1
|
Lahiri DK, Maloney B, Song W, Sokol DK. Crossing the "Birth Border" for Epigenetic Effects. Biol Psychiatry 2022; 92:e21-e23. [PMID: 35248366 PMCID: PMC9514510 DOI: 10.1016/j.biopsych.2021.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Bryan Maloney
- Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Weihong Song
- Institute of Aging, Wenzhou Medical University, Wenzhou, China; Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah K Sokol
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
2
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
3
|
Abstract
Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, is characterized by chronic intestinal inflammation due to a complex interaction of genetic determinants, disruption of mucosal barriers, aberrant inflammatory signals, loss of tolerance, and environmental triggers. Importantly, the incidence of pediatric IBD is rising, particularly in children younger than 10 years. In this review, we discuss the clinical presentation of these patients and highlight environmental exposures that may affect disease risk, particularly among people with a background genetic risk. With regard to both children and adults, we review advancements in understanding the intestinal epithelium, the mucosal immune system, and the resident microbiota, describing how dysfunction at any level can lead to diseases like IBD. We conclude with future directions for applying advances in IBD genetics to better understand pathogenesis and develop therapeutics targeting key pathogenic nodes.
Collapse
Affiliation(s)
- Joanna M Peloquin
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Eduardo J Villablanca
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , ,
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease and.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Harvard Medical School, Boston, Massachusetts 02115; , , , .,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
4
|
Abstract
Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 W. 15th St., Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM. Global DNA methylation in a population with aflatoxin B1 exposure. Epigenetics 2013; 8:962-9. [PMID: 23867725 DOI: 10.4161/epi.25696] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that global DNA hypomethylation, measured as Sat2 methylation in white blood cells (WBC), and aflatoxin B1 (AFB1) exposure were associated with increased hepatocellular carcinoma risk. In this study, we assessed the association between AFB1 exposure and global DNA methylation. We measured LINE-1 and Sat2 methylation in WBC DNA samples from 1140 cancer free participants of the Cancer Screening Program (CSP) cohort. Blood and urine samples were used to determine the level of AFB1-albumin (AFB1-Alb) adducts and urinary AFB1 metabolites. In continuous models, we found reverse associations of urinary AFB1 with LINE-1 and Sat2 methylation. The odds ratio (OR) per 1 unit decrease were 1.12 (95%CI = 1.03-1.22) for LINE-1 and 1.48 (95%CI = 1.10-2.00) for Sat2 methylation. When compared with subjects in the highest quartile of LINE-1, we found that individuals in the 2nd and 3rd quartiles were less likely to have detectable AFB1-Alb adducts, with ORs (95%CI) of 0.61 (0.40-0.93), 0.61 (0.40-.94), and 1.09 (0.69-1.72), respectively. The OR for detectable AFB1-Alb was 1.81 (95%CI = 1.15-2.85) for subjects in the lowest quartile of Sat2 methylation. The OR for detection of urinary AFB1 for those with LINE-1 methylation in the lowest quartile compared with those in the highest quartile was 1.87 (95%CI = 1.15-3.04). The corresponding OR was 1.75 (95%CI = 1.08-2.82) for subjects in the lowest quartile of Sat2 methylation. The association between AFB1 exposure and global DNA methylation may have implications for the epigenetic effect of AFB1 on hepatocellular carcinoma development and also suggests that changes in DNA methylation may represent an epigenetic biomarker of dietary AFB1 exposure.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences; Mailman School of Public Health of Columbia University; New York, NY USA
| | | | | | | | | | | |
Collapse
|
6
|
Lahiri DK, Maloney B. Gene × environment interaction by a longitudinal epigenome-wide association study (LEWAS) overcomes limitations of genome-wide association study (GWAS). Epigenomics 2013; 4:685-99. [PMID: 23244313 DOI: 10.2217/epi.12.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of genome-wide association studies is to identify SNPs unique to disease. It usually involves a single sampling from subjects' lifetimes. While primary DNA sequence variation influences gene-expression levels, expression is also influenced by epigenetics, including the 'somatic epitype' (G(SE)), an epigenotype acquired postnatally. While genes are inherited, and novel polymorphisms do not routinely appear, G(SE) is fluid. Furthermore, G(SE) could respond to environmental factors (such as heavy metals) and to differences in exercise, maternal care and dietary supplements - all of which postnatally modify oxidation or methylation of DNA, leading to altered gene expression. Change in epigenetic status may be critical for the development of many diseases. We propose a 'longitudinal epigenome-wide association study', wherein G(SE) are measured at multiple time points along with subjects' histories. This Longitudinal epigenome-wide association study, based on the 'dynamic' somatic epitype over the 'static' genotype, merits further investigation.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
7
|
Pavanello S, Lotti M. Biological monitoring of carcinogens: current status and perspectives. Arch Toxicol 2011; 86:535-41. [PMID: 22159923 DOI: 10.1007/s00204-011-0793-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022]
Abstract
Biomonitoring exposures to carcinogens is common practice and a variety of biomarkers have been developed to assess both exposures and biochemical/biological effects. However, their clinical and preventive relevance is still uncertain. The understanding of cancer as a genetic disease has dramatically evolved during last decades, showing that cancer cell types acquire their characteristics with different strategies, time frames and microenvironments. Therefore, the place of current biomarkers within this complex scenario of gene-environment interactions leading to cancer cannot be defined. Reasons are manifold. Most studies assessed cancer risk on a group basis through snapshots taken at unknown time-points of the postulated chain of events. Little attention has been paid to the variety and variability of exposures, and no prospective study validated the indicators of biochemical/biological effects. New opportunities and suggestions for biomonitoring exposures to carcinogens could derive from exploring the exposome that combines exposures from all sources both external and internal. The discovery of new biomarkers and the identification of relevant gene-specific pathways could be achieved through metabolomic and genome-wide studies. In conclusion, it is possible to envisage personalized biomonitoring procedures, such as those already implemented in the context of nutrition and clinical oncology.
Collapse
Affiliation(s)
- Sofia Pavanello
- Dipartimento di Medicina Ambientale e Sanità Pubblica, Università degli Studi Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | | |
Collapse
|
8
|
Pleil JD, Stiegel MA, Sobus JR. Breath biomarkers in environmental health science: exploring patterns in the human exposome. J Breath Res 2011; 5:046005. [DOI: 10.1088/1752-7155/5/4/046005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|