1
|
Sinning K, Hochrein SM, Gubert GF, Vaeth M. Metabolic Profiling of Activated T Lymphocytes Using Single-Cell Energetic Metabolism by Profiling Translation Inhibition (SCENITH). Methods Mol Biol 2025; 2904:259-271. [PMID: 40220239 DOI: 10.1007/978-1-0716-4414-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Metabolic reprogramming is increasingly recognized as a fundamental aspect of T cell activation, influencing the differentiation, proliferation, and effector functions of lymphocytes. Measuring and screening the metabolic states of activated T cells provide insights into the dynamic interplay between cellular metabolism and immune function. In the following chapter, we provide a simple protocol based on the publication of Argüello et al. [1] to analyze the metabolic state of activated T cells at the single-cell level using standard flow cytometry.
Collapse
Affiliation(s)
- Katrin Sinning
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Gabriela F Gubert
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Zhang B, Zheng H, Wu H, Wang C, Liang Z. Recent genome-wide replication promoted expansion and functional differentiation of the JAZs in soybeans. Int J Biol Macromol 2023; 238:124064. [PMID: 36933593 DOI: 10.1016/j.ijbiomac.2023.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Jasmonate Zim-domain (JAZ) protein is an inhibitor of the jasmonate (JA) signal transduction pathway, and plays an important role in regulating plant growth, development, and defense. However, there have been few studies on its function under environmental stress in soybeans. In this study, a total of 275 JAZs protein-coding genes were identified in 29 soybean genomes. SoyC13 contained the least JAZ family members (26 JAZs), which was twice as high as AtJAZs. The genes are mainly generated by recent genome-wide replication (WGD), which replicated during the Late Cenozoic Ice Age. In addition, transcriptome analysis showed that the differences in gene expression patterns in the roots, stems, and leaves of the 29 cultivars at the V1 stage were not significant, but there was a significant difference among the three seed development stages. Finally, qRT-PCR results showed that GmJAZs responded the most strongly to heat stress, followed by drought and cold stress. This is consistent with the reason for their expansion and promoter analysis results. Therefore, we explored the significant role of conserved, duplicated, and neofunctionalized JAZs in the evolution of soybeans, which will contribute to the functional characterization of GmJAZ and the improvement of crops.
Collapse
Affiliation(s)
- Bingxue Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zheng
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haihang Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunli Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi 712100, China.
| | - Zongsuo Liang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Septer AN, Sharpe G, Shook EA. The Vibrio fischeri type VI secretion system incurs a fitness cost under host-like conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.529561. [PMID: 36945377 PMCID: PMC10028907 DOI: 10.1101/2023.03.07.529561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The type VI secretion system (T6SS) is an interbacterial weapon composed of thousands of protein subunits and predicted to require significant cellular energy to deploy, yet a fitness cost from T6SS use is rarely observed. Here, we identify host-like conditions where the T6SS incurs a fitness cost using the beneficial symbiont, Vibrio fischeri, which uses its T6SS to eliminate competitors in the natural squid host. We hypothesized that a fitness cost for the T6SS could be dependent on the cellular energetic state and used theoretical ATP cost estimates to predict when a T6SS-dependent fitness cost may be apparent. Theoretical energetic cost estimates predicted a minor relative cost for T6SS use in fast-growing populations (0.4-0.45% of total ATP used cell-1), and a higher relative cost (3.1-13.6%) for stationary phase cells. Consistent with these predictions, we observed no significant T6SS-dependent fitness cost for fast-growing populations typically used for competition assays. However, the stationary phase cell density was significantly lower in the wild-type strain, compared to a regulator mutant that does not express the T6SS, and this T6SS-dependent fitness cost was between 11 and 23%. Such a fitness cost could influence the prevalence and biogeography of T6SSs in animal-associated bacteria. While the T6SS may be required in kill or be killed scenarios, once the competitor is eliminated there is no longer selective pressure to maintain the weapon. Our findings indicate an evolved genotype lacking the T6SS would have a growth advantage over its parent, resulting in the eventual dominance of the unarmed population.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Garrett Sharpe
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
- Environment, Ecology & Energy Program, University of North Carolina, Chapel Hill, NC 27599
| | - Erika A. Shook
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Kastberg LLB, Ard R, Jensen MK, Workman CT. Burden Imposed by Heterologous Protein Production in Two Major Industrial Yeast Cell Factories: Identifying Sources and Mitigation Strategies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:827704. [PMID: 37746199 PMCID: PMC10512257 DOI: 10.3389/ffunb.2022.827704] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
Production of heterologous proteins, especially biopharmaceuticals and industrial enzymes, in living cell factories consumes cellular resources. Such resources are reallocated from normal cellular processes toward production of the heterologous protein that is often of no benefit to the host cell. This competition for resources is a burden to host cells, has a negative impact on cell fitness, and may consequently trigger stress responses. Importantly, this often causes a reduction in final protein titers. Engineering strategies to generate more burden resilient production strains offer sustainable opportunities to increase production and profitability for this growing billion-dollar global industry. We review recently reported impacts of burden derived from resource competition in two commonly used protein-producing yeast cell factories: Saccharomyces cerevisiae and Komagataella phaffii (syn. Pichia pastoris). We dissect possible sources of burden in these organisms, from aspects related to genetic engineering to protein translation and export of soluble protein. We also summarize advances as well as challenges for cell factory design to mitigate burden and increase overall heterologous protein production from metabolic engineering, systems biology, and synthetic biology perspectives. Lastly, future profiling and engineering strategies are highlighted that may lead to constructing robust burden-resistant cell factories. This includes incorporation of systems-level data into mathematical models for rational design and engineering dynamical regulation circuits in production strains.
Collapse
Affiliation(s)
| | - Ryan Ard
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Zhang Z, Zeng D, Zhang W, Chen A, Lei J, Liu F, Deng B, Zhuo J, He B, Yan M, Lei X, Wang S, Lam EWF, Liu Q, Wang Z. Modulation of oxidative phosphorylation augments antineoplastic activity of mitotic aurora kinase inhibition. Cell Death Dis 2021; 12:893. [PMID: 34593753 PMCID: PMC8484571 DOI: 10.1038/s41419-021-04190-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.
Collapse
Affiliation(s)
- Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ailin Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jie Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bing Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Junxiao Zhuo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shulan Wang
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Argüello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E, Camosseto V, Samad B, Tsui J, Yan P, Boissonneau S, Figarella-Branger D, Gatti E, Tabouret E, Krummel MF, Pierre P. SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. Cell Metab 2020; 32:1063-1075.e7. [PMID: 33264598 PMCID: PMC8407169 DOI: 10.1016/j.cmet.2020.11.007] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/09/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Energetic metabolism reprogramming is critical for cancer and immune responses. Current methods to functionally profile the global metabolic capacities and dependencies of cells are performed in bulk. We designed a simple method for complex metabolic profiling called SCENITH, for single-cell energetic metabolism by profiling translation inhibition. SCENITH allows for the study of metabolic responses in multiple cell types in parallel by flow cytometry. SCENITH is designed to perform metabolic studies ex vivo, particularly for rare cells in whole blood samples, avoiding metabolic biases introduced by culture media. We analyzed myeloid cells in solid tumors from patients and identified variable metabolic profiles, in ways that are not linked to their lineage or their activation phenotype. SCENITH's ability to reveal global metabolic functions and determine complex and linked immune-phenotypes in rare cell subpopulations will contribute to the information needed for evaluating therapeutic responses or patient stratification.
Collapse
Affiliation(s)
- Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Remy Char
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Julien-Paul Gigan
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ania I Baaziz
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Evens Bousiquot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Yan
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Sebastien Boissonneau
- Aix-Marseille Univ, Institut de Neurosciences des Systems, Faculté de Medecine, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Evelina Gatti
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; International Associated Laboratory (LIA) CNRS "Mistra", 13288 Marseille Cedex 9, France
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Philippe Pierre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; International Associated Laboratory (LIA) CNRS "Mistra", 13288 Marseille Cedex 9, France
| |
Collapse
|
8
|
Statistical Laws of Protein Motion in Neuronal Dendritic Trees. Cell Rep 2020; 33:108391. [PMID: 33207192 PMCID: PMC7672524 DOI: 10.1016/j.celrep.2020.108391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Across their dendritic trees, neurons distribute thousands of protein species that are necessary for maintaining synaptic function and plasticity and that need to be produced continuously and trafficked to their final destination. As each dendritic branchpoint splits the protein flow, increasing branchpoints decreases the total protein number downstream. Consequently, a neuron needs to produce more proteins to maintain a minimal protein number at distal synapses. Combining in vitro experiments and a theoretical framework, we show that proteins that diffuse within the cell plasma membrane are, on average, 35% more effective at reaching downstream locations than proteins that diffuse in the cytoplasm. This advantage emerges from a bias for forward motion at branchpoints when proteins diffuse within the plasma membrane. Using 3D electron microscopy (EM) data, we show that pyramidal branching statistics and the diffusion lengths of common proteins fall into a region that minimizes the overall protein need. Surface proteins are more efficient at reaching distal sites than soluble proteins Daughter radius optimization reduces the number of proteins needed to populate dendrites Ratios of daughter radii at branchpoints are cell type specific Highly diffusive proteins incur a smaller extra cost for non-optimized radii
Collapse
|
9
|
Correia K, Mahadevan R. Pan‐Genome‐Scale Network Reconstruction: Harnessing Phylogenomics Increases the Quantity and Quality of Metabolic Models. Biotechnol J 2020; 15:e1900519. [DOI: 10.1002/biot.201900519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/22/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin Correia
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto 164 College Street Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
10
|
Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. eLife 2017; 6:28034. [PMID: 28857745 PMCID: PMC5578734 DOI: 10.7554/elife.28034] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce excess ribosomal proteins, amounting to a constant ≈8% of the proteome. Accordingly, ≈25% of ribosomal proteins expressed in rapidly growing cells does not contribute to translation. Further, this fraction increases as growth rate decreases and these excess ribosomal proteins are employed when translation demands unexpectedly increase. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.
Collapse
Affiliation(s)
- Eyal Metzl-Raz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Kafri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yonat Gurvich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation. Cell Death Differ 2017; 24:1564-1576. [PMID: 28574509 DOI: 10.1038/cdd.2017.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
MYC family proteins are implicated in many human cancers, but their therapeutic targeting has proven challenging. MYCN amplification in childhood neuroblastoma (NB) is associated with aggressive disease and high mortality. Novel and effective therapeutic strategies are therefore urgently needed for these tumors. MYC-driven oncogenic transformation impairs cell survival under nutrient deprivation (ND), a characteristic stress condition within the tumor microenvironment. We recently identified eukaryotic Elongation Factor 2 Kinase (eEF2K) as a pivotal mediator of the adaptive response of tumor cells to ND. We therefore hypothesized that eEF2K facilitates the adaptation of MYCN amplified NB to ND, and that inhibiting this pathway can impair MYCN-driven NB progression. To test our hypothesis, we first analyzed publicly available genomic databases and tissue microarrays for eEF2K expression in NB, and for links between eEF2K, MYCN, and clinical outcome in NB. Effects of eEF2K inhibition were evaluated on survival of MYCN amplified versus non-amplified NB cell lines under ND. Finally, NB xenograft mouse models were used to confirm in vitro observations. Our results indicate that high eEF2K expression and activity are strongly predictive of poor outcome in NB, and correlates significantly with MYCN amplification. Inhibition of eEF2K markedly decreases survival of MYCN amplified NB cell lines in vitro under ND. Growth of MYCN amplified NB xenografts is markedly impaired by eEF2K knockdown, particularly under caloric restriction. In summary, eEF2K protects MYCN overexpressing NB cells from ND in vitro and in vivo, highlighting this kinase as a critical mediator of the adaptive response of MYCN amplified NB cells to metabolic stress.
Collapse
|
12
|
Abstract
The economy of protein production is central to cell physiology, being intimately linked with cell division rate and cell size. Attempts to model cellular physiology are limited by the scarcity of experimental data defining the molecular processes limiting protein expression. Here, we distinguish the relative contribution of gene transcription and protein translation to the slower proliferation of budding yeast producing excess levels of unneeded proteins. In contrast to widely held assumptions, rapidly growing cells are not universally limited by ribosome content. Rather, transcription dominates cost under some conditions (e.g., low phosphate), translation in others (e.g., low nitrogen), and both in other conditions (e.g., rich media). Furthermore, cells adapted to enforced protein production by becoming larger and increasing their endogenous protein levels, suggesting limited competition for common resources. We propose that rapidly growing cells do not exhaust their resources to maximize growth but maintain sufficient reserves to accommodate changing requirements. Libraries expressing increasingly high protein amounts are extensively studied Processes that limit protein production vary, depending on growth conditions Ribosomes are not universally limiting in rapidly growing cells Cells adapt by increasing their size and the abundance of endogenous proteins
Collapse
|
13
|
Stefan L, Denat F, Monchaud D. Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res 2012; 40:8759-72. [PMID: 22730286 PMCID: PMC3458538 DOI: 10.1093/nar/gks581] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since the initial discovery of the catalytic capability of short DNA fragments, this peculiar enzyme-like property (termed DNAzyme) has continued to garner much interest in the scientific community because of the virtually unlimited applications in developing new molecular devices. Alongside the exponential rise in the number of DNAzyme applications in the last past years, the search for convenient ways to improve its overall efficiency has only started to emerge. Credence has been lent to this strategy by the recent demonstration that the quadruplex-based DNAzyme proficiency can be enhanced by ATP supplements. Herein, we have made a further leap along this path, trying first of all to decipher the actual DNAzyme catalytic cycle (to gain insights into the steps ATP may influence), and subsequently investigating in detail the influence of all the parameters that govern the catalytic efficiency. We have extended this study to other nucleotides and quadruplexes, thus demonstrating the versatility and broad applicability of such an approach. The defined exquisitely efficient DNAzyme protocols were exploited to highlight the enticing advantages of this method via a 96-well plate experiment that enables the detection of nanomolar DNA concentrations in real-time with the naked-eye (see movie as Supplementary Data).
Collapse
Affiliation(s)
- Loic Stefan
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, 9, avenue Alain Savary, 21000 Dijon, France
| | | | | |
Collapse
|
14
|
Yu YM, Tompkins RG, Ryan CM, Young VR. The metabolic basis of the increase of the increase in energy expenditure in severely burned patients. JPEN J Parenter Enteral Nutr 1999; 23:160-8. [PMID: 10338224 DOI: 10.1177/0148607199023003160] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Severe burn trauma is characterized by an elevated rate of whole-body energy expenditure. APPROACH In this short review, we have attempted to assess the metabolic characteristics of and basis for the persistent increase in energy expenditure during the flow phase of the injury. We consider some aspects of normal energy metabolism, including the contribution of the major adenosine triphosphate (ATP)-consuming reactions to the standard or basal metabolic rate. Rate estimates are compiled from the literature for a number of these reactions in healthy adults and burned patients, and the values are related to the increased rates of whole-body energy expenditure with burn injury. RESULTS Whole-body protein synthesis, gluconeogenesis, urea production, and substrate cycles (total fatty acid and glycolytic-gluconeogenic) account for approximately 22%, 11%, 3%, 17%, and 4%, respectively, of the burn-induced increase in total energy expenditure. CONCLUSIONS These ATP-consuming reactions, therefore, seem to explain approximately 57% of the increase in energy expenditure. The remainder of the increase may be due, in large part, to altered Na(+)-K(+)-ATPase activity and increased proton leakage across the mitochondrial membrane.
Collapse
Affiliation(s)
- Y M Yu
- Shriners Burns Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
15
|
Srinivasan N, Antonelli M, Jacob G, Korn I, Romero F, Jedlicki A, Dhanaraj V, Sayed MF, Blundell TL, Allende CC, Allende JE. Structural interpretation of site-directed mutagenesis and specificity of the catalytic subunit of protein kinase CK2 using comparative modelling. PROTEIN ENGINEERING 1999; 12:119-27. [PMID: 10195283 DOI: 10.1093/protein/12.2.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The catalytic subunit of protein kinase casein kinase 2 (CK2alpha), which has specificity for both ATP and GTP, shows significant amino acid sequence similarity to the cyclin-dependent kinase 2 (CDK2). We constructed site-directed mutants of CK2alpha and used a three-dimensional model to investigate the basis for the dual specificity. Introduction of Phe and Gly at positions 50 and 51, in order to restore the pattern of the glycine-rich motif, did not seriously affect the specificity for ATP or GTP. We show that the dual specificity probably originates from the loop situated around the position His115 to Asp120 (HVNNTD). The insertion of a residue in this loop in CK2 alpha subunits, compared with CDK2 and other kinases, might orient the backbone to interact with the base A and G; this insertion is conserved in all known CK2alpha. The mutant deltaN118, the design of which was based on the modelling, showed reduced affinity for GTP as predicted from the model. Other mutants were intended to probe the integrity of the catalytic loop, alter the polarity of a buried residue and explore the importance of the carboxy terminus. Introduction of Arg to replace Asn189, which is mapped on the activation loop, results in a mutant with decreased k(cat), possibly as a result of disruption of the interaction between this residue and basic residues in the vicinity. Truncation at position 331 eliminates the last 60 residues of the alpha subunit and this mutant has a reduced catalytic efficiency compared with the wild-type. Catalytic efficiency is restored in the truncation mutant by the replacement of a potentially buried Glu at position 252 by Lys, probably owing to a higher stability resulting from the formation of a salt bridge between Lys252 and Asp208.
Collapse
Affiliation(s)
- N Srinivasan
- Department of Biochemistry, University of Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mul YM, Rio DC. Reprogramming the purine nucleotide cofactor requirement of Drosophila P element transposase in vivo. EMBO J 1997; 16:4441-7. [PMID: 9250688 PMCID: PMC1170070 DOI: 10.1093/emboj/16.14.4441] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Guanosine triphosphate (GTP)-binding proteins are involved in controlling a wide range of fundamental cellular processes. In vitro studies have indicated a role for GTP during Drosophila P element transposition. Here we show that P element transposase contains a non-canonical GTP-binding domain that is critical for its ability to mediate transposition in Drosophila cells. Moreover, a single amino acid substitution could switch the nucleotide binding-specificity of transposase from GTP to xanthosine triphosphate (XTP). Importantly, this mutant protein could no longer function effectively in transposition in vivo but required addition of exogenous xanthine or xanthosine for reactivation. These results suggest that transposition may be controlled by physiological GTP levels and demonstrate that a single mutation can switch the nucleotide specificity for a complex cellular process in vivo.
Collapse
Affiliation(s)
- Y M Mul
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
17
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
18
|
Dinçbaş V, Bilgin N, Scoble J, Ehrenberg M. Two GTPs are consumed on EF-Tu per peptide bond in poly(Phe) synthesis, in spite of switching stoichiometry of the EF-Tu.aminoacyl-tRNA complex with temperature. FEBS Lett 1995; 357:19-22. [PMID: 8001671 DOI: 10.1016/0014-5793(94)01318-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent observations indicate that the stoichiometry for the complex between EF-Tu.GTP and aminoacyl-tRNA (aa-tRNA) changes with temperature. At 37 degrees C two EF-Tu.GTPs bind one aa-tRNA in an extended ternary complex, but at 0 degrees C the complex has 1:1 stoichiometry. However, the present experiments show that there are two GTPs hydrolyzed on EF-Tu per peptide bond in poly(Phe) synthesis at 37 degrees C as well as at 0 degrees C. This indicates two different pathways for the enzymatic binding of aa-tRNA to the A-site on the ribosome.
Collapse
Affiliation(s)
- V Dinçbaş
- Department of Molecular Biology, BMC, Uppsala, Sweden
| | | | | | | |
Collapse
|
19
|
Weijland A, Parmeggiani A. Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? Trends Biochem Sci 1994; 19:188-93. [PMID: 8048158 DOI: 10.1016/0968-0004(94)90018-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the elongation cycle of bacterial protein biosynthesis, the binding of aminoacyl-tRNA (aa-tRNA) to the A-site of mRNA-programmed ribosomes is mediated by elongation factor Tu (EF-Tu) and associated with the hydrolysis of GTP. Recently, in the case of cognate aa-tRNA, the participation of two GTP molecules has been implicated in this reaction. These are likely to be involved in preventing the indiscriminate binding of aa-tRNA to the ribosomal A-site. This article integrates this unexpected finding with our current knowledge of the structure-function relationships of the macro-molecules involved in the elongation cycle.
Collapse
Affiliation(s)
- A Weijland
- S.D.I. 61840 du CNRS, Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
20
|
Scoble J, Bilgin N, Ehrenberg M. Two GTPs are hydrolysed on two molecules of EF-Tu for each elongation cycle during code translation. Biochimie 1994; 76:59-62. [PMID: 8031905 DOI: 10.1016/0300-9084(94)90063-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new experimental design has been used to determine the number of GTPs hydrolysed per peptide bond in EF-Tu function in a poly(U)-translation system. We find that two GTPs are consumed for every amino acid incorporated into the nascent poly(Phe)-chains, in accordance with previous findings with other techniques. These results necessitate a revision of current views concerning E coli translation; also new schemes for ribosome function are discussed.
Collapse
Affiliation(s)
- J Scoble
- Department of Molecular Biology, University of Uppsala, Sweden
| | | | | |
Collapse
|