1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Isemura M, Kouzaki K, Tamura Y, Kotani T, Nakazato K. Belt electrode tetanus muscle stimulation reduces denervation-induced atrophy of rat multiple skeletal muscle groups. Sci Rep 2024; 14:5848. [PMID: 38462654 PMCID: PMC10925608 DOI: 10.1038/s41598-024-56382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan.
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan.
| | - Shohei Kamiya
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Ryuji Akimoto
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Shunta Tadano
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Mako Isemura
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Karina Kouzaki
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Yuki Tamura
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Takaya Kotani
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Koichi Nakazato
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| |
Collapse
|
4
|
Huffines AK, Schneider DA. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in Saccharomyces cerevisiae. Genes (Basel) 2024; 15:247. [PMID: 38397236 PMCID: PMC10888141 DOI: 10.3390/genes15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing the three largest eukaryotic ribosomal RNAs (rRNAs), which form the backbone of the ribosome. Transcription by Pol I is required for cell growth and, therefore, is subject to complex and intricate regulatory mechanisms. To accomplish this robust regulation, the cell engages a series of trans-acting transcription factors. One such factor, high mobility group protein 1 (Hmo1), has long been established as a trans-acting factor for Pol I in Saccharomyces cerevisiae; however, the mechanism by which Hmo1 promotes rRNA synthesis has not been defined. Here, we investigated the effect of the deletion of HMO1 on transcription elongation by Pol I in vivo. We determined that Hmo1 is an important activator of transcription elongation, and without this protein, Pol I accumulates across rDNA in a sequence-specific manner. Our results demonstrate that Hmo1 promotes efficient transcription elongation by rendering Pol I less sensitive to pausing in the G-rich regions of rDNA.
Collapse
Affiliation(s)
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Theophanous A, Christodoulou A, Mattheou C, Sibai DS, Moss T, Santama N. Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network. J Biol Chem 2023; 299:105203. [PMID: 37660911 PMCID: PMC10558777 DOI: 10.1016/j.jbc.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.
Collapse
Affiliation(s)
- Andria Theophanous
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
6
|
Bragdon MDJ, Patel N, Chuang J, Levien E, Bashor CJ, Khalil AS. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 2023; 186:3810-3825.e18. [PMID: 37552983 PMCID: PMC10528910 DOI: 10.1016/j.cell.2023.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.
Collapse
Affiliation(s)
- Meghan D J Bragdon
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Nikit Patel
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James Chuang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ethan Levien
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Nechay M, Wang D, Kleiner RE. Inhibition of nucleolar transcription by oxaliplatin involves ATM/ATR kinase signaling. Cell Chem Biol 2023; 30:906-919.e4. [PMID: 37433295 PMCID: PMC10529435 DOI: 10.1016/j.chembiol.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mechanism of action. Here, we demonstrate that oxaliplatin, a Pt drug used to treat colorectal cancer, inhibits rRNA transcription through ATM and ATR signaling, and induces DNA damage and nucleolar disruption. We show that oxaliplatin causes nucleolar accumulation of the nucleolar DNA damage response proteins (n-DDR) NBS1 and TOPBP1; however transcriptional inhibition does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing the nucleolar response from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct ATM and ATR signaling pathway that functions to inhibit Pol I transcription in the absence of direct nucleolar DNA damage, demonstrating how nucleolar stress and transcriptional silencing can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
Affiliation(s)
- Misha Nechay
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Harold C. All these screens that we've done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep 2023; 43:BSR20230631. [PMID: 37335083 PMCID: PMC10329186 DOI: 10.1042/bsr20230631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Ribosome biogenesis is the complex and essential process that ultimately leads to the synthesis of cellular proteins. Understanding each step of this essential process is imperative to increase our understanding of basic biology, but also more critically, to provide novel therapeutic avenues for genetic and developmental diseases such as ribosomopathies and cancers which can arise when this process is impaired. In recent years, significant advances in technology have made identifying and characterizing novel human regulators of ribosome biogenesis via high-content, high-throughput screens. Additionally, screening platforms have been used to discover novel therapeutics for cancer. These screens have uncovered a wealth of knowledge regarding novel proteins involved in human ribosome biogenesis, from the regulation of the transcription of the ribosomal RNA to global protein synthesis. Specifically, comparing the discovered proteins in these screens showed interesting connections between large ribosomal subunit (LSU) maturation factors and earlier steps in ribosome biogenesis, as well as overall nucleolar integrity. In this review, a discussion of the current standing of screens for human ribosome biogenesis factors through the lens of comparing the datasets and discussing the biological implications of the areas of overlap will be combined with a look toward other technologies and how they can be adapted to discover more factors involved in ribosome synthesis, and answer other outstanding questions in the field.
Collapse
Affiliation(s)
- Cecelia M. Harold
- Department of Genetics, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
9
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Saproo S, Sarkar SS, Gupta E, Chattopadhyay S, Charaya A, Kalra S, Ahuja G, Naidu S. MiR-330-5p and miR-1270 target essential components of RNA polymerase I transcription and exhibit a novel tumor suppressor role in lung adenocarcinoma. Cancer Gene Ther 2023; 30:288-301. [PMID: 36253542 DOI: 10.1038/s41417-022-00544-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
Upregulation of RNA polymerase I (Pol I) transcription and the overexpression of Pol I transcriptional machinery are crucial molecular alterations favoring malignant transformation. However, the causal molecular mechanism(s) of this aberration remain largely unknown. Here, we found that Pol I transcription and its core machinery are upregulated in lung adenocarcinoma (LUAD). We show that the loss of miRNAs (miR)-330-5p and miR-1270 expression contributes to the upregulation of Pol I transcription in LUAD. Constitutive overexpression of these miRs in LUAD cell lines suppressed the expression of core components of Pol I transcription, and reduced global ribosomal RNA synthesis. Importantly, miR-330-5p/miR-1270-mediated repression of Pol I transcription exerted multiple tumor suppressive functions including reduced proliferation, cell cycle arrest, enhanced apoptosis, reduced migration, increased drug sensitivity, and reduced tumor burden in a mouse xenograft model. Mechanistically, the downregulation of miR-330-5p and miR-1270 is regulated by Pol I subunit-derived circular RNA circ_0055467 and DNA hypermethylation, respectively. This study uncovers a novel miR-330-5p/miR-1270 mediated post-transcriptional regulation of Pol I transcription, and establish tumor suppressor properties of these miRs in LUAD. Ultimately, our findings provide a rationale for the therapeutic targeting of Pol I transcriptional machinery for LUAD.
Collapse
Affiliation(s)
- Sheetanshu Saproo
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shashanka S Sarkar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ekta Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Sourav Chattopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Aarzoo Charaya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Siddhant Kalra
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
11
|
Zannino L, Pagano A, Casali C, Oldani M, Balestrazzi A, Biggiogera M. Mercury chloride alters heterochromatin domain organization and nucleolar activity in mouse liver. Histochem Cell Biol 2023; 159:61-76. [PMID: 36136163 PMCID: PMC9899742 DOI: 10.1007/s00418-022-02151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Mercury is a highly toxic element that induces severe alterations and a broad range of adverse effects on health. Its exposure is a global concern because it is widespread in the environment due to its multiple industrial, domestic, agricultural and medical usages. Among its various chemical forms, both humans and animals are mainly exposed to mercury chloride (HgCl2), methylmercury and elemental mercury. HgCl2 is metabolized primarily in the liver. We analysed the effects on the nuclear architecture of an increasing dosage of HgCl2 in mouse hepatocytes cell culture and in mouse liver, focusing specifically on the organization, on some epigenetic features of the heterochromatin domains and on the nucleolar morphology and activity. Through the combination of molecular and imaging approaches both at optical and electron microscopy, we show that mercury chloride induces modifications of the heterochromatin domains and a decrease of some histones post-translational modifications associated to heterochromatin. This is accompanied by an increase in nucleolar activity which is reflected by bigger nucleoli. We hypothesized that heterochromatin decondensation and nucleolar activation following mercury chloride exposure could be functional to express proteins necessary to counteract the harmful stimulus and reach a new equilibrium.
Collapse
Affiliation(s)
- Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Claudio Casali
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Monica Oldani
- Department of Biology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Fu Y, Liu Y, Wen T, Fang J, Chen Y, Zhou Z, Gu X, Wu H, Sheng J, Xu Z, Zou W, Chen B. Real-time imaging of RNA polymerase I activity in living human cells. J Biophys Biochem Cytol 2022; 222:213608. [PMID: 36282216 PMCID: PMC9606689 DOI: 10.1083/jcb.202202110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time. Here, we develop LiveArt (live imaging-based analysis of rDNA transcription) to visualize and quantify the spatiotemporal dynamics of endogenous ribosomal RNA (rRNA) synthesis. LiveArt reveals mitotic silencing and reactivation of rDNA transcription, as well as the transcriptional kinetics of interphase rDNA. Using LiveArt, we identify SRFBP1 as a potential regulator of rRNA synthesis. We show that rDNA transcription occurs in bursts and can be altered by modulating burst duration and amplitude. Importantly, LiveArt is highly effective in the screening application for anticancer drugs targeting Pol I transcription. These approaches pave the way for a deeper understanding of the mechanisms underlying nucleolar functions.
Collapse
Affiliation(s)
- Yujuan Fu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tanye Wen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yalong Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziying Zhou
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Gu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Environmental Medicine, and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China,Insititute of Translational Medicine, Zhejiang University, Hangzhou, China,Wei Zou:
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China,Correspondence to Baohui Chen:
| |
Collapse
|
13
|
Lee B, Jaberi-Lashkari N, Calo E. A unified view of low complexity regions (LCRs) across species. eLife 2022; 11:e77058. [PMID: 36098382 PMCID: PMC9470157 DOI: 10.7554/elife.77058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Low complexity regions (LCRs) play a role in a variety of important biological processes, yet we lack a unified view of their sequences, features, relationships, and functions. Here, we use dotplots and dimensionality reduction to systematically define LCR type/copy relationships and create a map of LCR sequence space capable of integrating LCR features and functions. By defining LCR relationships across the proteome, we provide insight into how LCR type and copy number contribute to higher order assemblies, such as the importance of K-rich LCR copy number for assembly of the nucleolar protein RPA43 in vivo and in vitro. With LCR maps, we reveal the underlying structure of LCR sequence space, and relate differential occupancy in this space to the conservation and emergence of higher order assemblies, including the metazoan extracellular matrix and plant cell wall. Together, LCR relationships and maps uncover and identify scaffold-client relationships among E-rich LCR-containing proteins in the nucleolus, and revealed previously undescribed regions of LCR sequence space with signatures of higher order assemblies, including a teleost-specific T/H-rich sequence space. Thus, this unified view of LCRs enables discovery of how LCRs encode higher order assemblies of organisms.
Collapse
Affiliation(s)
- Byron Lee
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nima Jaberi-Lashkari
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Kotani T, Tamura Y, Kouzaki K, Kato H, Isemura M, Nakazato K. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension. J Appl Physiol (1985) 2022; 133:822-833. [PMID: 36007895 DOI: 10.1152/japplphysiol.00204.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle unloading leads to muscle atrophy. Ribosome synthesis has been implicated as an important skeletal muscle mass regulator owing to its translational capacity. Muscle unloading induces a reduction in ribosome synthesis and content, with muscle atrophy. Percutaneous electrical muscle stimulation (pEMS)-induced muscle contraction is widely used in clinics to improve muscle mass. However, its efficacy in rescuing the reduction in ribosomal synthesis has not been addressed thus far. We examined the effects of daily pEMS treatment on ribosome synthesis and content during mouse hindlimb unloading. Male C57BL/6J mice were randomly assigned to sedentary (SED) and hindlimb unloading by pelvic suspension (HU) groups. Muscle contraction was triggered by pEMS treatment of the right gastrocnemius muscle of a subset of the HU group (HU+pEMS). Hindlimb unloading for 6 days significantly lowered 28S rRNA, rpL10, and rpS3 expression, which was rescued by daily pEMS treatment. The protein expression of phospho-p70S6K and UBF was significantly higher in the HU+pEMS than in the HU group. The mRNA expression of ribophagy receptor Nufip1 increased in both the HU and HU+pEMS groups. Protein light chain 3 (LC3)-II expression and the LC3-II/LC3-I ratio were increased by HU, but pEMS attenuated this increase. Our findings indicate that during HU, daily pEMS treatment prevents the reduction in the levels of some proteins associated with ribosome synthesis. Additionally, the HU-induced activation of ribosome degradation may be attenuated. These data provide insights into ribosome content regulation and the mechanism of attenuation of muscle atrophy by pEMS treatment during muscle disuse.
Collapse
Affiliation(s)
- Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Hikaru Kato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Isemura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
15
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
16
|
Concurrent CDX2 cis-deregulation and UBTF-ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood 2022; 139:3505-3518. [PMID: 35316324 PMCID: PMC9203705 DOI: 10.1182/blood.2021014723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
CDX2 cis-deregulation and UBTF::ATXN7L3 fusion driven by focal deletions define a novel subtype of B-ALL. CDX2/UBTF::ATXN7L3 is a high-risk B-ALL subtype in young adults, which warrants improved therapeutic strategies.
Oncogenic alterations underlying B-cell acute lymphoblastic leukemia (B-ALL) in adults remain incompletely elucidated. To uncover novel oncogenic drivers, we performed RNA sequencing and whole-genome analyses in a large cohort of unresolved B-ALL. We identified a novel subtype characterized by a distinct gene expression signature and the unique association of 2 genomic microdeletions. The 17q21.31 microdeletion resulted in a UBTF::ATXN7L3 fusion transcript encoding a chimeric protein. The 13q12.2 deletion resulted in monoallelic ectopic expression of the homeobox transcription factor CDX2, located 138 kb in cis from the deletion. Using 4C-sequencing and CRISPR interference experiments, we elucidated the mechanism of CDX2 cis-deregulation, involving PAN3 enhancer hijacking. CDX2/UBTF ALL (n = 26) harbored a distinct pattern of additional alterations including 1q gain and CXCR4 activating mutations. Within adult patients with Ph− B-ALL enrolled in GRAALL trials, patients with CDX2/UBTF ALL (n = 17/723, 2.4%) were young (median age, 31 years) and dramatically enriched in females (male/female ratio, 0.2, P = .002). They commonly presented with a pro-B phenotype ALL and moderate blast cell infiltration. They had poor response to treatment including a higher risk of failure to first induction course (19% vs 3%, P = .017) and higher post-induction minimal residual disease (MRD) levels (MRD ≥ 10−4, 93% vs 46%, P < .001). This early resistance to treatment translated into a significantly higher cumulative incidence of relapse (75.0% vs 32.4%, P = .004) in univariate and multivariate analyses. In conclusion, we discovered a novel B-ALL entity defined by the unique combination of CDX2 cis-deregulation and UBTF::ATXN7L3 fusion, representing a high-risk disease in young adults.
Collapse
|
17
|
Ripmeester EGJ, Welting TJM, van den Akker GGH, Surtel DAM, Steijns JSJ, Cremers A, van Rhijn LW, Caron MMJ. BMP7 increases protein synthesis in SW1353 cells and determines rRNA levels in a NKX3-2-dependent manner. PLoS One 2022; 17:e0263430. [PMID: 35139106 PMCID: PMC8827423 DOI: 10.1371/journal.pone.0263430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype.
Collapse
Affiliation(s)
- Ellen G. J. Ripmeester
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - Tim J. M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Guus G. H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - Don A. M. Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - Jessica S. J. Steijns
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - Lodewijk W. van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marjolein M. J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
18
|
Tremblay MG, Sibai DS, Valère M, Mars JC, Lessard F, Hori RT, Khan MM, Stefanovsky VY, LeDoux MS, Moss T. Ribosomal DNA promoter recognition is determined in vivo by cooperation between UBTF1 and SL1 and is compromised in the UBTF-E210K neuroregression syndrome. PLoS Genet 2022; 18:e1009644. [PMID: 35139074 PMCID: PMC8863233 DOI: 10.1371/journal.pgen.1009644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/22/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.
Collapse
Affiliation(s)
- Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Dany S. Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Melissa Valère
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-Clément Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | | | - Mohammad Moshahid Khan
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis TN and Veracity Neuroscience LLC, Memphis, Tennessee, United States of America
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
The oncogenic role of treacle ribosome biogenesis factor 1 ( TCOF1) in human tumors: a pan-cancer analysis. Aging (Albany NY) 2022; 14:943-960. [PMID: 35093935 PMCID: PMC8833134 DOI: 10.18632/aging.203852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Treacle ribosome biogenesis factor 1 (TCOF1) plays a crucial role in multiple processes, including ribosome biogenesis, DNA damage response (DDR), mitotic regulation, and telomere integrity. However, its role in cancers remains unclear. We aimed to visualize the expression, prognostic, and mutational landscapes of TCOF1 across cancers and to explore its association with immune infiltration. In this work, we integrated information from TCGA and GEO to explore the differential expression and prognostic value of TCOF1. Then, the mutational profiles of TCOF1 in cancers were investigated. We further determined the correlation between TCOF1 and immune cell infiltration levels. Additionally, we determined correlations among certain immune checkpoints, microsatellite instability, tumor mutational burden (TMB), and TCOF1. Potential pathways of TCOF1 in tumorigenesis were analyzed as well. In general, tumor tissue had a higher expression level of TCOF1 than normal tissue. The prognostic value of TCOF1 was multifaceted, depending on type of cancer. TCOF1 was correlated with tumor purity, CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells (DCs) in 6, 14, 16, 12, 20, 13, and 17 cancer types, respectively. TCOF1 might act on ATPase activity, microtubule binding, tubulin binding, and catalytic activity (on DNA), and participate in tumorigenesis through “cell cycle” and “cellular-senescence” pathways. TCOF1 could affect pan-cancer prognosis and was correlated with immune cell infiltration. “Cell cycle” and “cellular-senescence” pathways were involved in the functional mechanisms of TCOF1, a finding that awaits further experimental validation.
Collapse
|
20
|
Schächner C, Merkl PE, Pilsl M, Schwank K, Hergert K, Kruse S, Milkereit P, Tschochner H, Griesenbeck J. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes. Methods Mol Biol 2022; 2533:25-38. [PMID: 35796980 PMCID: PMC9761505 DOI: 10.1007/978-1-0716-2501-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.
Collapse
Affiliation(s)
- Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Kristin Hergert
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Sebastian Kruse
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
21
|
DNA Intercalators Inhibit Eukaryotic Ribosomal RNA Synthesis by Impairing the Initiation of Transcription. Genes (Basel) 2021; 12:genes12091412. [PMID: 34573394 PMCID: PMC8466728 DOI: 10.3390/genes12091412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system.
Collapse
|
22
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|
23
|
Kim HG, Huot JR, Pin F, Guo B, Bonetto A, Nader GA. Reduced rDNA transcription diminishes skeletal muscle ribosomal capacity and protein synthesis in cancer cachexia. FASEB J 2021; 35:e21335. [PMID: 33527503 PMCID: PMC7863588 DOI: 10.1096/fj.202002257r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Muscle wasting in cancer is associated with deficits in protein synthesis, yet, the mechanisms underlying this anabolic impairment remain poorly understood. The capacity for protein synthesis is mainly determined by the abundance of muscle ribosomes, which is in turn regulated by transcription of the ribosomal (r)RNA genes (rDNA). In this study, we investigated whether muscle loss in a preclinical model of ovarian cancer is associated with a reduction in ribosomal capacity and was a consequence of impaired rDNA transcription. Tumor bearing resulted in a significant loss in gastrocnemius muscle weight and protein synthesis capacity, and was consistent with a significant reduction in rDNA transcription and ribosomal capacity. Despite the induction of the ribophagy receptor NUFIP1 mRNA and the loss of NUFIP1 protein, in vitro studies revealed that while inhibition of autophagy rescued NUFIP1, it did not prevent the loss of rRNA. Electrophoretic analysis of rRNA fragmentation from both in vivo and in vitro models showed no evidence of endonucleolytic cleavage, suggesting that rRNA degradation may not play a major role in modulating muscle ribosome abundance. Our results indicate that in this model of ovarian cancer-induced cachexia, the ability of skeletal muscle to synthesize protein is compromised by a reduction in rDNA transcription and consequently a lower ribosomal capacity. Thus, impaired ribosomal production appears to play a key role in the anabolic deficits associated with muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Hyo-Gun Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bin Guo
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gustavo A Nader
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.,Penn State Cancer Institute, The Pennsylvania State University, University Park, PA, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
24
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
25
|
The Role of TCOF1 Gene in Health and Disease: Beyond Treacher Collins Syndrome. Int J Mol Sci 2021; 22:ijms22052482. [PMID: 33804586 PMCID: PMC7957619 DOI: 10.3390/ijms22052482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleoli are membrane-less nuclear substructures that govern ribosome biogenesis and participate in multiple other cellular processes such as cell cycle progression, stress sensing, and DNA damage response. The proper functioning of these organelles is ensured by specific proteins that maintain nucleolar structure and mediate key nucleolar activities. Among all nucleolar proteins, treacle encoded by TCOF1 gene emerges as one of the most crucial regulators of cellular processes. TCOF1 was initially discovered as a gene involved in the Treacher Collins syndrome, a rare genetic disorder characterized by severe craniofacial deformations. Later studies revealed that treacle regulates ribosome biogenesis, mitosis, proliferation, DNA damage response, and apoptosis. Importantly, several reports indicate that treacle is also involved in cancer development, progression, and response to therapies, and may contribute to other pathologies such as Hirschsprung disease. In this manuscript, we comprehensively review the structure, function, and the regulation of TCOF1/treacle in physiological and pathological processes.
Collapse
|
26
|
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 2019; 47:10357-10372. [PMID: 31504794 PMCID: PMC6821171 DOI: 10.1093/nar/gkz747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2019] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideaki Ishikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sally Fujiyama
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University 53, Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Hiroyuki Aburatani
- Laboratory for System Biology and Medicine, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tachikawa
- Department of Applied Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Li Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
27
|
Hodson N, West DWD, Philp A, Burd NA, Moore DR. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol 2019; 317:C1061-C1078. [PMID: 31461340 DOI: 10.1152/ajpcell.00209.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle mass, a strong predictor of longevity and health in humans, is determined by the balance of two cellular processes, muscle protein synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly sensitive to changes in mechanical load and/or nutritional status; therefore, much research has focused on understanding the molecular mechanisms that underpin this cellular process. Furthermore, older individuals display an attenuated MPS response to anabolic stimuli, termed anabolic resistance, which has a negative impact on muscle mass and function, as well as quality of life. Therefore, an understanding of which, if any, molecular mechanisms contribute to anabolic resistance of MPS is of vital importance in formulation of therapeutic interventions for such populations. This review summarizes the current knowledge of the mechanisms that underpin MPS, which are broadly divided into mechanistic target of rapamycin complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogenesis-related, and describes the evidence that shows how they are regulated by anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This review also summarizes evidence regarding which of these mechanisms may be implicated in age-related skeletal muscle anabolic resistance and provides recommendations for future avenues of research that can expand our knowledge of this area.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Davuluri G, Giusto M, Chandel R, Welch N, Alsabbagh K, Kant S, Kumar A, Kim A, Gangadhariah M, Ghosh PK, Tran U, Krajcik DM, Vasu K, DiDonato AJ, DiDonato JA, Willard B, Monga SP, Wang Y, Fox PL, Stark GR, Wessely O, Esser KA, Dasarathy S. Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia. Mol Cell Biol 2019; 39:e00451-18. [PMID: 31138664 PMCID: PMC6664607 DOI: 10.1128/mcb.00451-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of β-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of β-catenin via glycogen synthase kinase 3β (GSK3β)-dependent degradation, GSK3β expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3β did not prevent ammonia-induced degradation of β-catenin. Overexpression of GSK3β-resistant variants, genetic depletion of IκB kinase β (IKKβ) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKβ phosphorylated β-catenin directly. Overexpressing β-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3β-independent, IKKβ-dependent impairment of the β-catenin-cMYC axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michela Giusto
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rajeev Chandel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Khaled Alsabbagh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Kim
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Prabar K Ghosh
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Uyen Tran
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel M Krajcik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kommireddy Vasu
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony J DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joseph A DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxin Wang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul L Fox
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oliver Wessely
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, Institute of Myology, University of Florida, Gainesville, Florida, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
30
|
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells 2019; 8:cells8070649. [PMID: 31261688 PMCID: PMC6678639 DOI: 10.3390/cells8070649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide–protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Collapse
|
31
|
Hannig K, Babl V, Hergert K, Maier A, Pilsl M, Schächner C, Stöckl U, Milkereit P, Tschochner H, Seufert W, Griesenbeck J. The C-terminal region of Net1 is an activator of RNA polymerase I transcription with conserved features from yeast to human. PLoS Genet 2019; 15:e1008006. [PMID: 30802237 PMCID: PMC6415870 DOI: 10.1371/journal.pgen.1008006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA) in all eukaryotes, accounting for the major part of transcriptional activity in proliferating cells. Although basal Pol I transcription factors have been characterized in diverse organisms, the molecular basis of the robust rRNA production in vivo remains largely unknown. In S. cerevisiae, the multifunctional Net1 protein was reported to stimulate Pol I transcription. We found that the Pol I-stimulating function can be attributed to the very C-terminal region (CTR) of Net1. The CTR was required for normal cell growth and Pol I recruitment to rRNA genes in vivo and sufficient to promote Pol I transcription in vitro. Similarity with the acidic tail region of mammalian Pol I transcription factor UBF, which could partly functionally substitute for the CTR, suggests conserved roles for CTR-like domains in Pol I transcription from yeast to human. The production of ribosomes, cellular factories of protein synthesis, is an essential process driving proliferation and cell growth. Ribosome biogenesis is controlled at the level of synthesis of its components, ribosomal proteins and ribosomal RNA. In eukaryotes, RNA polymerase I is dedicated to transcribe the ribosomal RNA. RNA polymerase I has been identified as a potential target for cell proliferation inhibition. Here we describe the C-terminal region of Net1 as an activator of RNA polymerase I transcription in baker’s yeast. In the absence of this activator RNA polymerase I transcription is downregulated and cell proliferation is strongly impaired. Strikingly, this activator might be conserved in human cells, which points to a general mechanism. Our discovery will help to gain a better understanding of the molecular basis of ribosomal RNA synthesis and may have implications in developing strategies to control cellular growth.
Collapse
Affiliation(s)
- Katharina Hannig
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Virginia Babl
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Kristin Hergert
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Andreas Maier
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Michael Pilsl
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Christopher Schächner
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Ulrike Stöckl
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
- * E-mail: (PM); (HT); (WS); (JG)
| | - Herbert Tschochner
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
- * E-mail: (PM); (HT); (WS); (JG)
| | - Wolfgang Seufert
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
- * E-mail: (PM); (HT); (WS); (JG)
| | - Joachim Griesenbeck
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Regensburg, Germany
- * E-mail: (PM); (HT); (WS); (JG)
| |
Collapse
|
32
|
Abstract
Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I-III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
33
|
Yu S, Lemos B. The long-range interaction map of ribosomal DNA arrays. PLoS Genet 2018; 14:e1007258. [PMID: 29570716 PMCID: PMC5865718 DOI: 10.1371/journal.pgen.1007258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022] Open
Abstract
The repeated rDNA array gives rise to the nucleolus, an organelle that is central to cellular processes as varied as stress response, cell cycle regulation, RNA modification, cell metabolism, and genome stability. The rDNA array is also responsible for the production of more than 70% of all cellular RNAs (the ribosomal RNAs). The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1 while the 45S rDNA arrays reside on the short arm of five human acrocentric chromosomes. These critical genome elements have remained unassembled and have been excluded from all Hi-C analyses to date. Here we built the first high resolution map of 5S and 45S rDNA array contacts with the rest of the genome combining over 15 billion Hi-C reads from several experiments. The data enabled sufficiently high coverage to map rDNA-genome interactions with 1MB resolution and identify rDNA-gene contacts. The map showed that the 5S and 45S arrays display preferential contact at common sites along the genome but are not themselves sufficiently close to yield 5S-45S Hi-C contacts. Ribosomal DNA contacts are enriched in segments of closed, repressed, and late replicating chromatin, as well as CTCF binding sites. Finally, we identified functional categories whose dispersed genes coalesced in proximity to the rDNA arrays or instead avoided proximity with the rDNA arrays. The observations further our understanding of the spatial localization of rDNA arrays and their contribution to the architecture of the cell nucleus.
Collapse
Affiliation(s)
- Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
34
|
Neben CL, Tuzon CT, Mao X, Lay FD, Merrill AE. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet 2018; 26:3253-3270. [PMID: 28595297 DOI: 10.1093/hmg/ddx209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast Growth Factor (FGF) signaling promotes self-renewal in progenitor cells by encouraging proliferation and inhibiting cellular senescence. Yet, these beneficial effects can be hijacked by disease-causing mutations in FGF receptor (FGFR) during embryogenesis. By studying dominant FGFR2 mutations that are germline in bent bone dysplasia syndrome (BBDS), we reveal a mechanistic connection between FGFR2, ribosome biogenesis, and cellular stress that links cell fate determination to disease pathology. We previously showed that FGFR2 mutations in BBDS, which amplify nucleolar targeting of FGFR2, activate ribosomal DNA (rDNA) transcription and delay differentiation in osteoprogenitor cells and patient-derived bone. Here we find that the BBDS mutations augment the ability of FGFR2 to recruit histone-remodeling factors that epigenetically activate transcriptionally silent rDNA. Nucleolar morphology is controlled by chromatin structure, and the high levels of euchromatic rDNA induced by the BBDS mutations direct nucleolar disorganization, alter ribosome biogenesis, and activate the Rpl11-Mdm2-p53 nucleolar stress response pathway. Inhibition of p53 in cells expressing the FGFR2 mutations in BBDS rescues delayed osteoblast differentiation, suggesting that p53 activation is an essential pathogenic factor in, and potential therapeutic target for, BBDS. This work establishes rDNA as developmentally regulated loci that receive direct input from FGF signaling to balance self-renewal and cell fate determination.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
A role for Tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival. Nat Commun 2017; 8:693. [PMID: 28947735 PMCID: PMC5612969 DOI: 10.1038/s41467-017-00633-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Cells from Bloom’s syndrome patients display genome instability due to a defective BLM and the downregulation of cytidine deaminase. Here, we use a genome-wide RNAi-synthetic lethal screen and transcriptomic profiling to identify genes enabling BLM-deficient and/or cytidine deaminase-deficient cells to tolerate constitutive DNA damage and replication stress. We found a synthetic lethal interaction between cytidine deaminase and microtubule-associated protein Tau deficiencies. Tau is overexpressed in cytidine deaminase-deficient cells, and its depletion worsens genome instability, compromising cell survival. Tau is recruited, along with upstream-binding factor, to ribosomal DNA loci. Tau downregulation decreases upstream binding factor recruitment, ribosomal RNA synthesis, ribonucleotide levels, and affects ribosomal DNA stability, leading to the formation of a new subclass of human ribosomal ultrafine anaphase bridges. We describe here Tau functions in maintaining survival of cytidine deaminase-deficient cells, and ribosomal DNA transcription and stability. Moreover, our findings for cancer tissues presenting concomitant cytidine deaminase underexpression and Tau upregulation open up new possibilities for anti-cancer treatment. Cytidine deaminase (CDA) deficiency leads to genome instability. Here the authors find a synthetic lethal interaction between CDA and the microtubule-associated protein Tau deficiencies, and report that Tau depletion affects rRNA synthesis, ribonucleotide pool balance, and rDNA stability.
Collapse
|
36
|
Herdman C, Mars JC, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genet 2017; 13:e1006899. [PMID: 28715449 PMCID: PMC5536353 DOI: 10.1371/journal.pgen.1006899] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/31/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin and place the Enhancer Boundary Complex as the likely entry point for chromatin remodelling complexes.
Collapse
Affiliation(s)
- Chelsea Herdman
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Mark D. Robinson
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
- * E-mail:
| |
Collapse
|
37
|
Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene 2016; 612:29-35. [PMID: 27847259 DOI: 10.1016/j.gene.2016.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Changes in ribosome biogenesis are tightly linked to cell growth, proliferation, and differentiation. The rate of ribosome biogenesis is established by RNA Pol I-mediated transcription of ribosomal RNA (rRNA). Thus, rRNA gene transcription is a key determinant of cell behavior. Here, we show that ribosome biogenesis is dynamically regulated during osteoblast differentiation. Upon osteoinduction, osteoprogenitor cells transiently silence a subset of rRNA genes through a reversible mechanism that is initiated through biphasic nucleolar depletion of UBF1 and then RNA Pol I. Nucleolar depletion of UBF1 is coincident with an increase in the number of silent but transcriptionally permissible rRNA genes. This increase in the number of silent rRNA genes reduces levels of ribosome biogenesis and subsequently, protein synthesis. Together these findings demonstrate that fluctuations in rRNA gene transcription are determined by nucleolar occupancy of UBF1 and closely coordinated with the early events necessary for acquisition of the osteoblast cell fate.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
38
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
39
|
Yang CP, Kuo YL, Lee YC, Lee KH, Chiang CW, Wang JM, Hsu CC, Chang WC, Lin DY. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription. Biochem Biophys Res Commun 2016; 478:873-80. [PMID: 27530925 DOI: 10.1016/j.bbrc.2016.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/07/2016] [Indexed: 11/27/2022]
Abstract
The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development.
Collapse
Affiliation(s)
- Chuan-Pin Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Yu-Liang Kuo
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Kuen-Haur Lee
- Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Chi-Wu Chiang
- Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Che-Chia Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Wen-Chang Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
40
|
Abstract
Nucleoli form around tandem arrays of a ribosomal gene repeat, termed nucleolar organizer regions (NORs). During metaphase, active NORs adopt a characteristic undercondensed morphology. Recent evidence indicates that the HMG-box-containing DNA-binding protein UBF (upstream binding factor) is directly responsible for this morphology and provides a mitotic bookmark to ensure rapid nucleolar formation beginning in telophase in human cells. This is likely to be a widely employed strategy, as UBF is present throughout metazoans. In higher eukaryotes, NORs are typically located within regions of chromosomes that form perinucleolar heterochromatin during interphase. Typically, the genomic architecture of NORs and the chromosomal regions within which they lie is very poorly described, yet recent evidence points to a role for context in their function. In Arabidopsis, NOR silencing appears to be controlled by sequences outside the rDNA (ribosomal DNA) array. Translocations reveal a role for context in the expression of the NOR on the X chromosome in Drosophila Recent work has begun on characterizing the genomic architecture of human NORs. A role for distal sequences located in perinucleolar heterochromatin has been inferred, as they exhibit a complex transcriptionally active chromatin structure. Links between rDNA genomic stability and aging in Saccharomyces cerevisiae are now well established, and indications are emerging that this is important in aging and replicative senescence in higher eukaryotes. This, combined with the fact that rDNA arrays are recombinational hot spots in cancer cells, has focused attention on DNA damage responses in NORs. The introduction of DNA double-strand breaks into rDNA arrays leads to a dramatic reorganization of nucleolar structure. Damaged rDNA repeats move from the nucleolar interior to form caps at the nucleolar periphery, presumably to facilitate repair, suggesting that the chromosomal context of human NORs contributes to their genomic stability. The inclusion of NORs and their surrounding chromosomal environments in future genome drafts now becomes a priority.
Collapse
Affiliation(s)
- Brian McStay
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
41
|
Woolnough JL, Atwood BL, Liu Z, Zhao R, Giles KE. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells. PLoS One 2016; 11:e0157276. [PMID: 27299313 PMCID: PMC4907514 DOI: 10.1371/journal.pone.0157276] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/26/2016] [Indexed: 11/18/2022] Open
Abstract
It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Jessica L Woolnough
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Blake L Atwood
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Zhong Liu
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Rui Zhao
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Keith E Giles
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| |
Collapse
|
42
|
Xu Y, Wan W, Shou X, Huang R, You Z, Shou Y, Wang L, Zhou T, Liu W. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters. Autophagy 2016; 12:1118-28. [PMID: 27172002 DOI: 10.1080/15548627.2016.1175693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.
Collapse
Affiliation(s)
- Yinfeng Xu
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Wei Wan
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Xin Shou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Rui Huang
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhiyuan You
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Yanhong Shou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Lingling Wang
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Tianhua Zhou
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Wei Liu
- a Department of Biochemistry and Molecular Biology , Program in Molecular and Cell Biology, Zhejiang University School of Medicine , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
43
|
Phosphatidylinositol 3-Kinase/Akt Mediates Integrin Signaling To Control RNA Polymerase I Transcriptional Activity. Mol Cell Biol 2016; 36:1555-68. [PMID: 26976639 DOI: 10.1128/mcb.00004-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase I-mediated rRNA production is a key determinant of cell growth. Despite extensive studies, the signaling pathways that control RNA polymerase I-mediated rRNA production are not well understood. Here we provide original evidence showing that RNA polymerase I transcriptional activity is tightly controlled by integrin signaling. Furthermore, we show that a signaling axis consisting of focal adhesion kinase (FAK), Src, phosphatidylinositol 3-kinase (PI3K), Akt, and mTOR mediates the effect of integrin signaling on rRNA transcription. Additionally, we show that in kindlin-2 knockout mouse embryonic fibroblasts, overactivation of Ras, Akt, and Src can successfully rescue the defective RNA polymerase I activity induced by the loss of kindlin-2. Finally, through experiments with inhibitors of FAK, Src, and PI3K and rescue experiments in MEFs, we found that the FAK/Src/PI3K/Akt signaling pathway to control rRNA transcription is linear. Collectively, these studies reveal, for the first time, a pivotal role of integrin signaling in regulation of RNA polymerase I transcriptional activity and shed light on the downstream signaling axis that participates in regulation of this key aspect of cell growth.
Collapse
|
44
|
Huang S, Xu X, Wang G, Lu G, Xie W, Tao W, Zhang H, Jiang Q, Zhang C. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation. J Cell Sci 2016; 129:1429-40. [PMID: 26872786 DOI: 10.1242/jcs.178723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/06/2016] [Indexed: 01/28/2023] Open
Abstract
RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.
Collapse
Affiliation(s)
- Shijiao Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guoliang Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wenbing Xie
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Tao
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongyin Zhang
- Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China
| | - Qing Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Abstract
The nucleolus is the largest nuclear organelle and is the primary site of ribosome subunit biogenesis in eukaryotic cells. It is assembled around arrays of ribosomal DNA genes, forming specific chromosomal features known as nucleolar organizing regions (NORs) which are the sites of ribosomal DNA transcription. While the nucleolus main activity involve different steps of ribosome biogenesis, the presence of proteins with no obvious relationship with ribosome subunit production suggests additional functions for the nucleolus, such as regulation of mitosis, cell cycle progression, stress response and biogenesis of multiple ribonucleoprotein complexes. The many novel factors and separate classes of proteins identified within the nucleolus support this view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. Here we review our knowledge of the nucleolar functions and will provide a detailed picture of how the nucleolus is involved in many cellular pathways.
Collapse
Affiliation(s)
- David P. Bazett-Jones
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario Canada
| | | |
Collapse
|
46
|
Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathol Commun 2015; 3:76. [PMID: 26621506 PMCID: PMC4666041 DOI: 10.1186/s40478-015-0257-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. RESULTS Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. CONCLUSIONS Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Anusha Koneti
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Laura Gil
- Department of Genetics, Medical School, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Raul Delgado-Morales
- Cancer Epigenetics and Biology Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Castaño
- Biology-Bellvitge Unit, Scientific and Technological Centers-University of Barcelona (CCiTUB), Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital, carrer Feixa Llarga s/n, 08907, Hospitalet de Llobregat, Spain.
| |
Collapse
|
47
|
PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein. Genes (Basel) 2015; 6:325-52. [PMID: 26103525 PMCID: PMC4488667 DOI: 10.3390/genes6020325] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.
Collapse
|
48
|
Ouellet Lavallée G, Pearson A. Upstream binding factor inhibits herpes simplex virus replication. Virology 2015; 483:108-16. [PMID: 25965800 DOI: 10.1016/j.virol.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infection induces changes to the host cell nucleus including relocalization of the cellular protein Upstream Binding Factor (UBF) from the nucleolus to viral replication compartments (VRCs). Herein, we tested the hypothesis that UBF is recruited to VRCs to promote viral DNA replication. Surprisingly, infection of UBF-depleted HeLa cells with HSV-1 or HSV-2 produced higher viral titers compared to controls. Reduced expression of UBF also led to a progressive increase in the relative amount of HSV-1 DNA versus controls, and increased levels of HSV-1 ICP27 and TK mRNA and protein, regardless of whether viral DNA replication was inhibited or not. Our results suggest that UBF can inhibit gene expression from viral DNA prior to its replication. A similar but smaller effect on viral titers was observed in human foreskin fibroblasts. This is the first report of UBF having a restrictive effect on replication of a virus.
Collapse
|
49
|
Kiran S, Anwar T, Kiran M, Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin! Cell Signal 2014; 27:673-82. [PMID: 25435428 DOI: 10.1016/j.cellsig.2014.11.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 01/23/2023]
Abstract
Sirtuin 7 is a member of the sirtuin family of proteins. Sirtuins were originally discovered in yeast for its role in prolonging replicative lifespan. Until recently SIRT7 happened to be the least studied sirtuin of the seven mammalian sirtuins. However, a number of recent breakthrough reports have provided significant clarity to SIRT7 biology. SIRT7 is now seen as a vital regulator of rRNA and protein synthesis for maintenance of normal cellular homeostasis. Proteins like p53, H3K18, PAF53, NPM1 and GABP-β1 are the known substrates for the deacetylase activity of SIRT7, thereby making it a key mediator of many cellular activities. Studies using in vitro based assays and also knockout mice have revealed a role of SIRT7 in certain disease pathologies as well. High expression of SIRT7 has been reported in few cancer types and is steadily propelling SIRT7 towards an oncogene status. The role of SIRT7 as a pro-survival adaptor molecule in conditions of cellular stress has recently emerged in view of the fact that SIRT7 can regulate molecules like HIF and IRE1α. Additionally, SIRT7 plays a key role in maintenance of the epigenome as it caused the deacetylation of histone (H3K18) and global proteomics studies have shown its interaction with many chromatin remodelling complexes such as B-WICH and other proteins. Lately, the role of SIRT7 in hepatic lipid metabolism has been debated. This review attempts to summarize these recent findings and present the role of SIRT7 as an important cellular regulator.
Collapse
Affiliation(s)
- Shashi Kiran
- Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| | - Tarique Anwar
- Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| | - Manjari Kiran
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| | - Gayatri Ramakrishna
- Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070, India
| |
Collapse
|
50
|
Sobol M, Yildirim S, Philimonenko VV, Marášek P, Castaño E, Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 2014; 4:478-86. [PMID: 24513678 PMCID: PMC3925692 DOI: 10.4161/nucl.27154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.
Collapse
Affiliation(s)
- Margarita Sobol
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Sukriye Yildirim
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Vlada V Philimonenko
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Pavel Marášek
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| | - Enrique Castaño
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic; Biochemistry and Molecular Plant Biology Department; CICY; Mérida, México
| | - Pavel Hozák
- Institute of Molecular Genetics ASCR v.v.i.; Department of Biology of the Cell Nucleus; Prague, Czech Republic
| |
Collapse
|