Shanxi Key Laboratory of Functional Surfactants Taiyuan 030001 Shanxi China
| | - De-Bao Li
- Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 Shanxi China
| | - Tao Geng
- China Research Institute of Daily Chemistry Co., Ltd Taiyuan 030001 Shanxi China
- Shanxi Key Laboratory of Functional Surfactants Taiyuan 030001 Shanxi China
| | - Ya-Jie Jiang
- China Research Institute of Daily Chemistry Co., Ltd Taiyuan 030001 Shanxi China
- Shanxi Key Laboratory of Functional Surfactants Taiyuan 030001 Shanxi China
| | - Ya-Kui Wang
- China Research Institute of Daily Chemistry Co., Ltd Taiyuan 030001 Shanxi China
- Shanxi Key Laboratory of Functional Surfactants Taiyuan 030001 Shanxi China
| |
Collapse
|
6
|
Zha Q, An J, Jiang B, Liu Y, Zhang Z, Liu J, Zhang Z. Polyoxometalate-loaded hyper-crosslinked nanoparticles as a Pickering interfacial catalyst for solvent-free epoxidation of allyl chloride under static conditions. J Colloid Interface Sci 2024; 657:903-912. [PMID: 38091913 DOI: 10.1016/j.jcis.2023.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Accepted: 12/10/2023] [Indexed: 01/02/2024]
Abstract
Epoxidation of allyl chloride and hydrogen peroxide (H2O2) carried out in heterogeneous catalytic systems suffer from poor reaction efficiency due to their heavy mass transfer resistance present at the liquid-liquid interface. Pickering interfacial catalysis (PIC) provides an elegant solution by involving the design of amphiphilic heterogeneous catalysts, which can act as emulsifiers simultaneously. In this study, interface-active polyoxometalate-loaded hyper-crosslinked nanoparticles (HCNPs) were designed. The structural properties of materials were characterized in detail by elemental analysis, Zeta potential, ICP-OES, SEM, TEM, BET, FT-IR, TGA, and XPS. The prepared nanoparticles can build efficient W/O PIC systems with allyl chloride and H2O2. Systematic experiments indicate that catalysts' surface properties, catalyst dosage, and water/oil volume ratio significantly affect the PIC system's catalytic activity and emulsion properties. Moreover, this PIC system maintains high stability after the reaction and can be reused for at least 8 cycles. Excitingly, these interface-active HCNPs can also efficiently promote allyl chloride epoxidation in the absence of solvent and external stirring, illustrating that this approach holds great potential for developing catalytic systems suitable for multiphase reactions.
Collapse
Affiliation(s)
- Qianyu Zha
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Jigang An
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Bowen Jiang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Zhongguang Zhang
- Nanjing Yanchang Reaction Technology Research Institute Co., Ltd., Nanjing 211500, PR China
| | - Jia Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| | - Zhibing Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Nanjing Yanchang Reaction Technology Research Institute Co., Ltd., Nanjing 211500, PR China.
| |
Collapse
|
7
|
Chi M, Zhao J, Ke J, Liu Y, Wang R, Wang C, Hung SF, Lee TJ, Geng Z, Zeng J. Bipyridine-Confined Silver Single-Atom Catalysts Facilitate In-Plane C-O Coupling for Propylene Electrooxidation. NANO LETTERS 2024; 24:1801-1807. [PMID: 38277670 DOI: 10.1021/acs.nanolett.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The electrooxidation of propylene presents a promising route for the production of 1,2-propylene glycol (PG) under ambient conditions. However, the C-O coupling process remains a challenge owing to the high energy barrier. In this work, we developed a highly efficient electrocatalyst of bipyridine-confined Ag single atoms on UiO-bpy substrates (Ag SAs/UiO-bpy), which exposed two in-plane coordination vacancies during reaction for the co-adsorption of key intermediates. Detailed structure and electronic property analyses demonstrate that CH3CHCH2OH* and *OH could stably co-adsorb in a square planar configuration, which then accelerates the charge transfer between them. The combination of stable co-adsorption and efficient charge transfer facilitates the C-O coupling process, thus significantly lowering its energy barrier. At 2.4 V versus a reversible hydrogen electrode, Ag SAs/UiO-bpy achieved a record-high activity of 61.9 gPG m-2 h-1. Our work not only presents a robust electrocatalyst but also advances a new perspective on catalyst design for propylene electrooxidation.
Collapse
Affiliation(s)
- Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruyang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanhao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
8
|
Wang J, Wu G, Feng G, Li G, Wei Y, Li S, Mao J, Liu X, Chen A, Song Y, Dong X, Wei W, Chen W. Electrochemical Epoxidation of Propylene to Propylene Oxide via Halogen-Mediated Systems. ACS OMEGA 2023; 8:46569-46576. [PMID: 38107883 PMCID: PMC10720275 DOI: 10.1021/acsomega.3c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gangfeng Wu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guanghui Feng
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guihua Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yiheng Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shoujie Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Jianing Mao
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaohu Liu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Aohui Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Yanfang Song
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Xiao Dong
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Wei Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Wei Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
9
|
Tan HR, Zhou X, You H, Zheng Q, Zhao SY, Xuan W. A porous Anderson-type polyoxometalate-based metal-organic framework as a multifunctional platform for selective oxidative coupling with amines. Dalton Trans 2023; 52:17019-17029. [PMID: 37933953 DOI: 10.1039/d3dt02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Incorporating catalytic units into a crystalline porous matrix represents a facile way to build high-efficiency heterogeneous catalysts, and by rational design of the porous skeleton with appropriate building blocks the catalytic performance can be significantly enhanced for a series of organic transformations owing to the synergistic effect from the multicomponent and confined porous microenvironment around catalytically active sites. Herein, we demonstrate that the design and synthesis of a porous polyoxometalate-based metal-organic framework YL2(H2O)2[CrMo6O18(PET)2]·4H2O (POMOF-1) constructed from Anderson-type [CrMo6O18(PET)2] (PET = pentaerythritol), which can be employed as a multifunctional platform for synthesis of N-containing compounds via selective oxidative coupling with amines. POMOF-1 features microporous 1D channels defined by Y3+ and L, with [CrMo6O18(PET)2] arranged orderly between adjacent Lvia electrostatic interactions. Upon using POMOF-1 as a catalyst and H2O2 as an oxidant, a variety of amines could be effectively converted to value-added amides, imines and azobenzenes via the oxidative cross-coupling with alcohols or homo-coupling. In particular, POMOF-1 showed dramatically improved activity for the N-formylation reaction owing to the synergistic and confinement effect, with the yield of amides up to 95% and 4 times higher than that of homogeneous [CrMo6O18(PET)2]. Meanwhile, the oxidative homo-coupling of arylmethylamines and arylamines can be facilely tuned by adjustment of the amount of oxidant, solvent and additive, affording imines and azobenzenes in high selectivity and yield, respectively. POMOF-1 is robust and can be reused for 5 cycles with little loss of catalytic activity and structural integrity. The work demonstrates that the combination of catalytically active POMs with crystalline porous MOFs holds great potential to build robust and recyclable heterogeneous systems with enhanced activity and selectivity for multifunctional catalysis.
Collapse
Affiliation(s)
- Hong-Ru Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Hanqi You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
10
|
Zhang Y, Nie N, Wang H, Tong Z, Xing H, Zhang Y. Smart enzyme catalysts capable of self-separation by sensing the reaction extent. Biosens Bioelectron 2023; 239:115585. [PMID: 37597499 DOI: 10.1016/j.bios.2023.115585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A smart biocatalyst should dissolve homogeneously for catalysis and recover spontaneously at the end of the reaction. In this study, we present a strategy for preparing self-precipitating enzyme catalysts by exploiting reaction-induced pH decreases, which connect the reaction extent to the catalyst aggregation state. Using poly(methacrylic acid)-functionalized gold nanoparticles as carriers, we construct smart catalysts with three model systems, including the glucose oxidase (GOx)-catalase (CAT) cascade, the alcohol dehydrogenase (ADH)-glucose dehydrogenase (GDH) cascade, and a combination of two lipases. All smart catalysts can self-separate with a nearly 100% recovery efficiency when a certain conversion threshold is reached. The threshold can be adjusted depending on the reaction demand and buffer capacity. By monitoring the optical signals caused by the dissolution/precipitation of smart catalysts, we propose a prototypic automation system that may enable unsupervised batch/fed-batch bioprocessing.
Collapse
Affiliation(s)
- Yinchen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ning Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoran Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyi Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Xing
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Li H, Zheng L, Lu Q, Li Z, Wang X. A monolayer crystalline covalent network of polyoxometalate clusters. SCIENCE ADVANCES 2023; 9:eadi6595. [PMID: 37436995 DOI: 10.1126/sciadv.adi6595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Monolayer two-dimensional (2D) materials are of great interest because of their unique electronic structures, noticeable in-plane confinement effect, and exceptional catalytic properties. Here, we prepared 2D covalent networks of polyoxometalate clusters (CN-POM) featuring monolayer crystalline molecular sheets, formed by the covalent connection between tetragonally arranged POM clusters. The CN-POM shows a superior catalytic efficiency in the oxidation of benzyl alcohol, and the conversion rate is five times higher than that of the POM cluster units. Theoretical calculations show that in-plane electron delocalization of CN-POM contributes to easier electron transfer and increases catalytic efficiency. Moreover, the conductivity of the covalently interconnected molecular sheets was 46 times greater than that of individual POM clusters. The preparation of monolayer covalent network of POM clusters provides a strategy to synthesize advanced cluster-based 2D materials and a precise molecular model to investigate the electronic structure of crystalline covalent networks.
Collapse
Affiliation(s)
- Haoyang Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qichen Lu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Zhang X, Wang F, Tan CH. Asymmetric Synthesis of S(IV) and S(VI) Stereogenic Centers. JACS AU 2023; 3:700-714. [PMID: 37006767 PMCID: PMC10052288 DOI: 10.1021/jacsau.2c00626] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 05/22/2023]
Abstract
Sulfur can form diverse S(IV) and S(VI) stereogenic centers, of which some have gained significant attention recently due to their increasing use as pharmacophores in drug discovery programs. The preparation of these sulfur stereogenic centers in their enantiopure form has been challenging, and progress made will be discussed in this Perspective. This Perspective summarizes different strategies, with selected works, for asymmetric synthesis of these moieties, including diastereoselective transformations using chiral auxiliaries, enantiospecific transformations of enantiopure sulfur compounds, and catalytic enantioselective synthesis. We will discuss the advantages and limitations of these strategies and will provide our views on how this field will develop.
Collapse
Affiliation(s)
- Xin Zhang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Fucheng Wang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Choon-Hong Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
13
|
Janardan Pawar T, Bonilla‐Landa I, Reyes‐Luna A, Barrera‐Méndez. F, Javier Enríquez‐Medrano F, Enrique Díaz‐de‐León‐Gómez R, Luis Olivares‐Romero J. Chiral Hydroxamic Acid Ligands in Asymmetric Synthesis: The Evolution of Metal‐Catalyzed Oxidation Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202300555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Israel Bonilla‐Landa
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Alfonso Reyes‐Luna
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Felipe Barrera‐Méndez.
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
- Catedrático CONACyT en el Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | | | - Ramón Enrique Díaz‐de‐León‐Gómez
- Research Center in Applied Chemistry (CIQA) Enrique Reyna Hermosillo, No. 140. Col. San José de los Cerritos Saltillo, 25294 México
| | - José Luis Olivares‐Romero
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| |
Collapse
|
14
|
Hong CB, Wang T, Liu H. Insights into the Structure of Keggin-Type Polyoxometalate-Based Organic-Inorganic Hybrid Materials: The Actual Ratio of Organic Cations to Heteropolyanions. Inorg Chem 2023; 62:4054-4065. [PMID: 36521005 DOI: 10.1021/acs.inorgchem.2c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyoxometalate (POM)-based organic-inorganic hybrid materials possess versatile properties and applications; however, the ratios of organic cations to POM anions still remain to be solved. In this work, 14 POM-based organic-inorganic hybrid materials were synthesized by the precipitation, hydrothermal, and solvent-evaporation methods. These hybrid materials consisted of a wide range of quaternary ammonium and imidazolium cations with different alkyl chains and different Keggin-type heteropolyanions [i.e., phosphotungstic ([PW12O40]3-), phosphomolybdic ([PMo12O40]3-), silicotungstic ([SiW12O40]4-), and silicomolybdic ([SiMo12O40]4-) anions]. Their compositions and structures were characterized complementarily by elemental analysis, powder X-ray diffraction, single-crystal X-ray diffraction, and Fourier transform infrared spectroscopy. The actual ratios of organic cations to heteropolyanions of [PW12O40]3-, [PMo12O40]3-, [SiW12O40]4-, and [SiMo12O40]4- were found to always be 3:1, 3:1, 4:1, and 4:1, respectively, independent of the organic cations, synthesis methods, and reaction parameters. This finding demonstrates that the organic cations completely substituted the protons of the heteropolyacid precursors in the hybrid materials, which thus hardly possessed Brønsted acidity probed by the pyridine adsorption and cellulose hydrolysis reaction. Such complete substitution of the protons arose apparently from the strong noncovalent interactions between the organic cations and heteropolyanions (such as electrostatic and C-H···O interactions) in the POM-based hybrid materials.
Collapse
Affiliation(s)
- Cheng-Bin Hong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Ionic liquids are a family of liquids that are composed entirely of ions and usually have melting points lower than 100 °C. Extensive research, along with the ever-growing interest of the scientific community, allowed for the development of a multitude of ionic liquids with low melting points. Such compounds are considered neoteric materials as well as ideal, custom-made solvents for a variety of different chemical transformations. In this regard, the importance of phase transfer catalysis is evident in a diversity of substrates and reactions. The use of phase transfer catalysts allows the reaction to proceed, facilitating the transfer of otherwise insoluble reactants to the desired phase. Recent scientific advances led to the emergence of ionic liquids, which are excellent candidates as phase transfer catalysts. The inherent fine-tuning capability of these molecules, along with the potential of phase transfer catalytic reactions, epitomize the sustainable aspect of this field of research. Herein, a cohesive report of such applications will be presented, including the period from the last decade of the 20th century up to date.
Collapse
|
16
|
Xiong C, Xue C, Yu X, He Y, Liang Y, Zhou X, Ji H. Tuning the olefin-VOCs epoxidation performance of ceria by mechanochemical loading of coinage metal. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129888. [PMID: 36084466 DOI: 10.1016/j.jhazmat.2022.129888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Under the background of carbon dioxide emission reduction, how to realize the treatment and the high value-added conversion of typical olefin volatile organic compounds (olefin-VOCs), such as styrene, is a big challenge. In this contribution, the ceria-supported coinage metal catalysts (M/CeO2, M = Au, Ag, and Cu) are successfully synthesized by a dry mechanochemical method, and their catalytic performance for styrene-VOC epoxidation with tert-butyl hydrogen peroxide (TBHP) as an oxidant to prepare high-value styrene oxide (SO) is investigated. The oxygen vacancies of ceria play a key role in the anchoring of metal nanoparticles. After ball milling, Au(III) is partially reduced and coexists on ceria in two valence states (Au3+ and Au0), and the reactive oxygen species of the as-prepared catalyst are enhanced. The catalytic behaviors, including solvents effect, substrate concentration, oxidant ratio, catalyst dosage, reaction time, and temperature, are systematically investigated. Au/CeO2 exhibits good styrene epoxidation performance with a total styrene conversion of 94% and a SO yield of 63%, along with good reusability and substrate scalability. Thermodynamics and kinetics show that Au/CeO2 was more favorable for styrene epoxidation and this reaction is dominated by the rate of intrinsic chemical reactions on the surface of the catalyst. Based on experimental discussions and a set of characterizations (XPS, XRD, in-situ FT-IR, ESR, ESI-HSMS, etc.), the mechanism is revealed as the synergistic catalysis between the reactive oxygen species of Au/CeO2 and the peroxide radicals generated by the homolysis of TBHP.
Collapse
Affiliation(s)
- Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, PR China; Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, PR China.
| | - Xingrui Yu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, PR China
| | - Yaorong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yichao Liang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, PR China
| | - Xiantai Zhou
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, PR China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, PR China.
| |
Collapse
|
17
|
Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zha Q, Zhang Z, Liu Y, Zhou Z, Liu J, Zhang Z. In situ generated micro-catalytic system for the epoxidation of allyl chloride with hydrogen peroxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Selective and quantitative functionalization of unprotected α-amino acids using a recyclable homogeneous catalyst. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Wu Y, Chen Z, Wang Y, Xu J. Kinetic Studies and Reaction Network in the Epoxidation of Styrene Catalyzed by the Temperature-Controlled Phase-Transfer Catalyst [(C 18H 37) 2(CH 3) 2N] 7[PW 11O 39]. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxin Wu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yundong Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Liquid-phase epoxidation of propylene with molecular oxygen by chloride manganese meso-tetraphenylporphyrins. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Zhou XT, Yu HY, Li Y, Wu HB, Ji HB. Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxo-peroxo tungsten(VI) Schiff base complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Li H, Abraham CS, Anand M, Cao A, Nørskov JK. Opportunities and Challenges in Electrolytic Propylene Epoxidation. J Phys Chem Lett 2022; 13:2057-2063. [PMID: 35212546 DOI: 10.1021/acs.jpclett.2c00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Propylene oxide (PO) is an important chemical. So far, its synthesis protocol relies on expensive oxidants. In contrast, direct epoxidation of propylene (DEP) using molecular oxygen is considered ideal for PO synthesis. Unfortunately, DEP has not met industrial demands due to the low propylene conversion and high side-product selectivity for known catalysts. Instead of a thermal process using molecular oxygen, electrolytic propylene oxidation can synthesize PO at room temperature, using the atomic oxygen generated from water-splitting. Herein, using density functional theory, surface Pourbaix analysis, scaling relation analysis, and microkinetic modeling, we show that (i) propylene epoxidation is facile on weak-binding catalysts if reactive atomic oxygen preexists; (ii) electrolytic epoxidation is facile to provide atomic oxygen for epoxidation, while hydroperoxyl formation does not overwhelm the epoxidation process at the potential of interest; (iii) propylene dehydrogenation is a competing step that forms side products. Finally, we discuss the opportunities and challenges of this green PO synthesis method.
Collapse
Affiliation(s)
- Hao Li
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Christina Susan Abraham
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - Megha Anand
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ang Cao
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
25
|
Ke J, Zhao J, Chi M, Wang M, Kong X, Chang Q, Zhou W, Long C, Zeng J, Geng Z. Facet-dependent electrooxidation of propylene into propylene oxide over Ag 3PO 4 crystals. Nat Commun 2022; 13:932. [PMID: 35177597 PMCID: PMC8854733 DOI: 10.1038/s41467-022-28516-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
The electrooxidation of propylene into propylene oxide under ambient conditions represents an attractive approach toward propylene oxide. However, this process suffers from a low yield rate over reported electrocatalysts. In this work, we develop an efficient electrocatalyst of Ag3PO4 for the electrooxidation of propylene into propylene oxide. The Ag3PO4 cubes with (100) facets exhibit the highest yield rate of 5.3 gPO m-2 h-1 at 2.4 V versus reversible hydrogen electrode, which is 1.6 and 2.5 times higher than those over Ag3PO4 rhombic dodecahedra with (110) facets and tetrahedra with (111) facets, respectively. The theoretical calculations reveal that the largest polarization of propylene on Ag3PO4 (100) facets is beneficial to break the symmetric π bonding and facilitate the formation of C-O bond. Meanwhile, Ag3PO4(100) facets exhibit the lowest adsorption energies of *C3H6 and *OH, inducing the lowest energy barrier of the rate-determining step and thus accounting for the highest catalytic performance.
Collapse
Affiliation(s)
- Jingwen Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mingfang Chi
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Menglin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiangdong Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qixuan Chang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weiran Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chengxuan Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
26
|
Wang S, Tong H, Li H, Shi X, Liu D, Li J, Guo K, Zhao L, Song S, Chen L, Cheng W, Wang X. Synthesis of a phosphomolybdic acid/nanocrystalline titanium silicalite-1 catalyst in the presence of hydrogen peroxide for effective adsorption-oxidative desulfurization. NEW J CHEM 2022. [DOI: 10.1039/d1nj04652g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ODS efficiency is in the order thiophene > dibenzothiophene > benzothiophene and may be attributed to the combined effect of HPMo and shape selectivity over Nano-TS-1.
Collapse
Affiliation(s)
- Siyue Wang
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Huan Tong
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Haonan Li
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Xin Shi
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Di Liu
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Jinhong Li
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Kaixuan Guo
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Liu Zhao
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Shengjie Song
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Lidong Chen
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 110629, Liaoning, China
| | - Weiguo Cheng
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangsheng Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
27
|
|
28
|
Ko M, Kim Y, Woo J, Lee B, Mehrotra R, Sharma P, Kim J, Hwang SW, Jeong HY, Lim H, Joo SH, Jang JW, Kwak JH. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat Catal 2021. [DOI: 10.1038/s41929-021-00724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. J Colloid Interface Sci 2021; 611:564-577. [PMID: 34971967 DOI: 10.1016/j.jcis.2021.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Activation of inert propylene to produce propylene oxide (PO) is critical, but still faces some challenges in realizing higher PO selectivity and productivity. Herein, a temperature-controlled phase transfer catalyst (MoOO·DMF) is prepared for the liquid-phase epoxidation of propylene with tert-butyl hydroperoxide (TBHP) as oxidant, which exhibit the selectivity of 90.6% and the productivity of 1286.42·h-1 for PO (catalyst/propylene = 0.77 mol‰). Some experimental factors (solvent types, reaction temperature, contact time, the dosage of catalyst, TBHP and substrate) were investigated, and the reaction kinetics and thermodynamics are discussed. MoOO·DMF has the characteristic of both homogeneous and heterogeneous catalysts, which can be dissolved in the solvent at higher temperatures and separated from the solvent after reaction by lowering the temperature. Importantly, MoOO·DMF has a wonderful epoxidation performance for many olefins (e.g., light olefins, linear α-olefins, cyclic olefins and others). The mechanisms are proved by in-situ FT-IR, ESR and HRMS spectrum to be the selective oxygen transfer from tert-butyl peroxide radical and the MoOO bridge in MoOO·DMF to propylene. Density functional theory (DFT) calculations show that the MoOO bridge in catalyst is the key role for the activation of both the OH bond in TBHP and the CC bond in propylene, thus enhanced the epoxidation of propylene.
Collapse
|
30
|
Zhang Z, Liu Y, Tian H, Ma X, Yue Q, Sun Z, Lu Y, Liu S. Hierarchically Ordered Macro-Microporous Polyoxometalate-Based Metal-Organic Framework Single Crystals. ACS NANO 2021; 15:16581-16588. [PMID: 34585908 DOI: 10.1021/acsnano.1c06259] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Facile construction of ordered macroporous polyoxometalate-based metal-organic frameworks (POM@MOFs) to break the intrinsic microporous restriction is significant but remains challenging. On one hand, the POMs introduced improve the structural stability and modify the pores of MOFs, e.g., introducing functional catalytic and adsorptive units. Meanwhile, the acidic POMs severely affect the nucleation and growth of the POM@MOFs, resulting in complicated synthesis and difficult assembly control. Herein, a general approach has been developed to fabricate ordered macroporous POM@MOF single crystals, involving close-packed polystyrene (PS) nanosphere templates. The artificially selected polar solvents exerting strong solvent effect with POMs weaken the affinity between POMs and metal ions, thereby effectively stabilizing the precursors from assembly before filling into the PS template interstices. The weak alkaline carboxylate used regulates the in situ nucleation and growth of POM@MOFs through deprotonation of the ligands as well as coordinating modulation, affording a series of hierarchically cuboctahedral POM@MOF single crystals with ordered macropores (ca. 180 nm) and intrinsic micropores after template removal. The ordered macroporous structure and thinned microporous skeleton markedly improve mass diffusion properties, while the integral single-crystal lattice retains superior stability.
Collapse
Affiliation(s)
- Zhong Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiwei Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongrui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xujiao Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Yue
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhixia Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
31
|
Chen W, Tan CH, Wang H, Ye X. Molybdenum/Tungsten-Based Heteropoly Salts in Oxidations. Chem Asian J 2021; 16:2753-2772. [PMID: 34286908 DOI: 10.1002/asia.202100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Indexed: 11/12/2022]
Abstract
Oxidation represents one of the most important and practical chemical transformations for both organic synthesis, material science and pharmaceutical area. Among the existing strategies, molybdenum/tungsten-based heteropoly salts involved oxidations with low-cost and environmentally benign terminal oxidant and thus have attracted considerable attention in recent years. In this review, we have summarized the recent development of heteropoly salts utilized in oxidations, mainly the peroxomolybdates and peroxotungstates. We wish to highlight the progress made in the past 20 years of this field. Three categories are classified according to the aggregation state of metal oxides. Special attention is paid to the catalytically active peroxometalate species generated during the oxidation process. It is helpful to shed light on the common features that enable highly efficient and selective oxidations. We aim to inspire fellow chemists to explore more functional metalates for catalytic oxidations, especially asymmetric versions. Meanwhile, we attempt to understand the design principles for the discovery of more efficient, selective and economical catalytic systems.
Collapse
Affiliation(s)
- Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| |
Collapse
|
32
|
Rossi-Fernández L, Dorn V, Radivoy G. A new and efficient methodology for olefin epoxidation catalyzed by supported cobalt nanoparticles. Beilstein J Org Chem 2021; 17:519-526. [PMID: 33727975 PMCID: PMC7934735 DOI: 10.3762/bjoc.17.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
A new heterogeneous catalytic system consisting of cobalt nanoparticles (CoNPs) supported on MgO and tert-butyl hydroperoxide (TBHP) as oxidant is presented. This CoNPs@MgO/t-BuOOH catalytic combination allowed the epoxidation of a variety of olefins with good to excellent yield and high selectivity. The catalyst preparation is simple and straightforward from commercially available starting materials and it could be recovered and reused maintaining its unaltered high activity.
Collapse
Affiliation(s)
- Lucía Rossi-Fernández
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, Bahía Blanca, B8000CPB, Argentina
| | - Viviana Dorn
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, Bahía Blanca, B8000CPB, Argentina
| | - Gabriel Radivoy
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, Bahía Blanca, B8000CPB, Argentina
| |
Collapse
|
33
|
Zhu H, Wang C, Zong L. Progress on Biological Activity Study and Enantioselective Synthesis of Sulfoxides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Natarajan P, Khan HA, Jaleel A, Park DS, Kang DC, Yoon S, Jung KD. The pronounced effect of Sn on RhSn catalysts for propane dehydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Zhou XT, Yu HY, Li Y, Xue C, Ji HB. Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yang Li
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China
| |
Collapse
|
36
|
Synthesis, catalytic activity and the structural transformation of dimeric mono-Fe (Ⅲ)-substituted Keggin-type polyoxotungstates in the oxidation of cyclohexanol with H2O2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Liu J, Yang G, Liu Y, Zhou Z, Zhang Z, Hu X. Selective Oxidation of Cyclohexene with H2O2 Catalyzed by Resin Supported Peroxo Phosphotungstic Acid Under Mild Conditions. Catal Letters 2020. [DOI: 10.1007/s10562-020-03273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Zhang Z, Cao GP, Cai Q, Lu H, Ji S, Fang R, Gao P, Feng M. Steam-Assisted in Situ Prepared TS-1 with Hierarchical Pores and Tunable Acid Sites Grown on Carbon Nanotubes Decorated Nickel Foam. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gui-Ping Cao
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Cai
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Lu
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Ji
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Fang
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Gao
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao Feng
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Li J, Yang Z, Li S, Jin Q, Zhao J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Rana M, Pareek A, Bhardwaj S, Arya G, Nimesh S, Arya H, Bhatt TK, Yaragorla S, Sharma AK. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42aggregation and cholinesterase activity related to Alzheimer's disease. RSC Adv 2020; 10:28827-28837. [PMID: 35520091 PMCID: PMC9055851 DOI: 10.1039/d0ra05172a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Novel series of aryldiazoquinoline multifunctional molecules controls amyloid formation and neuro-protective role by inhibiting esterase enzymes.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Abhishek Pareek
- School of Chemistry
- University of Hyderabad
- P.O. Central University
- Hyderabad
- India
| | - Shivani Bhardwaj
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Geeta Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Surendra Nimesh
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Hemant Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Tarun K. Bhatt
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | | | - Anuj K. Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| |
Collapse
|
41
|
Adams F, Pehl TM, Kränzlein M, Kernbichl SA, Kang JJ, Papadakis CM, Rieger B. (Co)polymerization of (−)-menthide and β-butyrolactone with yttrium-bis(phenolates): tuning material properties of sustainable polyesters. Polym Chem 2020. [DOI: 10.1039/d0py00379d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable thermoplastic elastomers derived from block copolymers of syndiotactic poly(3-hydroxybutyrate) and poly((−)-menthide) were synthesized via yttrium-mediated ring-opening polymerization.
Collapse
Affiliation(s)
- Friederike Adams
- WACKER-Chair of Macromolecular Chemistry
- Catalysis Research Center
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry
- Catalysis Research Center
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
| | - Moritz Kränzlein
- WACKER-Chair of Macromolecular Chemistry
- Catalysis Research Center
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
| | - Sebastian A. Kernbichl
- WACKER-Chair of Macromolecular Chemistry
- Catalysis Research Center
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
| | - Jia-Jhen Kang
- Soft Matter Physics Group
- Physics Department
- Technical University of Munich
- 85748 Garching
- Germany
| | - Christine M. Papadakis
- Soft Matter Physics Group
- Physics Department
- Technical University of Munich
- 85748 Garching
- Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry
- Catalysis Research Center
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
| |
Collapse
|
42
|
Lysenko AB, Senchyk GA, Domasevitch KV, Henfling S, Erhart O, Krautscheid H, Neves P, Valente AA, Pillinger M, Gonçalves IS. A Molybdenum Trioxide Hybrid Decorated by 3-(1,2,4-Triazol-4-yl)adamantane-1-carboxylic Acid: A Promising Reaction-Induced Self-Separating (RISS) Catalyst. Inorg Chem 2019; 58:16424-16433. [PMID: 31763830 DOI: 10.1021/acs.inorgchem.9b02137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
3-(1,2,4-Triazol-4-yl)adamantane-1-carboxylic acid (tradcH), a heterobifunctional organic ligand in which carboxylic acid and 1,2,4-triazole groups are united through a rigid 1,3-adamantanediyl spacer, was employed for the synthesis of a MoVI oxide organic hybrid. The ligand crystallized from water as tradcH·H2O (1), possessing a two-dimensional hydrogen-bonding network, and from ethanol as a cyclic molecular solvate with the composition (tradcH)3·2EtOH (2). Treatment of tradcH with MoO3 under hydrothermal conditions afforded a new Mo trioxide hybrid, [MoO3(tradcH)]·H2O (3), which was structurally characterized. In 3, the molybdenum atoms form a polymeric zigzag chain of {μ2-O-MoO2}n which is supported by double triazole bridges, while the carboxylic acid termini are left uncoordinated. The coordination environment of the Mo centers appears as distorted cis-{MoN2O4} octahedra. The hybrid exhibits high thermal stability (up to 270 °C) and was employed for a relatively broad scope of catalytic oxidation reactions in the liquid phase. Its catalytic behavior may be compared to a reversible mutation, featuring the best sides of homogeneous and heterogeneous catalysis. The original solid material converts into soluble active species, and the latter revert to the original material upon completion of the catalytic reaction, precipitating and allowing straightforward catalyst separation/reuse (like a heterogeneous catalyst). This catalyst was explored for a chemical reaction scope covering sulfoxidation, oxidative alcohol dehydrogenation, aldehyde oxidation, and olefin epoxidation, using hydrogen peroxide as an eco-friendly oxidant that gives water as a coproduct.
Collapse
Affiliation(s)
- Andrey B Lysenko
- Inorganic Chemistry Department , Taras Shevchenko National University of Kyiv , Volodimirska Str. 64 , Kyiv 01033 , Ukraine
| | - Ganna A Senchyk
- Inorganic Chemistry Department , Taras Shevchenko National University of Kyiv , Volodimirska Str. 64 , Kyiv 01033 , Ukraine
| | - Konstantin V Domasevitch
- Inorganic Chemistry Department , Taras Shevchenko National University of Kyiv , Volodimirska Str. 64 , Kyiv 01033 , Ukraine
| | - Stefan Henfling
- Institut für Anorganische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Oliver Erhart
- Institut für Anorganische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Harald Krautscheid
- Institut für Anorganische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Patrícia Neves
- Department of Chemistry, CICECO-Aveiro Institute of Materials , University of Aveiro , Campus Universitário de Santiago, 3810-193 Aveiro , Portugal
| | - Anabela A Valente
- Department of Chemistry, CICECO-Aveiro Institute of Materials , University of Aveiro , Campus Universitário de Santiago, 3810-193 Aveiro , Portugal
| | - Martyn Pillinger
- Department of Chemistry, CICECO-Aveiro Institute of Materials , University of Aveiro , Campus Universitário de Santiago, 3810-193 Aveiro , Portugal
| | - Isabel S Gonçalves
- Department of Chemistry, CICECO-Aveiro Institute of Materials , University of Aveiro , Campus Universitário de Santiago, 3810-193 Aveiro , Portugal
| |
Collapse
|
43
|
Evtushok VY, Ivanchikova ID, Podyacheva OY, Stonkus OA, Suboch AN, Chesalov YA, Zalomaeva OV, Kholdeeva OA. Carbon Nanotubes Modified by Venturello Complex as Highly Efficient Catalysts for Alkene and Thioethers Oxidation With Hydrogen Peroxide. Front Chem 2019; 7:858. [PMID: 31921779 PMCID: PMC6923790 DOI: 10.3389/fchem.2019.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/26/2019] [Indexed: 12/02/2022] Open
Abstract
In this work, we elaborated heterogeneous catalysts on the basis of the Venturello complex [PO4{WO(O2)2}4]3- (PW4) and nitrogen-free or nitrogen-doped carbon nanotubes (CNTs or N-CNTs) for epoxidation of alkenes and sulfoxidation of thioethers with aqueous hydrogen peroxide. Catalysts PW4/CNTs and PW4/N-CNTs (1.8 at. % N) containing 5-15 wt. % of PW4 and differing in acidity have been prepared and characterized by elemental analysis, N2 adsorption, IR spectroscopy, HR-TEM, and HAADF-STEM. Studies by STEM in HAADF mode revealed a quasi-molecular dispersion of PW4 on the surface of CNTs. The addition of acid during the immobilization is not obligatory to ensure site isolation and strong binding of PW4 on the surface of CNTs, but it allows one to increase the PW4 loading and affects both catalytic activity and product selectivity. Catalytic performance of the supported PW4 catalysts was evaluated in H2O2-based oxidation of two model substrates, cyclooctene and methyl phenyl sulfide, under mild conditions (25-50°C). The best results in terms of activity and selectivity were obtained using PW4 immobilized on N-free CNTs in acetonitrile or dimethyl carbonate as solvents. Catalysts PW4/CNTs can be applied for selective oxidation of a wide range of alkenes and thioethers provided a balance between activity and selectivity of the catalyst is tuned by a careful control of the amount of acid added during the immobilization of PW4. Selectivity, conversion, and turnover frequencies achieved in epoxidations over PW4/CNTs catalysts are close to those reported in the literature for homogeneous systems based on PW4. IR spectroscopy confirmed the retention of the Venturello structure after use in the catalytic reactions. The elaborated catalysts are stable to metal leaching, show a truly heterogeneous nature of the catalysis, can be easily recovered by filtration, regenerated by washing and evacuation, and then reused several times without loss of the catalytic performance.
Collapse
Affiliation(s)
- Vasiliy Yu Evtushok
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Irina D. Ivanchikova
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Olga Yu Podyacheva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga A. Stonkus
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Arina N. Suboch
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Yuri A. Chesalov
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Olga V. Zalomaeva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Oxana A. Kholdeeva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
44
|
Wang C, Jiang F, Zuo G, Liu B, Li H, Liu X. Remarkably enhanced performance of the metathesis reaction of ethylene and 1-butene to propene using one-step prepared W-MCM-41 catalysts. RSC Adv 2019; 9:40618-40627. [PMID: 35542674 PMCID: PMC9076240 DOI: 10.1039/c9ra08646c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
Highly dispersed tungsten species with an isolated tetrahedral WO x species structure are substantially beneficial for the metathesis reaction of ethylene and 1-butene to propene. The conventional impregnation method always leads to the formation of inactive crystalline WO3 thereby notably decreasing the amount of active sites. In this study, we synthesized a highly dispersed W-MCM-41 catalyst using the one-step precipitation method with a Si/W ratio of 30. The prepared catalyst showed excellent catalytic performance with a 1-butene conversion of 92.7% and a propene selectivity of 80.8%. In contrast, the impregnated catalyst with the same W loading as the one-step precipitation method resulted in a much lower 1-butene conversion of 76.5% and propene selectivity of 34.1%. Various characterization techniques including XRD, XPS, ICP-OES, UV-vis DRS, TEM, and Raman spectroscopy were applied to confirm that the one-step precipitation method can efficiently prepare well-dispersed W-MCM-41 catalysts with the desired structure in spite of the fact that the ideal dispersive structure was strongly dependent of the Si/W ratio and stirring time of the reaction mixture of tungstic acid and TEOS. In addition, the introduction of an upstream catalyst onto the W-MCM-41 catalyst could not obviously improve the 1-butene conversion and propene selectivity, which might be due to fast 1-butene isomerization easily occurring on the abundant Si-OH of the W-MCM-41 catalyst. This work provides new insights for the design of metathesis catalysts and reaction processes to efficiently convert ethylene and 1-butene into propene.
Collapse
Affiliation(s)
- Changji Wang
- College of Earth and Environment, Anhui University of Science and Technology 232001 Huainan China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Guangzheng Zuo
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Hanxu Li
- College of Earth and Environment, Anhui University of Science and Technology 232001 Huainan China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
45
|
Guo LL, Yu J, Shu M, Shen L, Si R. Silicon nitride as a new support for copper catalyst to produce acrolein via selective oxidation of propene with very low CO2 release. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Zhou Z, Dai G, Ru S, Yu H, Wei Y. Highly selective and efficient olefin epoxidation with pure inorganic-ligand supported iron catalysts. Dalton Trans 2019; 48:14201-14205. [PMID: 31508629 DOI: 10.1039/c9dt02997d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Over the past two decades, there have been major developments in the transition iron-catalyzed selective oxidation of alkenes to epoxides; a common structure found in drug, isolated natural products, and fine chemicals. Many of these approaches have enabled highly efficient and selective epoxidation of alkenes via the design of specialized ligands, which facilitates to control the activity and selectivity of the reactions catalyzed by iron atom. Herein, we report the development of the olefin epoxidation with inorganic-ligand supported iron-catalysts using 30% H2O2 as an oxidant, and the mechanism is similar to iron-porphyrin type. With the catalyst 1, (NH4)3[FeMo6O18(OH)6], various aromatic and aliphatic alkenes were successfully transformed into the corresponding epoxides with excellent yields as well as chemo- and stereo-selectivity. This catalytic system possesses the advantages of being able to avoid the use of expensive, toxic, air/moisture sensitive and commercially unavailable organic ligands. The generality of this methodology is simple to operate and exhibits high catalytic activity as well as excellent stability, which gives it the potential to be used on an industrial scale, and maybe opens a way for the catalytic oxidation reaction via inorganic-ligand coordinated iron catalysis.
Collapse
Affiliation(s)
- Zhuohong Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Guoyong Dai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China. and Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. hanyu0220@ tsinghua.edu.cn yonggewei@ tsinghua.edu.cn
| | - Shi Ru
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. hanyu0220@ tsinghua.edu.cn yonggewei@ tsinghua.edu.cn
| | - Han Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China. and Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. hanyu0220@ tsinghua.edu.cn yonggewei@ tsinghua.edu.cn
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. hanyu0220@ tsinghua.edu.cn yonggewei@ tsinghua.edu.cn and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China.
| |
Collapse
|
47
|
Asha T, Sithambaresan M, Prathapachandra Kurup M. Dioxidomolybdenum(VI) complexes chelated with N4-(3-methoxyphenyl)thiosemicarbazone as molybdenum(IV) precursors in oxygen atom transfer process and oxidation of styrene. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Zhang Z, Fang R, Kong XX, Feng M, Cao GP, Lu H, Ji S, Gao P, Zhang JH. Ultrastrong Interaction and High Dispersibility of TS-1 on Polymer-Modified Carbon Nanotubes/Nickel Foam. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Fang
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Xin Kong
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao Feng
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gui-Ping Cao
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Lu
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Ji
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Gao
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Hao Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Maiti SK, Ramanathan A, Subramaniam B. 110th Anniversary: Near-Total Epoxidation Selectivity and Hydrogen Peroxide Utilization with Nb-EISA Catalysts for Propylene Epoxidation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swarup K. Maiti
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, United States
| | - Anand Ramanathan
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, United States
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
50
|
Liu Q, He P, Yu H, Gu L, Ni B, Wang D, Wang X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. SCIENCE ADVANCES 2019; 5:eaax1081. [PMID: 31360771 PMCID: PMC6660201 DOI: 10.1126/sciadv.aax1081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/20/2019] [Indexed: 05/23/2023]
Abstract
The assembly of atomically precise clusters into superstructures has tremendous potential in structural tunability and applications. Here, we report a series of single-cluster nanowires, single-cluster nanorings, and three-dimensional superstructure assemblies built by POM clusters. By stepwise tuning of interactions at molecular levels, the configurations can be varied from single-cluster nanowires to nanorings. A series of single-cluster nanostructures in different configurations can be achieved with up to 15 kinds of POM clusters. The single-cluster nanowires and three-dimensional superstructures perform enhanced activity in the catalytic and electrochemical sensing fields, illustrating the universal functionality of single-cluster assemblies.
Collapse
Affiliation(s)
- Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peilei He
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongde Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|