1
|
Shu T, Chen Y, Xiao K, Huang H, Jia J, Yu Z, Jiang W, Yang J. Effects of short-term water velocity stimulation on the biochemical and transcriptional responses of grass carp ( Ctenopharyngodon idellus). Front Physiol 2023; 14:1248999. [PMID: 37719458 PMCID: PMC10501314 DOI: 10.3389/fphys.2023.1248999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Since 2011, ecological operation trials of the Three Gorges Reservoir (TGR) have been continuously conducted to improve the spawning quantity of the four major Chinese carp species below the Gezhouba Dam. In particular, exploring the effects of short-term water velocity stimulation on ovarian development in grass carp (Ctenopharyngodon idellus) is essential to understand the response of natural reproduction to ecological flows. We performed ovary histology analysis and biochemical assays among individuals with or without stimulation by running water. Although there were no obvious effects on the ovarian development characteristics of grass carp under short-term water velocity stimulation, estradiol, progesterone, follicle-stimulating hormone (FSH), and triiodothyronine (T3) concentrations were elevated. Then, we further explored the ovarian development of grass carp under short-term water velocity stimulation by RNA sequencing of ovarian tissues. In total, 221 and 741 genes were up- or downregulated under short-term water velocity stimulation, respectively, compared to the control group. The majority of differentially expressed genes (DEGs) were enriched in pathways including ABC transporters, cytokine-cytokine receptor interaction, ECM-receptor interaction, and steroid hormone biosynthesis. Important genes including gpr4, vtg1, C-type lectin, hsd17b1, cyp19a1a, cyp17a1, and rdh12 that are involved in ovarian development were regulated. Our results provide new insights and reveal potential regulatory genes and pathways involved in the ovarian development of grass carp under short-term water velocity stimulation, which may be beneficial when devising further ecological regulation strategies.
Collapse
Affiliation(s)
- Tingting Shu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Yan Chen
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kan Xiao
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Hongtao Huang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jingyi Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaoxi Yu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Wei Jiang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| |
Collapse
|
2
|
Dahal N, Glyshaw P, Carter G, Vanderploeg HA, Denef VJ. Impacts of an invasive filter-feeder on bacterial biodiversity are context dependent. FEMS Microbiol Ecol 2022; 99:6884136. [PMID: 36482091 DOI: 10.1093/femsec/fiac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteria represent most of the biodiversity and play key roles in virtually every ecosystem. In doing so, bacteria act as part of complex communities shaped by interactions across all domains of life. Here, we report on direct interactions between bacteria and dreissenid mussels, a group of invasive filter-feeders threatening global aquatic systems due to high filtration rates. Previous studies showed that dreissenids can impact bacterial community structure by changing trait distributions and abundances of specific taxa. However, studies on bacterial community effects were conducted using water from Lake Michigan (an oligotrophic lake) only, and it is unknown whether similar patterns are observed in systems with differing nutrient regimes. We conducted ten short-term dreissenid grazing experiments in 2019 using water from two eutrophic lake regions-the western basin of Lake Erie and Saginaw Bay in Lake Huron. Predation by dreissenids led to decline in overall bacterial abundance and diversity in both lakes. However, feeding on bacteria was not observed during every experiment. We also found that traits related to feeding resistance are less phylogenetically conserved than previously thought. Our results highlight the role of temporal, spatial, and genomic heterogeneity in bacterial response dynamics to a globally important invasive filter feeder.
Collapse
Affiliation(s)
- Nikesh Dahal
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Paul Glyshaw
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, United States
| | - Glenn Carter
- Cooperative Institute for Great Lakes Research, Ann Arbor, MI 48109, United States
| | - Henry A Vanderploeg
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, United States
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Consistency of mobile and sedentary movement extremes exhibited by an invasive fish, Silver Carp Hypophthalmichthys molitrix. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Cohen KE, George AE, Chapman DC, Chick JH, Hernandez LP. Developmental ecomorphology of the epibranchial organ of the silver carp, Hypophthalmichthys molitrix. JOURNAL OF FISH BIOLOGY 2020; 97:527-536. [PMID: 32447771 DOI: 10.1111/jfb.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Silver carp regularly consume and digest particles of food as small as 5 μm. This ability drives their efficient consumption of phytoplankton and because they feed low on the food chain they have an important place in aquaculture worldwide. In North America, where they are considered invasive, silver carp deplete food resources for native species and in so doing occupy increased niche space. Here, we determine the ontogenetic stage and size at which silver carp are morphologically capable of primarily feeding on particles <10 μm. Ecological studies on this species have shown that there is an ontogenetic shift in diet as predominantly zooplanktivorous juveniles later switch to eating much smaller phytoplankton. The occupation of this new trophic niche presents both a metabolic and a mechanical challenge to these fish, since it is unclear how they can efficiently feed on such small particles. We hypothesize that the epibranchial organ (EBO) in silver carp is essential in aggregating these small particles of food, allowing the species to consume mass quantities of tiny particles, thus mitigating metabolic constraints. In this study, we investigate early ontogeny of the EBO in silver carp to determine when this structure achieves the requisite morphology to become functional. We find that at around 80 mm standard length (SL) the EBOs are consistently filled with food, demonstrating that this accumulating organ has become functional. This size corresponds with previous ecological data documenting important shifts in the type of food consumed. While the basic bauplan of the EBO is established very early in ontogeny (by 15 mm SL), multiple waves of histological maturation of muscle, cartilage, gill rakers and epithelium ultimately form the functional structure.
Collapse
Affiliation(s)
- Karly E Cohen
- Department of Biological Sciences, Science and Engineering Hall, The George Washington University, Washington, District of Columbia, USA
- Biology Department, Life Sciences Building, University of Washington, Seattle, Washington, USA
| | - Amy E George
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Duane C Chapman
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - John H Chick
- National Great Rivers Research and Education Center, Alton, Illinois, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, Science and Engineering Hall, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Fanatico A, Arsi K, Upadhyaya I, Morales Ramos J, Donoghue D, Donoghue A. Sustainable Fish and Invertebrate Meals for Methionine and Protein Feeds in Organic Poultry Production. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Wang J, Chapman D, Xu J, Wang Y, Gu B. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA. PLoS One 2018; 13:e0197584. [PMID: 29782547 PMCID: PMC5962084 DOI: 10.1371/journal.pone.0197584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/06/2018] [Indexed: 11/21/2022] Open
Abstract
Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.
Collapse
Affiliation(s)
- Jianzhu Wang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - Duane Chapman
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Jun Xu
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- Department of Geological Sciences, Florida State University & National High Magnetic Field Laboratory, Tallahassee, FL, United States of America
| | - Binhe Gu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
- Soil and Water Science Department, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
7
|
Milardi M, Chapman D, Lanzoni M, Long JM, Castaldelli G. First evidence of bighead carp wild recruitment in Western Europe, and its relation to hydrology and temperature. PLoS One 2017; 12:e0189517. [PMID: 29232384 PMCID: PMC5726649 DOI: 10.1371/journal.pone.0189517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011-2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4-13.1 cm long (TL) and weighed 9.5-12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94-100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.
Collapse
Affiliation(s)
| | - Duane Chapman
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Mattia Lanzoni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - James M. Long
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University, Stillwater, OK, United States of America
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Wang J, Lamer JT, Gaughan S, Wachholtz M, Wang C, Lu G. Transcriptomic comparison of invasive bigheaded carps ( Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) and their hybrids. Ecol Evol 2016; 6:8452-8459. [PMID: 28031797 PMCID: PMC5167015 DOI: 10.1002/ece3.2574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/15/2022] Open
Abstract
Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), collectively called bigheaded carps, are invasive species in the Mississippi River Basin (MRB). Interspecific hybridization between bigheaded carps has been considered rare within their native rivers in China; however, it is prevalent in the MRB. We conducted de novo transcriptome analysis of pure and hybrid bigheaded carps and obtained 40,759 to 51,706 transcripts for pure, F1 hybrid, and backcross bigheaded carps. The search against protein databases resulted in 20,336–28,133 annotated transcripts (over 50% of the transcriptome) with over 13,000 transcripts mapped to 23 Gene Ontology biological processes and 127 KEGG metabolic pathways. More transcripts were detected in silver carp than in bighead carp; however, comparable numbers of transcripts were annotated. Transcriptomic variation detected between two F1 hybrids may indicate a potential loss of fitness in hybrids. The neighbor‐joining distance tree constructed using over 2,500 one‐to‐one orthologous sequences suggests transcriptomes could be used to infer the history of introgression and hybridization. Moreover, we detected 24,792 candidate SNPs that can be used to identify different species. The transcriptomes, orthologous sequences, and candidate SNPs obtained in this study should provide further knowledge of interspecific hybridization and introgression.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biology University of Nebraska at Omaha Omaha NE 68182 USA; Key Laboratory of Freshwater Fisheries Germplasm Resources Ministry of Agriculture Shanghai Ocean University Shanghai 201306 China
| | - James T Lamer
- Department of Biological Sciences Western Illinois University Macomb IL 61455 USA
| | - Sarah Gaughan
- Department of Biology University of Nebraska at Omaha Omaha NE 68182 USA
| | - Michael Wachholtz
- Department of Biology University of Nebraska at Omaha Omaha NE 68182 USA
| | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources Ministry of Agriculture Shanghai Ocean University Shanghai 201306 China
| | - Guoqing Lu
- Department of Biology University of Nebraska at Omaha Omaha NE 68182 USA; School of Interdisciplinary Informatics University of Nebraska at Omaha Omaha NE 68182 USA
| |
Collapse
|
9
|
Zhang X, Liu Y, Guo H. Cross-lake comparisons of physical and biological settling of phosphorus: A phosphorus budget model with Bayesian hierarchical approach. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Affiliation(s)
- Philip E Hulme
- The Bio-Protection Research Centre, Lincoln University, Canterbury, 7647, New Zealand.
| |
Collapse
|
11
|
Tang W, Chen Y. Hybridization between native barbless carp (Cyprinus pellegrini) and introduced common carp (C. carpio) in Xingyun Lake, China. Zoolog Sci 2012; 29:311-8. [PMID: 22559965 DOI: 10.2108/zsj.29.311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hybridization with introduced fish species is an important threat to native fish species. Here we investigated hybridization between native barbless carp (Cyprinus pellegrini) and introduced common carp (C. carpio) in Xingyun Lake in the Yunnan-Guizhou plateau of China. A total of 203 individuals of Cyprinus from Xingyun Lake were studied by combination of morphological and genetic analyses. Most individuals were strictly intermediate between the two parental species in morphology, strongly suggesting that extensive hybridization has occurred. Bayesian model-based clustering of the genetic data suggests that there are two distinct genetic groups corresponding to barbless and common carp respectively. Many individuals in the two genetic groups showed intermediate morphology, suggesting that both groups actually contain massively introgressed genes. Only two individuals were identified as barbless carp both morphologically and genetically, hinting that this native species is at risk of genetic extinction in Xingyun Lake.
Collapse
Affiliation(s)
- Weixing Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | |
Collapse
|
12
|
Liu X, Li Y. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS One 2009; 4:e6199. [PMID: 19593446 PMCID: PMC2704955 DOI: 10.1371/journal.pone.0006199] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/16/2009] [Indexed: 12/03/2022] Open
Abstract
Many species introduced by humans for social and economic benefits have invaded new ranges by escaping from captivity. Such invasive species can negatively affect biodiversity and economies. Understanding the factors that relate to the establishment of feral populations of introduced species is therefore of great importance for managing introduced species. The American Bullfrog (Lithobates catesbeianus) is one species that has escaped from farms, and it is now found in the wild in China. In this study, we examined influences of two types of bullfrog farm (termed simple and elaborate farm enclosures) on the establishment of feral populations of this species in 137 water bodies in 66 plots in four provinces of China. The likelihood of establishment of bullfrog populations in water bodies in plots with simple enclosures (49/89 = 55.1%) was higher than those with elaborate enclosures (3/48 = 6.3%). Based on the Akaike Information Criterion, the minimum adequate model of generalized linear mixed models with a binomial error structure and a logit link function showed that the establishment or failure of bullfrog populations in water bodies was positively correlated with the presence of a simple enclosure, the number of bullfrogs raised and the presence of permanent water in a plot, but negatively correlated with distance from a bullfrog farm and the occurrence of frequent hunting. Results therefore suggest that a simple farm enclosure can increase the establishment of feral bullfrog populations compared with an elaborate enclosure. Our findings are the first to quantify the importance of improving farming enclosures to control and minimize the risk from introduced species.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan, Beijing, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Sampson SJ, Chick JH, Pegg MA. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9265-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Xie L, Xie P, Ozawa K, Honma T, Yokoyama A, Park HD. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 127:431-439. [PMID: 14638304 DOI: 10.1016/j.envpol.2003.08.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 microg g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 microg g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 microg g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood>liver>muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters.
Collapse
Affiliation(s)
- Liqiang Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|