1
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
2
|
Naik AR, Formosa BJ, Pulvender RG, Liyanaarachchi AG, Jena BP. vH +-ATPase-induced intracellular acidification is critical to glucose-stimulated insulin secretion in beta cells. Histochem Cell Biol 2020; 153:279-285. [PMID: 31901974 DOI: 10.1007/s00418-019-01841-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Swelling of secretory vesicles is critical for the regulated release of intra-vesicular contents from cells during secretion. At the secretory vesicle membrane of the exocrine pancreas and neurons, GTP-binding G proteins, vH+-ATPase, potassium channels and AQP water channels, are among the players implicated in vesicle volume regulation. Here we report in the endocrine insulin-secreting MIN6 cells, the similar requirement of vH+-ATPase-mediated intracellular acidification on glucose-stimulated insulin release. MIN6 cells exposed to the vH+-ATPase inhibitor Bafilomycin A show decreased acidification of the cytosolic compartment that include insulin-carrying granules. Additionally, a loss of insulin granules near the cell plasma membrane following Bafilomycin A treatment, suggests impaired transport of insulin granules and consequent decrease in glucose-stimulated insulin secretion and accumulation of intracellular insulin. These results suggest that vH+-ATPase-mediated intracellular acidification is required for insulin secretion in beta cells.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Brent J Formosa
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Rishika G Pulvender
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Asiri G Liyanaarachchi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,NanoBioScience Institute, Wayne State University, Detroit, MI, 48201, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield, 5245 Scott Hall, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Deshpande S, Wunnava S, Hueting D, Dekker C. Membrane Tension-Mediated Growth of Liposomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902898. [PMID: 31365179 DOI: 10.1002/smll.201902898] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Indexed: 05/22/2023]
Abstract
Recent years have seen a tremendous interest in the bottom-up reconstitution of minimal biomolecular systems, with the ultimate aim of creating an autonomous synthetic cell. One of the universal features of living systems is cell growth, where the cell membrane expands through the incorporation of newly synthesized lipid molecules. Here, the gradual tension-mediated growth of cell-sized (≈10 µm) giant unilamellar vesicles (GUVs) is demonstrated, to which nanometer-sized (≈30 nm) small unilamellar vesicles (SUVs) are provided, that act as a lipid source. By putting tension on the GUV membranes through a transmembrane osmotic pressure, SUV-GUV fusion events are promoted and substantial growth of the GUV is caused, even up to doubling its volume. Thus, experimental evidence is provided that membrane tension alone is sufficient to bring about membrane fusion and growth is demonstrated for both pure phospholipid liposomes and for hybrid vesicles with a mixture of phospholipids and fatty acids. The results show that growth of liposomes can be realized in a protein-free minimal system, which may find useful applications in achieving autonomous synthetic cells that are capable of undergoing a continuous growth-division cycle.
Collapse
Affiliation(s)
- Siddharth Deshpande
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sreekar Wunnava
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David Hueting
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
4
|
Abstract
Ca2+-dependent secretion is a process by which important signaling molecules that are produced within a cell-including proteins and neurotransmitters-are expelled to the extracellular environment. The cellular mechanism that underlies secretion is referred to as exocytosis. Many years of work have revealed that exocytosis in neurons and neuroendocrine cells is tightly coupled to Ca2+ and orchestrated by a series of protein-protein/protein-lipid interactions. Here, we highlight landmark discoveries that have informed our current understanding of the process. We focus principally on reductionist studies performed using powerful model secretory systems and cell-free reconstitution assays. In recent years, molecular cloning and genetics have implicated the involvement of a sizeable number of proteins in exocytosis. We expect reductionist approaches will be central to attempts to resolve their roles. The Journal of General Physiology will continue to be an outlet for much of this work, befitting its tradition of publishing strongly mechanistic, basic research.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
5
|
Li J, Shi K, Drechsler M, Tang BZ, Huang J, Yan Y. A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: insight into the role of electrical charge in cancer cell division. Chem Commun (Camb) 2018; 52:12466-12469. [PMID: 27711439 DOI: 10.1039/c6cc06432a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Binding of Zn2+ to the coordinating supramolecular vesicle based on an aggregation induced emission amphiphile TPE-BPA immediately triggers the formation of charged vesicles. This induces vesicle fission and fluorescence reduction, suggesting a looser molecular packing in the charged vesicle membrane. Since cancer cells are highly charged, this indicates that the quick fission of cancer cells may have electrical charge origin.
Collapse
Affiliation(s)
- Jie Li
- Beijing National Laboratory for Molecular Sciences, Institution College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Kangjie Shi
- Beijing National Laboratory for Molecular Sciences, Institution College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | | | - Ben Zhong Tang
- Department of Chemistry, Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences, Institution College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences, Institution College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Vargas JN, Seemann R, Fleury JB. Fast membrane hemifusion via dewetting between lipid bilayers. SOFT MATTER 2014; 10:9293-9299. [PMID: 25330351 DOI: 10.1039/c4sm01577k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The behavior of lipid bilayers is important to understand the functionality of cells like the trafficking of ions. Standard procedures to explore the properties of lipid bilayers and hemifused states typically use supported membranes or vesicles. Both techniques have several shortcomings in terms of bio-relevance or accessibility for measurements. In this article, the formation of individual free standing hemifused states between model cell membranes is studied using an optimized microfluidic scheme which allows for simultaneous optical and electrophysiological measurements. In the first step, two model membranes are formed at a desired location within a microfluidic device using a variation of the droplet interface bilayer (DiB) technique. In the second step, the two model membranes are brought into contact forming a single hemifused state. For all tested lipids, the hemifused state between free standing membranes forms within hundreds of milliseconds, i.e. several orders of magnitude faster than those reported in literature. The formation of a hemifused state is observed as a two stage process, whereas the second stage can be explained as a dewetting process under no-slip boundary conditions. The formed hemifusion states have a long lifetime and a single fusion event can be observed when triggered by an applied electric field as demonstrated for monoolein.
Collapse
Affiliation(s)
- Jose Nabor Vargas
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
7
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Warner JM, O'Shaughnessy B. The hemifused state on the pathway to membrane fusion. PHYSICAL REVIEW LETTERS 2012; 108:178101. [PMID: 22680906 DOI: 10.1103/physrevlett.108.178101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 06/01/2023]
Abstract
Fusion of compartments enclosed by membrane bilayers enables secretion and other vital cellular processes and is widely studied in model synthetic membrane systems. Experiments suggest the fusion pathway passes through a hemifused intermediate where only outer monolayers are fused. Here we show membrane tension and divalent cations drive vesicles to hemifused equilibrium with expanded hemifusion diaphragms (HDs) where inner monolayers engage. Predicted HD sizes agree with recent measurements of Nikolaus et al. [Biophys. J. 98, 1192 (2010).]. The fusion pathway is completed by HD lysis provided HD tension is sufficiently high.
Collapse
Affiliation(s)
- Jason M Warner
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
9
|
Balleza D. Toward understanding protocell mechanosensation. ORIGINS LIFE EVOL B 2011; 41:281-304. [PMID: 21080073 DOI: 10.1007/s11084-010-9225-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
Abstract
Mechanosensitive (MS) channels can prevent bacterial bursting during hypo-osmotic shocks by responding to increases in lateral tension at the membrane level through an integrated and coordinated opening mechanism. Mechanical regulation in protocells could have been one of the first mechanisms to evolve in order to preserve their integrity against changing environmental conditions. How has the rich functional diversity found in present cells been created throughout evolution, and what did the primordial MS channels look like? This review has been written with the aim of identifying which factors may have been important for the appearance of the first osmotic valve in a prebiotic context, and what this valve may have been like. It highlights the mechanical properties of lipid bilayers, the association of peptides as aggregates in membranes, and the conservation of sequence motifs as central aspects to understand the evolution of proteins that gate below the tension required for spontaneous pore formation and membrane rupture. The arguments developed here apply to both MscL and MscS homologs, but could be valid to mechano-susceptible proteins in general.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, Leioa, Spain.
| |
Collapse
|
10
|
Wang T, Smith EA, Chapman ER, Weisshaar JC. Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. Biophys J 2009; 96:4122-31. [PMID: 19450483 DOI: 10.1016/j.bpj.2009.02.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/05/2023] Open
Abstract
A single-vesicle, fluorescence-based, SNARE-driven fusion assay enables simultaneous measurement of lipid mixing and content release with 5 ms/frame, or even 1 ms/frame, time resolution. The v-SNARE vesicles, labeled with lipid and content markers of different color, dock and fuse with a planar t-SNARE bilayer supported on glass. A narrow (<5 ms duration), intense spike of calcein fluorescence due to content release and dequenching coincides with inner-leaflet lipid mixing within 10 ms. The spike provides more sensitive detection of productive hemifusion events than do lipid labels alone. Consequently, many fast events previously thought to be prompt, full fusion events are now reclassified as productive hemifusion. Both full fusion and hemifusion occur with a time constant of 5-10 ms. At 60% phosphatidylethanolamine lipid composition, productive and dead-end hemifusion account for 65% of all fusion events. However, quantitative analysis shows that calcein is released into the space above the bilayer (vesicle bursting), rather than the thin aqueous space between the bilayer and glass. Evidently, at the instant of inner-leaflet mixing, flattening of the vesicle increases the internal pressure beyond the bursting point. This may be related to in vivo observations suggesting that membrane lysis often competes with membrane fusion.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
11
|
Chen A, Leikina E, Melikov K, Podbilewicz B, Kozlov MM, Chernomordik LV. Fusion-pore expansion during syncytium formation is restricted by an actin network. J Cell Sci 2008; 121:3619-28. [PMID: 18946025 PMCID: PMC3552434 DOI: 10.1242/jcs.032169] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-cell fusion in animal development and in pathophysiology involves expansion of nascent fusion pores formed by protein fusogens to yield an open lumen of cell-size diameter. Here we explored the enlargement of micron-scale pores in syncytium formation, which was initiated by a well-characterized fusogen baculovirus gp64. Radial expansion of a single or, more often, of multiple fusion pores proceeds without loss of membrane material in the tight contact zone. Pore growth requires cell metabolism and is accompanied by a local disassembly of the actin cortex under the pores. Effects of actin-modifying agents indicate that the actin cortex slows down pore expansion. We propose that the growth of the strongly bent fusion-pore rim is restricted by a dynamic resistance of the actin network and driven by membrane-bending proteins that are involved in the generation of highly curved intracellular membrane compartments.
Collapse
Affiliation(s)
- Andrew Chen
- Section of Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1855, USA
| | - Eugenia Leikina
- Section of Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1855, USA
| | - Kamran Melikov
- Section of Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1855, USA
| | - Benjamin Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000 Israel
| | - Michael M. Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leonid V. Chernomordik
- Section of Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1855, USA
| |
Collapse
|
12
|
Abstract
Studying the properties of individual events and molecules offers a host of advantages over taking only macroscopic measurements of populations. Here we review such advantages, as well as some pitfalls, focusing on examples from biological imaging. Examples include single proteins, their interactions in cells, organelles, and their interactions both with each other and with parts of the cell. Additionally, we discuss constraints that limit the study of single events, along with the criteria that must be fulfilled to determine whether single molecules or events are being detected.
Collapse
Affiliation(s)
- Stefan Wennmalm
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Abstract
Physical chemistry explains the principles of self-organization of lipids into bilayers that form the matrix of biological membranes, and continuum theory of membrane energetics is successful in explaining many biological processes. With increasing sophistication of investigative tools, there is now a growing appreciation for lipid diversity and for the role of individual lipids and specific lipid-protein interactions in membrane structure and function.
Collapse
Affiliation(s)
- Joshua Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
14
|
Zimmerberg J, Akimov SA, Frolov V. Synaptotagmin: fusogenic role for calcium sensor? Nat Struct Mol Biol 2006; 13:301-3. [PMID: 16715046 DOI: 10.1038/nsmb0406-301] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Affiliation(s)
- Joshua Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
17
|
Liu Z, Armant DR. Lysophosphatidic acid regulates murine blastocyst development by transactivation of receptors for heparin-binding EGF-like growth factor. Exp Cell Res 2004; 296:317-26. [PMID: 15149861 DOI: 10.1016/j.yexcr.2004.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/03/2004] [Indexed: 11/25/2022]
Abstract
Transient elevation of intracellular calcium (Ca2+(i)) by various means accelerates murine preimplantation development and trophoblast differentiation. Several G-protein-coupled receptors (GPCRs), including the lysophosphatidic acid (LPA) receptor (LPAR), induce Ca2+(i) transients and transactivate the EGF receptor (ErbB1) through mobilization of EGF family members, including heparin-binding EGF-like growth factor (HB-EGF). Because HB-EGF accelerates blastocyst differentiation in vitro, we examined whether crosstalk between LPA and HB-EGF regulates peri-implantation development. During mouse blastocyst differentiation, embryos expressed LPAR1 mRNA constitutively, LPAR2 only in late stage blastocysts and no LPAR3. Consistent with a mechanism based on Ca2+(i) signaling, LPA rapidly accelerated the rate of trophoblast outgrowth, an index of blastocyst differentiation, and chelation of Ca2+(i) with BAPTA-AM blocked LPA stimulation. Interfering with HB-EGF signaling through ErbB1 or ErbB4 also attenuated LPA stimulation. We established that mouse blastocysts indeed express HB-EGF and that LPA induces the transient accumulation of HB-EGF on the embryo surface, which was blocked by treatment with either BAPTA-AM or the protein trafficking inhibitor, brefeldin A. We conclude that LPA accelerates blastocyst differentiation through its ability to induce Ca2+(i) transients and HB-EGF autocrine signaling. Transactivation of ErbB1 or ErbB4 by HB-EGF could represent a convergent signaling pathway accessed in the trophoblast by stimuli that mobilize Ca2+(i).
Collapse
Affiliation(s)
- Zitao Liu
- C.S. Mott Center for Human Growth and Development, Departments of Obstetrics and Gynecology, and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
18
|
Xing L, Dawei C, Liping X, Rongqing Z. Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release 2003; 93:293-300. [PMID: 14644579 DOI: 10.1016/j.jconrel.2003.08.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Colon-specific drug delivery systems (CDDSs) can be used to improve the bioavailability of protein and peptide drugs through the oral route. A novel formulation for oral administration using coated calcium alginate gel beads-entrapped liposome and bee venom peptide as a model drug has been investigated for colon-specific drug delivery in vitro. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely in the physiological environment of the stomach and small intestine. The release rate of bee venom from the coated calcium alginate gel beads-entrapped liposome was dependent on the concentration of calcium and sodium alginate, the amount of bee venom in the liposome, as well as the coating. Furthermore, a human gamma-scintigraphy technique was used in vivo to determine drug delivery more precisely. The colonic arrival time of the tablets was found to be 4-5 h. The results clearly demonstrated that the coated calcium alginate gel beads-entrapped liposome is a potential system for colon-specific drug delivery.
Collapse
Affiliation(s)
- Liu Xing
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 100016, China
| | | | | | | |
Collapse
|
19
|
Hara M, Yamaki A, Miyake J. Noninvasive detachment of cells on cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2001. [DOI: 10.1016/s0928-4931(01)00317-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Grinstein S, Vander Meulen J, Furuya W. Possible role of H+-alkali cation countertransport in secretary granule swelling during exocytosis. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)81230-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Hara M, Miyake J. Calcium alginate gel-entrapped liposomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2001. [DOI: 10.1016/s0928-4931(01)00316-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Abstract
The past two years have seen vigorous attempts to elucidate the mechanism driving intracellular membrane fusion. Much attention was focused on the role of SNARE complexes. Their crystal structure was solved and fusion was reconstituted using proteoliposomes with purified SNAREs suggesting them to be the minimal machinery for fusion. Work on physiological membranes, however, points in another direction and has spurred a hot debate on the function of SNAREs.
Collapse
Affiliation(s)
- A Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstrasse 37-39, 72076, Tübingen.
| |
Collapse
|
23
|
Affiliation(s)
- B L Kagan
- Department of Psychiatry, University of California at Los Angeles School of Medicine 90024
| | | |
Collapse
|
24
|
Affiliation(s)
- S M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
25
|
Ehrenstein G, Stanley EF, Pocotte SL, Jia M, Iwasa KH, Krebs KE. Evidence for a model of exocytosis that involves calcium-activated channels. Ann N Y Acad Sci 1991; 635:297-306. [PMID: 1720603 DOI: 10.1111/j.1749-6632.1991.tb36500.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Ehrenstein
- Laboratory of Biophysics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- W D Niles
- Department of Physiology, Rush Medical College, Chicago, Illinois 60612
| | | |
Collapse
|
27
|
Bursztajn S, Schneider LW, Jong YJ, Berman SA. Calcium and ionophore A23187 stimulates deposition of extracellular matrix and acetylcholinesterase release in cultured myotubes. Cell Tissue Res 1991; 265:95-103. [PMID: 1913783 DOI: 10.1007/bf00318143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium (Ca2+) and calcium-transporting ionophores stimulate protein secretion in many cellular systems. We demonstrate here than increases in intracellular calcium concentration induce a time- and concentration-dependent deposition of extracellular matrix and an increase in acetylcholinesterase secretion. Scanning and transmission electron-microscopy revealed that treatment with the calcium ionophore A23187, or high extracellular Ca2+ levels (5 mM to 15 mM) produce significant deposits of extracellular matrix around the myotubes, as well as a marked increase in the acetylcholinesterase reaction-product. Blocking muscle contraction was not necessary for the induction of AChE secretory activity. Sucrose density-gradients of media conditioned by muscle cells revealed 3 separate acetylcholinesterase molecular forms. However, incubation with A23187 increased only the 4.5 S and the 7.2 S molecular forms, whereas the 12.0 S form showed no significant differences from controls. Polyacrylamide gel electrophoresis, and autoradiography using [3H]diisopropyl fluorophosphate revealed a broad band at 65,000 daltons. This band was broader than for controls when medium was obtained from A23187-treated cells. Our results show that increasing intracellular Ca2+ concentration induces marked deposition of extracellular matrix and increased acetylcholinesterase secretion, with an apparent selectivity for the monomeric and dimeric acetylcholinesterase molecular forms.
Collapse
Affiliation(s)
- S Bursztajn
- Department of Psychiatry, Harvard Medical School, Mailman Research Center, Belmont, MA 02178
| | | | | | | |
Collapse
|
28
|
Bernik DL, Rivas EA, Rodriguez de Lores Arnaiz G. Fusion between rat brain synaptosomes and phosphatidylserine liposomes. Neurochem Int 1991. [DOI: 10.1016/0197-0186(91)90083-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Plattner H. Regulation of membrane fusion during exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 119:197-286. [PMID: 2695484 DOI: 10.1016/s0074-7696(08)60652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Plattner
- Faculty of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
30
|
Zolese G, Curatola G, Amati S, Giambanco I, Donato R. S-100b protein regulates aggregation and fusion of cardiolipin vesicles. Cell Calcium 1990; 11:35-46. [PMID: 2311120 DOI: 10.1016/0143-4160(90)90047-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recently shown that S-100b protein interacts with the polar surface of cardiolipin vesicles [6]. This interaction produces changes in the secondary structure of S-100b as well as changes in the structural organization of cardiolipin vesicles. We report here on the effects of S-100b on cardiolipin vesicles as investigated by turbidity, terbium-dipicolinate fluorescence and freeze-fracture. Experiments were carried out in the absence and in the presence of Ca2+. In the absence of Ca2+ (0.1 mM EDTA), S-100b favors the aggregation and fusion of vesicles to some extent. Under these conditions, electron microscope analyses reveal the presence of fused vesicles along with particles similar to those observed in protein reconstituted systems or to lipid particles observed during fusional processes. In the presence of Ca2+, S-100b counteracts the Ca2(+)-dependent tendency of vesicles to aggregate and fuse. Under these conditions, bilayer phases along with hexagonal phases can be observed by electron microscopy. The latter effects of S-100b are not due to chelation of Ca2+ because of the relative concentrations of S-100b and Ca2+ under our experimental conditions and since much larger concentrations of EDTA are required to produce the S-100b effects. We propose that the dimeric nature of S-100b plays a major role in these events. In the absence of Ca2+, the S-100b molecules probably cross-link adjacent vesicles, one subunit contacting one vesicle and the other subunit contacting another vesicle through electrostatic bonds. In the presence of Ca2+, due to the large changes occurring in the conformation of the protein (which loses about 52% of its alpha-helical content), S-100b associates strongly with the polar surface of individual vesicles, thus generating some kind of physical barrier to aggregation and fusion of vesicles.
Collapse
Affiliation(s)
- G Zolese
- Institute of Biochemistry, Medical School, Ancona, Italy
| | | | | | | | | |
Collapse
|
31
|
Parnas H, Parnas I, Segel LA. On the contribution of mathematical models to the understanding of neurotransmitter release. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1990; 32:1-50. [PMID: 1981883 DOI: 10.1016/s0074-7742(08)60579-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Parnas
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
32
|
Abstract
The adhesion to horizontal, planar lipid membranes of lipid vesicles containing calcein in the aqueous compartment or fluorescent phospholipids in the membranes has been examined by phase contrast, differential interference contrast and fluorescence microscopy. With water-immersion lenses, it was possible to study the interactions of vesicles with planar bilayers at magnifications up to the useful limit of light microscopy. In the presence of 15 mM calcium chloride, vesicles composed of phosphatidylserine and either phosphatidylethanolamine or soybean lipids adhere to the torus, bilayer and lenses of planar bilayers of the same composition. Lenses of solvent appear at the site where vesicles attach to decane-based bilayers and lipid fluorophores move from the vesicles to the lenses. Because the calcein contained in such vesicles is not released, we interpret this as indicating fusion of only the outer monolayer (hemifusion) of the vesicles with the decane lenses. In the case of squalene-based black lipid membranes (BLMs), in contrast, vesicles do not nucleate lenses but they apparently do fuse with the torus at the bilayer boundary. Interactions leading to hemifusions between vesicles and planar membranes thus occur predominantly in regions where hydrocarbon solvent is present. Osmotic water flow, induced by addition of urea to the compartment containing vesicles, causes coalescence of lenses in decane-based BLMs as well as coalescence of the aqueous spaces of the vesicles that have undergone hemifusion with the lenses. We did not observe transfer of the aqueous phase of vesicles to the trans side of either decane- or squalene-based planar membranes; however, we cannot rule out the possibility particularly in the latter case, that rupture of the planar membrane may have been an immediate result of vesicle fusion and thus precluded its detection.
Collapse
Affiliation(s)
- M S Perin
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
33
|
Abstract
The interaction of synaptic vesicles with horizontal bilayer lipid membranes (BLMs) was investigated as a model system for neurotransmitter release. High concentrations (200 mM) of the fluorescent dye, calcein, were trapped within synaptic vesicles by freezing and thawing. In the presence of divalent ions (usually 15 mM CaCl2), these frozen and thawed synaptic vesicles (FTSVs) adhere to squalene-based phosphatidylserine-phosphatidylethanolamine BLMs whereupon they spontaneously release their contents which is visible by fluorescence microscopy as bright flashes. The highest rate of release was obtained in KCl solutions. Release was virtually eliminated in isotonic glucose, but could be elicited by perfusion with KCl or by addition of urea. The fusion and lysis of adhering FTSVs appears to be the consequence of stress resulting from entry of permeable external solute (KCl, urea) and accompanying water. An analysis of flash diameters in experiments where Co+2, which quenches calcein fluorescence, was present on one or both sides of the BLM, indicates that more than half of the flashes represent fusion events, i.e., release of vesicle contents on the trans side of the BLM. A population of small, barely visible FTSVs bind to BLMs at calcium ion concentrations of 100 microM. Although fusion of these small FTSVs to BLMs could not be demonstrated, fusion with giant lipid vesicles was obvious and dramatic, albeit infrequent. Addition of FTSVs or synaptic vesicles to BLMs in the presence of 100 microM-15 mM Ca2+ produced large increases in BLM conductance. The results presented demonstrate that synaptic vesicles are capable of fusing with model lipid membranes in the presence of Ca+2 ion which, at the lower limit, may begin to approach physiological concentrations.
Collapse
Affiliation(s)
- M S Perin
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
34
|
Pian MS, Dobbs LG, Düzgünes N. Positive correlation between cytosolic free calcium and surfactant secretion in cultured rat alveolar type II cells. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 960:43-53. [PMID: 3358945 DOI: 10.1016/0005-2760(88)90007-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To determine whether increases in the cytosolic free Ca2+ concentration ([Ca2+]i) accompany agonist-stimulated surfactant secretion by cultured alveolar type II cells, we measured the [Ca2+]i of quin2-loaded cells isolated from adult rats before and after cells were stimulated with ionomycin, terbutaline or tetradecanoylphorbol acetate (TPA). To determine whether increases in [Ca2+]i are necessary for stimulated surfactant secretion to occur, we measured secretion in cells after [Ca2+]i had been reduced by loading cells with quin2 in medium containing low [Ca2+]. Ionomycin increased [Ca2+]i and stimulated surfactant secretion in a dose-dependent manner. Reductions in [Ca2+]i correlated with reductions in secretion stimulated by ionomycin, terbutaline or TPA. Ionomycin-stimulated secretion was most sensitive to reductions in [Ca2+]i; terbutaline-stimulated secretion was more sensitive than TPA-stimulated secretion. When [Ca2+]i was less than 65 nM, all stimulated secretion was blocked. Restoration of [Ca2+]i to greater than 100 nM restored ionomycin-stimulated secretion. We conclude that ionomycin increases [Ca2+]i and stimulates surfactant secretion in cultured alveolar type II cells, and that increased [Ca2+]i appears to be necessary for ionomycin-stimulated secretion to occur. Terbutaline-stimulated surfactant secretion seems to be more easily inhibited by a reduction in [Ca2+]i than does TPA-stimulated secretion.
Collapse
Affiliation(s)
- M S Pian
- Cardiovascular Research Institute, University of California, San Francisco 94143
| | | | | |
Collapse
|
35
|
Harvey PR, Somjen G, Gilat T, Gallinger S, Strasberg SM. Vesicular cholesterol in bile. Relationship to protein concentration and nucleation time. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 958:10-8. [PMID: 3334858 DOI: 10.1016/0005-2760(88)90240-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A study was done to determine whether the nucleation time was related to the amount of cholesterol carried in vesicles. Bile was obtained from cholesterol gallstone patients and controls. Gel-exclusion chromatography was used to separate vesicles and micelles in the native bile using an eluting buffer containing 10 mM sodium cholate. The percent of total cholesterol carried in vesicles in gallbladder bile of stone patients was significantly greater than that in control patients. Total cholesterol concentration in gallbladder bile of stone patients was significantly greater than in controls. This difference was due to the fact that vesicular cholesterol concentration was significantly greater in the gallbladder bile of stone patients compared to controls. Micellar cholesterol concentrations were similar in the two groups. Nucleation time was related significantly to vesicular cholesterol concentration in correlation analysis and, as previously shown, so was total protein concentration. This study supports the importance of vesicular cholesterol in solid crystal formation and demonstrates for the first time that the rate of cholesterol monohydrate crystal formation is directly related to the amount of cholesterol transported in vesicles.
Collapse
Affiliation(s)
- P R Harvey
- Department of Surgery, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
36
|
Kolomytkin OV. Structure of planar membrane formed from liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 900:145-56. [PMID: 2439118 DOI: 10.1016/0005-2736(87)90286-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.
Collapse
|
37
|
Tinyakova LR, Tverdislov VA, Yakovenko LV, Glebov RN. Interaction between isolated rat brain synaptic vesicles and planar bilayer membranes. Bull Exp Biol Med 1987. [DOI: 10.1007/bf00840559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
|
39
|
Holzbach RT. Recent progress in understanding cholesterol crystal nucleation as a precursor to human gallstone formation. Hepatology 1986; 6:1403-6. [PMID: 3793014 DOI: 10.1002/hep.1840060630] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Young JD, Cohn ZA, Podack ER. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science 1986; 233:184-90. [PMID: 2425429 DOI: 10.1126/science.2425429] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ninth component of complement (C9) and the pore-forming protein (PFP or perforin) from cytotoxic T lymphocytes polymerize to tubular lesions having an internal diameter of 100 A and 160 A, respectively, when bound to lipid bilayers. Polymerized C9, assembled by slow spontaneous or rapid Zn2+-induced polymerization, and polyperforin, which is assembled only in the presence of Ca2+, constitute large aqueous pores that are stable, nonselective for solutes, and insensitive to changes of membrane potential. Monospecific polyclonal antibodies to purified C9 and PFP show cross-reactivity, suggesting structural homology between the two molecules. The structural and functional homologies between these two killer molecules imply an active role for pore formation during cell lysis.
Collapse
|
41
|
Ahkong QF, Lucy JA. Osmotic forces in artificially induced cell fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 858:206-16. [PMID: 3707962 DOI: 10.1016/0005-2736(86)90308-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The importance of cell swelling in the fusion of erythrocytes by three different chemical treatments has been investigated with cells that were cytoplasmically labelled with 6-carboxyfluorescein. Hen erythrocytes, which had been pre-incubated with ionophore A23187 and 5 mM Ca2+ to cause a proteolytic breakdown of the membrane skeleton, were induced to fuse by applying an osmotic shock. Human erythrocytes that had been incubated in an isotonic salt/buffer solution, which was progressively diluted and which contained 0.5 mM La3+ to minimise cell lysis, were also fused. In addition, the fusion of human erythrocytes by 40% poly(ethylene glycol) began only when the poly(ethylene glycol) was diluted, and it mostly occurred when the diluted polymer solution was subsequently replaced by isotonic buffer. In related experiments, the effect of an osmotic gradient on electrically induced cell fusion has been studied. Human erythrocytes in 150 mM erythritol fused more readily than less swollen cells in 200-400 mM erythritol when subjected to a 20 microseconds pulse of 3.5 kV X cm-1, indicating that the extent of cell fusion induced by the breakdown pulse is governed by the combined electrical-compressive and osmotic forces. Since osmotic phenomena are already known to be important in exocytosis, we suggest that these observations on cell fusion indicate that osmotic forces may provide the driving force for many membrane fusion reactions in biological systems.
Collapse
|
42
|
Abstract
In many cellular functions the process of membrane fusion is of vital importance. It occurs in a highly specific and strictly controlled fashion. Proteins are likely to play a key role in the induction and modulation of membrane fusion reactions. Aimed at providing insight into the molecular mechanisms of membrane fusion, numerous studies have been carried out on model membrane systems. For example, the divalent-cation induced aggregation and fusion of vesicles consisting of negatively charged phospholipids, such as phosphatidylserine (PS) or cardiolipin (CL), have been characterized in detail. It is important to note that these systems largely lack specificity and control. Therefore conclusions derived from their investigation can not be extrapolated directly to a seemingly comparable counterpart in biology. Yet, the study of model membrane systems does reveal the general requirements of lipid bilayer fusion. The most prominent barrier to molecular contact between two apposing bilayers appears to be due to the hydration of the polar groups of the lipid molecules. Thus, dehydration of the bilayer surface and fluctuations in lipid packing, allowing direct hydrophobic interactions, are critical to the induction of membrane fusion. These membrane alterations are likely to occur only locally, at the site of intermembrane contact. Current views on the way membrane proteins may induce fusion under physiological conditions also emphasize the notion of local surface dehydration and perturbation of lipid packing, possibly through penetration of apolar amino acid segments into the hydrophobic membrane interior.
Collapse
|
43
|
Deleers M, Servais JP, Wulfert E. Micromolar concentrations of Zn2+ potentiates Ca2+-induced phase separation of phosphatidyl serine containing liposomes. Biochem Biophys Res Commun 1986; 136:476-81. [PMID: 3707585 DOI: 10.1016/0006-291x(86)90465-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescence quenching of 1-acyl-2-[6[(7 nitro-2,1,3-benzoxadiazol-4yl) amino]caproyl] phosphatidyl choline in small unilamellar vesicles consisting of phosphatidyl serine has been used to monitor the lipid phase separation induced by Zn2+ and Ca2+. Phase separation of vesicle membranes was observed with Zn2+ at concentrations as low as 125 microM. Low concentrations of Zn2+ required long incubation times to reach maximal quenching (120 minutes at 375 microM). When low concentrations of Ca2+ were added to the preparation during the developing phase of Zn2+-induced quenching, an explosive increase in fluorescence quenching was instantenously observed. Phase separation induced by sub-millimolar concentrations of Ca2+ could be increased at least 4 times when vesicles were pre-incubated with 250 microM of Zn2+.
Collapse
|
44
|
Massari S, Colonna R. Gramicidin induced aggregation and size increase of phosphatidylcholine vesicles. Chem Phys Lipids 1986; 39:203-20. [PMID: 2421932 DOI: 10.1016/0009-3084(86)90011-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the role of membrane proteins in the fusion process, linear hydrophobic polypeptide gramicidin was used as fusogenic agent in small unilamellar vesicles (SUV) constituted of saturated lecithins. It was found that gramicidin, externally added to a suspension of vesicles, induces a reversible vesicles aggregation. When incorporated into the bilayer, gramicidin induces increase in vesicle size. The vesicle size increase was monitored by column chromatography and transmission electron microscopy. The process of vesicle size increase occurs only when the lipid membrane is in the gel state. A maximum is observed in the kinetics at a temperature of approx. 25 degrees C lower than the phase transition temperature of lipids. Higher rates of vesicle size increase are obtained as the lipid chain length increases. The process is accompanied by a release of internal vesicle content and by membrane lipid mixing.
Collapse
|
45
|
Electrorotation — a new method for investigating membrane events during thrombocyte activation. Influence of drugs and osmotic pressure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1986. [DOI: 10.1016/0005-2736(86)90410-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Zimmerberg J, Sardet C, Epel D. Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: kinetics of fusion monitored by quantitative light-scattering microscopy. J Biophys Biochem Cytol 1985; 101:2398-410. [PMID: 4066763 PMCID: PMC2113997 DOI: 10.1083/jcb.101.6.2398] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used the isolated planar cortex of sea urchin eggs to examine the role of osmotic forces in exocytosis by morphological and physiological methods. Electron micrographs of rotary-shadowed replicas show an en face view of exocytosis and demonstrate fusion of cortical vesicles to the underlying oolemma upon addition of calcium. Freeze-fracture replicas of rapidly frozen cortices reveal specialized attachment sites between cortical vesicles and the oolemma, and between the cortical vesicles themselves. We describe a novel light scattering assay for the kinetics of fusion which allows rapid changes of solutions and monitors exocytosis in real time. The rate and extent of fusion are found to be calcium dependent. The removal of calcium halts exocytosis. The validation of exocytosis in this system and development of tools for kinetic analysis allowed us to test predictions of the osmotic hypothesis of exocytosis: hyperosmotic media should inhibit exocytosis; calcium should cause vesicular swelling. Cortical vesicles were found to be permeant to sucrose, glucose, and urea. In media made hyperosmotic with 1.7 M sucrose, cortical vesicles were seen to shrink. Addition of calcium in hyperosmotic media led to a 10-fold decrease in the rate of exocytosis compared with the isotonic rate. The rate, while triggered by calcium, was no longer calcium-dependent. This slowing of exocytosis allowed us to photograph the swelling of cortical vesicles caused by calcium. Removal of calcium had no effect on subsequent exocytosis. Return of cortices to isotonic medium without calcium led to immediate exocytosis. These results are consistent with the idea that swelling of cortical vesicles is required for fusion of biological membranes.
Collapse
|
47
|
Stanley EF, Ehrenstein G. A model for exocytosis based on the opening of calcium-activated potassium channels in vesicles. Life Sci 1985; 37:1985-95. [PMID: 2415794 DOI: 10.1016/0024-3205(85)90029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is proposed that the role of calcium in calcium-induced exocytosis is to open Ca-activated K channels present in vesicle membranes. The opening of these channels coupled with anion transport across the vesicle membranes would result in an influx of K and anions, increasing the osmotic pressure of the vesicles. For those vesicles situated very close to the cell plasma membrane, this would lead to fusion with the membrane and exocytosis of the vesicle contents. This model can account for facilitation and other key properties of transmitter release. In addition, the model predicts that vesicles with a higher transmitter content, and hence higher initial osmotic pressure, would be preferentially discharged. The model also predicts that a faster response can be obtained for small vesicles than for large vesicles, providing a rationale as to why neurotransmitters, which must be released quickly, are packaged in small vesicles.
Collapse
|
48
|
Abstract
Sperm interaction with the egg envelopes triggers the acrosome reaction. Indeed, sperm-egg fusion is accomplished by the fusion of the acrosomal process (or of the exposed inner acrosomal membrane in mammals) with the egg plasma membrane. Fusion must be preceded by the establishment of molecular contact between the two membranes. It is suggested that, as in the case of artificial phospholipid membranes, the two major obstacles to the establishment of molecular contact are electrostatic repulsion and the hydration barrier. It is argued that morphology of the acrosome is such as to favour the overcoming of such barriers. By analogy with the conditions governing fusion of artificial phospholipid membranes and cell fusion, it is proposed that the following processes play a role in sperm-egg fusion. The large calcium uptake accompanying the acrosome reaction may help fusion either through the known effect of calcium on fusion of phospholipid membranes or by shielding the surface charges of the acrosomal process. Fusogenic proteins at the surface of the acrosomal process are likely to play a role in the fusion of the acrosomal process with the egg plasma membrane. The activation of phospholipases in conjunction with the acrosome reaction may also be instrumental in sperm-egg fusion through the transient production of lysophosphatides. Clearance or translocation of intramembraneous proteins in the egg plasma membrane at the site of contact with the acrosomal process may also be required for fusion. Lastly it is suggested that a translocation or a conformational change of some proteins of the egg plasma membrane, which is required for fusion, may be induced by the depolarization of the egg plasma membrane that follows molecular contact with the acrosomal process.
Collapse
|
49
|
Zimmerberg J, Whitaker M. Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature 1985; 315:581-4. [PMID: 3925345 DOI: 10.1038/315581a0] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fusion of the limiting membrane of a secretory granule with the plasmalemma during exocytosis is equivalent to the fusion and release of contents that occurs when phospholipid vesicles fuse with planar bilayers. Experiments with bilayers demonstrate that phospholipid vesicles must swell if they are to fuse. Also, inhibition of exocytosis in solutions of high osmolarity occurs in several types of secretory cell. We report here experiments on the cortical granule exocytosis of sea-urchin eggs. Exocytosis is prevented when the osmolality of the medium surrounding the eggs is raised from 1 to 2 osmol kg-1. High osmolality also prevents calcium-dependent exocytosis in vitro. Prior treatment with calcium at high osmolality triggers fusion when normal osmolality is restored, even if calcium is removed before dilution. Addition of calcium causes the cortical granules to swell. The large increase in membrane capacitance which normally accompanies fusion is absent in eggs activated in solutions of high osmolarity. Our data are consistent with the idea that a secretory granule must swell to fuse with the plasma membrane and support the hypothesis of an osmotically driven fusion step during exocytosis.
Collapse
|
50
|
Hui SW, Isac T, Boni LT, Sen A. Action of polyethylene glycol on the fusion of human erythrocyte membranes. J Membr Biol 1985; 84:137-46. [PMID: 3999127 DOI: 10.1007/bf01872211] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Factors affecting the polyethylene glycol (PEG)-induced membrane fusion were examined. Human erythrocyte membrane "ghosts", cytoskeleton-free vesicles budded from erythrocytes, mechanically disrupted erythrocyte vesicles, and recombinant vesicles from glycophorin and egg phosphatidylcholine were used as models. Fusion was monitored by dark-field light microscopy and by freeze-fracture electron microscopy. Osmotic swelling was found necessary for fusion between membrane ghosts following PEG treatment. The sample with the highest fusion percentage was sealed ghosts incubated in hypotonic media after at least 5 min of treatment in greater than 25% PEG. At similar osmolarity, glycerol, dextran and PEG produced progressively more pronounced intramembranous particle (IMP) patching, correlating with their increasing fusion percentages. The patching of IMP preceded cell-cell contact, and occurred without direct PEG-protein interaction. The presence of cytoskeletal elements in small vesicles had no significant effect on fusion, nor on the aggregation of intramembranous particle (IMP) upon PEG treatment. Disrupting the membrane by lysolecithin, dimethylsulfoxide, retinol or mild sonication resulted in the fragmentation of ghosts without an increase in fusion percentage. The purity of the commercial PEG used had no apparent effect on fusion. We concluded that the key steps in PEG-induced fusion of cell membrane are the creation of IMP-free zones, and the osmotic swelling of cells after the formation of bilayer contacts during the PEG treatment. Cell cytoskeleton affects PEG-induced fusion only to the extent of affecting IMP patching.
Collapse
|