1
|
Hu C, Jiang Y, Ma C, Xu F, Cui C, Du X, Chen J, Zhu L, Yu S, He X, Yu W, Wang Y, Xu X. Decreased Cdk2 Activity Hindered Embryonic Development and Parthenogenesis Induction in Silkworm, Bombyx mori L. Int J Mol Sci 2025; 26:3341. [PMID: 40244186 PMCID: PMC11989892 DOI: 10.3390/ijms26073341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cyclin-dependent protein kinase 2 (Cdk2), an important member of the serine/threonine-specific protein kinase family, plays a critical regulatory role in biological processes. Previous studies have demonstrated that Cdk2 is involved in the arrest and resumption of meiosis in mammalian oocytes. In this study, we explored the function of Cdk2 through parthenogenetic lines (PLs) and corresponding amphigonic lines (ALs) in a model lepidopteran insect silkworm, Bombyx mori L. Our findings revealed a positive correlation between Cdk2 activity and the parthenogenesis induction rate. The pharmacological inhibition of Cdk2 using the specific inhibitor AUZ454 not only significantly reduced the parthenogenesis induction rate but also caused developmental delays in embryos. These results demonstrate that Cdk2 is essential for parthenogenesis success and is a potential target gene for biological reproductive regulation.
Collapse
Affiliation(s)
- Chengjie Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenkai Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunguang Cui
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linbao Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjian He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xia Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Somarelli JA, Roghani RS, Moghaddam AS, Thomas BC, Rupprecht G, Ware KE, Altunel E, Mantyh JB, Kim SY, McCall SJ, Shen X, Mantyh CR, Hsu DS. A Precision Medicine Drug Discovery Pipeline Identifies Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal Cancer. Mol Cancer Ther 2020; 19:2516-2527. [PMID: 33158998 DOI: 10.1158/1535-7163.mct-20-0454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Colorectal cancer is the third most common cancer in the United States and responsible for over 50,000 deaths each year. Therapeutic options for advanced colorectal cancer are limited, and there remains an unmet clinical need to identify new treatments for this deadly disease. To address this need, we developed a precision medicine pipeline that integrates high-throughput chemical screens with matched patient-derived cell lines and patient-derived xenografts (PDX) to identify new treatments for colorectal cancer. High-throughput screens of 2,100 compounds were performed across six low-passage, patient-derived colorectal cancer cell lines. These screens identified the CDK inhibitor drug class among the most effective cytotoxic compounds across six colorectal cancer lines. Among this class, combined targeting of CDK1, 2, and 9 was the most effective, with IC50s ranging from 110 nmol/L to 1.2 μmol/L. Knockdown of CDK9 in the presence of a CDK2 inhibitor (CVT-313) showed that CDK9 knockdown acted synergistically with CDK2 inhibition. Mechanistically, dual CDK2/9 inhibition induced significant G2-M arrest and anaphase catastrophe. Combined CDK2/9 inhibition in vivo synergistically reduced PDX tumor growth. Our precision medicine pipeline provides a robust screening and validation platform to identify promising new cancer therapies. Application of this platform to colorectal cancer pinpointed CDK2/9 dual inhibition as a novel combinatorial therapy to treat colorectal cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Roham Salman Roghani
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Ali Sanjari Moghaddam
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Beatrice C Thomas
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Gabrielle Rupprecht
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Erdem Altunel
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - John B Mantyh
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - So Young Kim
- Duke Functional Genomics Core, Duke University, Durham, North Carolina
| | - Shannon J McCall
- Department of Pathology, Duke University, Durham, North Carolina
| | - Xiling Shen
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina. .,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
3
|
Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q, Zeng W. Meclofenamic acid represses spermatogonial proliferation through modulating m 6A RNA modification. J Anim Sci Biotechnol 2019; 10:63. [PMID: 31333841 PMCID: PMC6621992 DOI: 10.1186/s40104-019-0361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background N6-Methyladenosine (m6A), the most prevalent modification in mammalian mRNA, plays important roles in numerous biological processes. Several m6A associated proteins such as methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) and YTH domain containing 2 (YTHDC2) are involved in the regulation of spermatogenesis and oogenesis. However, the role of the first detected m6A demethylase, fat mass and obesity associate protein (FTO), in germ cells remains elusive. Elucidation of FTO roles in the regulation of germ cell fate will provide novel insights into the mammalian reproduction. Methods Mouse GC-1 spg cells were treated with the ester form of meclofenamic acid (MA2) to inhibit the demethylase activity of FTO. The cellular m6A and m6Am level were analyzed through high performance liquid chromatography combined with tandem mass spectrometry (HPLC/MS-MS). The cell apoptosis was detected via TUNEL and flow cytometry. The cell proliferation was detected through EdU and western blot. The mRNA level of core cyclin dependent kinases (CDKs) was quantified via q-PCR. RNA decay assay were performed to detect RNA stability. Dual fluorescence assay was conducted to study whether MA2 affects the expression of CDK2 dependent on the m6A modification at 3’UTR. Results MA2 significantly increased the cellular m6A level and down-regulated the expression of CDK1, CDK2, CDK6 and CdC25a, resulting in arrest of G1/S transition and decrease of cell proliferation. MA2 downregulated CDK2 mRNA stability. Additionally, mutation of the predicted m6A sites in the Cdk2–3’UTR could mitigated the degradation of CDK2 mRNA after MA2 treatment. Conclusion MA2 affected CDKs expression through the m6A-dependent mRNA degradation pathway, and thus repressed spermatogonial proliferation. Electronic supplementary material The online version of this article (10.1186/s40104-019-0361-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jiayin Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yinghua Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiang Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
4
|
Oh JS, Susor A, Schindler K, Schultz RM, Conti M. Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Sci 2013; 126:1081-5. [PMID: 23345398 DOI: 10.1242/jcs.115592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk1) phosphorylations are involved in this arrest in mouse oocytes. Here, we show that a dynamic equilibrium of Cdk1 phosphorylation is required to maintain MII arrest. When the Cdc25A phosphatase is downregulated, mouse oocytes are released from MII arrest and MPF becomes inactivated. This inactivation occurs in the absence of cyclin B degradation and is dependent on Wee1B-mediated phosphorylation of Cdk1. Thus, our data demonstrate that Cdk1 activity is maintained during MII arrest not only by cyclin turnover but also by steady state phosphorylation.
Collapse
Affiliation(s)
- Jeong Su Oh
- Center for Reproductive Sciences and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology and Reproductive Sciences at the University of California, San Francisco, CA 94143-0556, USA
| | | | | | | | | |
Collapse
|
5
|
Adhikari D, Zheng W, Shen Y, Gorre N, Ning Y, Halet G, Kaldis P, Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum Mol Genet 2012; 21:2476-84. [PMID: 22367880 DOI: 10.1093/hmg/dds061] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.
Collapse
Affiliation(s)
- Deepak Adhikari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Perrard MH, Chassaing E, Montillet G, Sabido O, Durand P. Cytostatic factor proteins are present in male meiotic cells and beta-nerve growth factor increases mos levels in rat late spermatocytes. PLoS One 2009; 4:e7237. [PMID: 19802389 PMCID: PMC2751818 DOI: 10.1371/journal.pone.0007237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/27/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. METHODOLOGY/PRINCIPAL FINDINGS We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes. CONCLUSION/SIGNIFICANCE Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells.
Collapse
Affiliation(s)
- Marie-Hélène Perrard
- Institut de génomique fonctionnelle de Lyon, Université de Lyon, INRA UMR 1288, CNRS UMR 5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.
| | | | | | | | | |
Collapse
|
7
|
Russo GL, Bilotto S, Ciarcia G, Tosti E. Phylogenetic conservation of cytostatic factor related genes in the ascidian Ciona intestinalis. Gene 2008; 429:104-11. [PMID: 18977421 DOI: 10.1016/j.gene.2008.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
In all vertebrates, mature oocytes arrest at the metaphase of the II meiotic division, while some invertebrates arrest at metaphase-I, others at prophase-I. Fertilization induces completion of meiosis and entry into the first mitotic division. Several experimental models have been considered from both vertebrates and invertebrates in order to shed light on the peculiar aspects of meiotic division, such as the regulation of the cytostatic factor (CSF) and the maturation promoting factor (MPF) in metaphase I or II. Recently, we proposed the oocytes of ascidian Ciona intestinalis as a new model to study the meiotic division. Here, taking advantage of the recent publication of the C. intestinalis genome, we presented a phylogenetic analysis of key molecular components of the CSF-related machinery. We showed that the Mos/MAP kinase pathway is perfectly conserved in ascidians. We demonstrated the presence of a CSF-like activity in metaphase-I arrested C. intestinalis oocytes able to block cell division in two-cell embryos. We further investigated the regulation of CSF by demonstrating that both CSF and MPF inactivation, at the exit of metaphase-I, are independent from protein synthesis, indicating the absence of short-lived factors that regulate metaphase stability, as in other invertebrate species. The results obtained suggest that meiotic regulation in C. intestinalis resembles that of vertebrates, such as Xenopus accordingly to the position of this organism in the evolutionary tree.
Collapse
|
8
|
Kashima K, Kano K, Naito K. Mos and the mitogen-activated protein kinase do not show cytostatic factor activity in early mouse embryos. J Reprod Dev 2007; 53:1175-82. [PMID: 17827876 DOI: 10.1262/jrd.19075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mos and the mitogen-activated protein kinase (MAPK) cascade have been established as crucial regulators of second meiotic metaphase arrest, the so-called CSF arrest, in mammalian oocytes. They are also thought to play a role in regulating mitotic metaphase arrest of early mammalian embryos. In the present study, we examined whether mitotic arrest is induced in early mouse embryos by activation of extracellular signal-regulated kinases (ERKs), which are major MAPKs in mouse eggs, and their substrate, p90Ribosomal S6 kinase (RSK), as reported in Xenopus embryos. Wild-type Mos (wt-Mos), degradation-resistant Mos mutant (P2G-Mos) or constitutive active mutant of MAPK/ERK kinase, MEK (SDSE-MEK), was expressed in early mouse embryos by injecting the respective expression vectors into the pronucleus of fertilized eggs, and the developmental rates were then examined up to 72 h after insemination. Expression of P2G-Mos and SDSE-MEK succeeded in activating ERKs and RSK in developing mouse embryos, while wt-Mos failed to activate them in spite of expression of mos mRNA, indicating that the wt-Mos protein is unstable in early mouse embryos. Although the activated levels of ERKs and RSK in the vector-injected embryos were comparable to those of meiotically arrested mouse oocytes, their developmental rates were identical to those of the control embryos. These results suggest that activation of MAPK and RSK does not induce mitotic arrest in early mouse embryos. The present study indicates that there are large physiological differences between early mouse embryos and mouse oocytes and that CSF arrest of mouse eggs in mitosis should be discussed separately from that in meiosis.
Collapse
Affiliation(s)
- Koji Kashima
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Japan
| | | | | |
Collapse
|
9
|
Madgwick S, Jones KT. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div 2007; 2:4. [PMID: 17257429 PMCID: PMC1794241 DOI: 10.1186/1747-1028-2-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/10/2022] Open
Abstract
Oocytes from higher chordates, including man and nearly all mammals, arrest at metaphase of the second meiotic division before fertilization. This arrest is due to an activity that has been termed 'Cytostatic Factor'. Cytostatic Factor maintains arrest through preventing loss in Maturation-Promoting Factor (MPF; CDK1/cyclin B). Physiologically, Cytostatic Factor – induced metaphase arrest is only broken by a Ca2+ rise initiated by the fertilizing sperm and results in degradation of cyclin B, the regulatory subunit of MPF through the Anaphase-Promoting Complex/Cyclosome (APC/C). Arrest at metaphase II may therefore be viewed as being maintained by inhibition of the APC/C, and Cytostatic Factor as being one or more pathways, one of which inhibits the APC/C, consorting in the preservation of MPF activity. Many studies over several years have implicated the c-Mos/MEK/MAPK pathway in the metaphase arrest of the two most widely studied vertebrates, frog and mouse. Murine downstream components of this cascade are not known but in frog involve members of the spindle assembly checkpoint, which act to inhibit the APC/C. Interesting these downstream components appear not to be involved in the arrest of mouse eggs, suggesting a lack of conservation with respect to c-Mos targets. However, the recent discovery of Emi2 as an egg specific APC/C inhibitor whose degradation is Ca2+ dependent has greatly increased our understanding of MetII arrest. Emi2 is involved in both the establishment and maintenance of metaphase II arrest in frog and mouse suggesting a conservation of metaphase II arrest. Its identity as the physiologically relevant APC/C inhibitor involved in Cytostatic Factor arrest prompted us to re-evaluate the role of the c-Mos pathway in metaphase II arrest. This review presents a model of Cytostatic Factor arrest, which is primarily induced by Emi2 mediated APC/C inhibition but which also requires the c-Mos pathway to set MPF levels within physiological limits, not too high to induce an arrest that cannot be broken, or too low to induce parthenogenesis.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| | - Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| |
Collapse
|
10
|
Grimison B, Liu J, Lewellyn AL, Maller JL. Metaphase arrest by cyclin E-Cdk2 requires the spindle-checkpoint kinase Mps1. Curr Biol 2006; 16:1968-73. [PMID: 17027495 DOI: 10.1016/j.cub.2006.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/09/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Cytostatic factor (CSF) arrests vertebrate eggs in metaphase of meiosis II through several pathways that inhibit activation of the anaphase-promoting complex/cyclosome (APC/C). In Xenopus, the Mos-MEK1-MAPK-p90(Rsk) cascade utilizes spindle-assembly-checkpoint components to effect metaphase arrest. Another pathway involves cyclin E-Cdk2, and sustained cyclin E-Cdk2 activity in egg extracts causes metaphase arrest in the absence of Mos; this latter finding suggests that an independent pathway contributes to CSF arrest. Here, we demonstrate that metaphase arrest with cyclin E-Cdk2, but not with Mos, requires the spindle-checkpoint kinase monopolar spindles 1 (Mps1), a cyclin E-Cdk2 target that is also implicated in centrosome duplication. xMps1 is synthesized and activated during oocyte maturation and inactivated upon CSF release. In egg extracts, CSF release by calcium was inhibited by constitutively active cyclin E-Cdk2 and delayed by wild-type xMps1. Ablation of cyclin E by antisense oligonucleotides blocked accumulation of xMps1, suggesting that cyclin E-Cdk2 controls Mps1 levels. During meiosis II, activated cyclin E-Cdk2 significantly inhibited the APC/C even in the absence of the Mos-MAPK pathway, but this inhibition was not sufficient to suppress S phase between meiosis I and II. These results uniquely place xMps1 downstream of cyclin E-Cdk2 in mediating a pathway of APC/C inhibition and metaphase arrest.
Collapse
Affiliation(s)
- Bryn Grimison
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
11
|
Schmidt A, Rauh NR, Nigg EA, Mayer TU. Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci 2006; 119:1213-8. [PMID: 16554437 DOI: 10.1242/jcs.02919] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilization is the fundamental process in which two gametes - sperm and oocyte - fuse to generate a zygote that will form a new multicellular organism. In most vertebrates, oocytes await fertilization while arrested at metaphase of meiosis II. This resting state can be stable for many hours and depends on a cytoplasmic activity termed cytostatic factor (CSF). Recently, members of the novel Emi/Erp family of proteins have been put forward as important components of CSF. These proteins inhibit the anaphase-promoting complex/cyclosome (APC/C), which acts at the very core of the cell cycle regulatory machinery. Initially, Xenopus early mitotic inhibitor 1 (Emi1) was proposed to be a component of CSF, but newer work suggests that a structural relative, Emi-related protein 1 (Erp1/Emi2), is essential for maintenance of CSF arrest in Xenopus. Most importantly, studies on Erp1/Emi2 regulation have led to a detailed molecular understanding of the Ca2+-mediated release from CSF arrest that occurs upon fertilization.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Genetics, Independent Research Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
12
|
Nebreda AR. CDK activation by non-cyclin proteins. Curr Opin Cell Biol 2006; 18:192-8. [PMID: 16488127 DOI: 10.1016/j.ceb.2006.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/24/2006] [Indexed: 01/09/2023]
Abstract
Progression through the cell cycle is regulated by cyclin-dependent kinases (CDKs), which associate with activating partners, named cyclins, to phosphorylate substrates efficiently. Cyclins are periodically synthesized and degraded during the cell cycle, playing a key role in the precise activation and inactivation of CDKs. However, CDKs can also be activated by other proteins, which lack sequence similarity to cyclins. These include the RINGO/Speedy proteins, which were originally identified as regulators of the meiotic cell cycle in Xenopus oocytes. Recently, five different mammalian RINGO/Speedy family members have been reported, all of which can bind to and directly activate Cdk1 and Cdk2.
Collapse
Affiliation(s)
- Angel R Nebreda
- CNIO (Spanish National Cancer Center), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
13
|
Liu J, Maller JL. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 2006; 15:1458-68. [PMID: 16040245 DOI: 10.1016/j.cub.2005.07.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/30/2005] [Accepted: 07/08/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. RESULTS Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. CONCLUSIONS Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | |
Collapse
|
14
|
Sugiura K, Naito K, Endo T, Tojo H. Study of germinal vesicle requirement for the normal kinetics of maturation/M-phase-promoting factor activity during porcine oocyte maturation. Biol Reprod 2005; 74:593-600. [PMID: 16319287 DOI: 10.1095/biolreprod.105.046375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian immature oocytes contain large nuclei referred to as germinal vesicles (GVs). The translocation of maturation/M-phase promoting factor (MPF) into GVs just before the activation of MPF has been reported in several species. To examine whether the GV is required for MPF activation in mammalian oocytes, porcine immature oocytes were enucleated and their MPF activity and CCNB (also known as cyclin B) levels were investigated. The activation of MPF at the start of maturation was detected at normal levels in enucleated oocytes, whereas reactivation to induce the second meiosis was not observed. Although protein synthesis was found to be normal both qualitatively and quantitatively, even in the absence of the nucleus, CCNB1 did not sufficiently accumulate in the enucleated oocytes. The defects in the enucleated oocytes were reversed by the injection of GV material into the enucleated oocytes. Furthermore, the inhibition of CCNB1 degradation revealed drastic accumulation of CCNB1, indicating active synthesis of CCNB1 in enucleated oocytes. The mitogen-activated protein kinase cascade remained unaffected by enucleation. These results indicate that GV is not required for the activation of MPF during the first meiosis, but that it is required for the second meiosis because of its promotion of CCNB1 accumulation.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
15
|
Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 2005; 19:502-13. [PMID: 15713843 PMCID: PMC548950 DOI: 10.1101/gad.320705] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metaphase-to-anaphase transition is a fundamental step in cell cycle progression where duplicated sister-chromatids segregate to the future daughter cells. The anaphase-promoting complex/cyclosome (APC/C) is a highly regulated ubiquitin-ligase that triggers anaphase onset and mitotic exit by targeting securin and mitotic cyclins for destruction. It was previously shown that the Xenopus polo-like kinase Plx1 is essential to activate APC/C upon release from cytostatic factor (CSF) arrest in Xenopus egg extract. Although the mechanism by which Plx1 regulates APC/C activation remained unclear, the existence of a putative APC/C inhibitor was postulated whose activity would be neutralized by Plx1 upon CSF release. Here we identify XErp1, a novel Plx1-regulated inhibitor of APC/C activity, and we demonstrate that XErp1 is required to prevent anaphase onset in CSF-arrested Xenopus egg extract. Inactivation of XErp1 leads to premature APC/C activation. Conversely, addition of excess XErp1 to Xenopus egg extract prevents APC/C activation. Plx1 phosphorylates XErp1 in vitro at a site that targets XErp1 for degradation upon CSF release. Thus, our data lead to a model of APC/C activation in Xenopus egg extract in which Plx1 targets the APC/C inhibitor XErp1 for degradation.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Biology, Independent Research Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Sugiura K, Naito K, Tojo H. Cdk2 Activity is Essential for the First to Second Meiosis Transition in Porcine Oocytes. J Reprod Dev 2005; 51:143-9. [PMID: 15750306 DOI: 10.1262/jrd.51.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic progression of Xenopus oocytes has been suggested to depend on the activity of cyclin-dependent kinase 2 (Cdk2). We examined whether Cdk2 is involved in the regulation of mammalian oocyte meiosis by injecting porcine oocytes with anti-Cdk2 antibody. At first, the cross-reactivity of the anti-Cdk2 antibody with Cdc2 kinase was evaluated by immunoprecipitation and immunoblotting experiments using porcine granulosa cell extract, and no cross-reactivity with Cdc2 kinase was observed in the antibody used. In the anti-Cdk2 antibody-injected group, 50.7% of the oocytes were arrested in the second metaphase after 50 h of culture and this rate was significantly lower than those in the non-injected intact oocytes or the oocytes injected with mouse IgG (84.5% and 86.7%, respectively). Most of the other oocytes in the antibody-injected group formed a pronucleus without polar bodies or with only one polar body. The cyclin B1 amount in the antibody-injected and activated oocytes was dramatically decreased compared with that in the intact or mouse IgG-injected oocytes after 50 h of culture. These results suggest that Cdk2 is involved in the meiotic maturation of mammalian oocytes, and that the block of Cdk2 activity results in the failure of cyclin B1 accumulation and second meiosis induction.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
17
|
Marangos P, Carroll J. Fertilization and InsP3-induced Ca2+ release stimulate a persistent increase in the rate of degradation of cyclin B1 specifically in mature mouse oocytes. Dev Biol 2004; 272:26-38. [PMID: 15242788 DOI: 10.1016/j.ydbio.2004.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/15/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Vertebrate oocytes proceed through meiosis I before undergoing a cytostatic factor (CSF)-mediated arrest at metaphase of meiosis II. Exit from MII arrest is stimulated by a sperm-induced increase in intracellular Ca2+. This increase in Ca2+ results in the destruction of cyclin B1, the regulatory subunit of cdk1 that leads to inactivation of maturation promoting factor (MPF) and egg activation. Progression through meiosis I also involves cyclin B1 destruction, but it is not known whether Ca2+ can activate the destruction machinery during MI. We have investigated Ca2+ -induced cyclin destruction in MI and MII by using a cyclin B1-GFP fusion protein and measurement of intracellular Ca2+. We find no evidence for a role for Ca2+ in MI since oocytes progress through MI in the absence of detectable Ca2+ transients. Furthermore, Ca2+ increases induced by photorelease of InsP3 stimulate a persistent destruction of cyclin B1-GFP in MII but not MI stage oocytes. In addition to a steady decrease in cyclin B1-GFP fluorescence, the increase in Ca2+ stimulated a transient decrease in fluorescence in both MI and MII stage oocytes. Similar transient decreases in fluorescence imposed on a more persistent fluorescence decrease were detected in cyclin-GFP-injected eggs undergoing fertilization-induced Ca2+ oscillations. The transient decreases in fluorescence were not a result of cyclin B1 destruction since transients persisted in the presence of a proteasome inhibitor and were detected in controls injected with eGFP and in untreated oocytes. We conclude that increases in cytosolic Ca2+ induce transient changes in autofluorescence and that the pattern of cyclin B1 degradation at fertilization is not stepwise but exponential. Furthermore, this Ca2+ -induced increase in degradation of cyclin B1 requires factors specific to mature oocytes, and that to overcome arrest at MII, Ca2+ acts to release the CSF-mediated brake on cyclin B1 destruction.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, WC1E 6BT, UK
| | | |
Collapse
|
18
|
Tunquist BJ, Eyers PA, Chen LG, Lewellyn AL, Maller JL. Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest. ACTA ACUST UNITED AC 2004; 163:1231-42. [PMID: 14691134 PMCID: PMC2173727 DOI: 10.1083/jcb.200306153] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 4200 E. 9th Avenue, Campus Box C236, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
19
|
Ivanovska I, Lee E, Kwan KM, Fenger DD, Orr-Weaver TL. The Drosophila MOS ortholog is not essential for meiosis. Curr Biol 2004; 14:75-80. [PMID: 14711418 DOI: 10.1016/j.cub.2003.12.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In metazoan oocytes, a metaphase arrest coordinates the completion of meiosis with fertilization. Vertebrate mos maintains the metaphase II arrest of mature oocytes and prevents DNA replication between the meiotic divisions. We identified a Drosophila homolog of mos and showed it to be the mos ortholog by two additional criteria. The dmos transcripts are present in Drosophila oocytes but not embryos, and injection of dmos into Xenopus embryos blocks mitosis and elevates active MAPK levels. In Drosophila, MAPK is activated in oocytes, consistent with a role in meiosis. We generated deletions of dmos and found that, as in vertebrates, dmos is responsible for the majority of MAPK activation. Unexpectedly, the oocytes that do mature complete meiosis normally and produce fertilized embryos that develop, although there is a reduction in female fertility and loss of some oocytes by apoptosis. Therefore, Drosophila contains a mos ortholog that activates a MAPK cascade during oogenesis and is nonessential for meiosis. This could be because there are redundant pathways regulating meiosis, because residual, low levels of active MAPK are sufficient, or because active MAPK is dispensable for meiosis in Drosophila. These results highlight the complexity of meiotic regulation that evolved to ensure accurate control over the reproductive process.
Collapse
Affiliation(s)
- Irena Ivanovska
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
20
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
21
|
Tunquist BJ, Schwab MS, Chen LG, Maller JL. The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 2002; 12:1027-33. [PMID: 12123578 DOI: 10.1016/s0960-9822(02)00894-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrate unfertilized eggs, metaphase arrest in Meiosis II is mediated by an activity known as cytostatic factor (CSF). CSF arrest is dependent upon Mos-dependent activation of the MAPK/Rsk pathway, and Rsk activates the spindle checkpoint kinase Bub1, leading to inhibition of the anaphase-promoting complex (APC), an E3 ubiquitin ligase required for the metaphase/anaphase transition. However, it is not known whether Bub1 is required for the establishment of CSF arrest or whether other pathways also contribute. Here, we show that immunodepletion of Bub1 from egg extracts blocks the ability of Mos to establish CSF arrest, and arrest can be restored by the addition of wild-type, but not kinase-dead, Bub1. The appearance of CSF arrest at Meiosis II may result from coexpression of cyclin E/Cdk2 with the MAPK/Bub1 pathway. Cyclin E/Cdk2 was able to cause metaphase arrest in egg extracts even in the absence of Mos and could also inhibit cyclin B degradation in oocytes when expressed at anaphase of Meiosis I. Once it has been established, metaphase arrest can be maintained in the absence of MAPK, Bub1, or cyclin E/Cdk2 activity. Both pathways are independent of each other, but each appears to block activation of the APC, which is required for cyclin B degradation and the metaphase/anaphase transition.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
22
|
Bodart JF, Flament S, Vilain JP. Metaphase arrest in amphibian oocytes: interaction between CSF and MPF sets the equilibrium. Mol Reprod Dev 2002; 61:570-4. [PMID: 11891929 DOI: 10.1002/mrd.10112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jean-François Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulaire, UPRES EA 1033, Université de Lille 1, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
23
|
GRUPEN CG, NOTTLE MB, NAGASHIMA H. Calcium Release at Fertilization: Artificially Mimicking the Oocyte's Response to Sperm. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
D'Angiolella V, Costanzo V, Gottesman ME, Avvedimento EV, Gautier J, Grieco D. Role for cyclin-dependent kinase 2 in mitosis exit. Curr Biol 2001; 11:1221-6. [PMID: 11516956 DOI: 10.1016/s0960-9822(01)00352-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis requires cyclin-dependent kinase (cdk) 1-cyclin B activity [1]. Exit from mitosis depends on the inactivation of the complex by the degradation of cyclin B [2]. Cdk2 is also active during mitosis [3, 4]. In Xenopus egg extracts, cdk2 is primarily in complex with cyclin E, which is stable [5]. At the end of mitosis, downregulation of cdk2-cyclin E activity is accompanied by inhibitory phosphorylation of cdk2 [6]. Here, we show that cdk2-cyclin E activity maintains cdk1-cyclin B during mitosis. At mitosis exit, cdk2 is inactivated prior to cdk1. The loss of cdk2 activity follows and depends upon an increase in protein kinase A (PKA) activity. Prematurely inactivating cdk2 advances the time of cyclin B degradation and cdk1 inactivation. Blocking PKA, instead, stabilizes cdk2 activity and inhibits cyclin B degradation and cdk1 inactivation. The stabilization of cdk1-cyclin B is also induced by a mutant cdk2-cyclin E complex that is resistant to inhibitory phosphorylation. P21-Cip1, which inhibits both wild-type and mutant cdk2-cyclin E, reverses mitotic arrest under either condition. Our findings indicate that the proteolysis-independent downregulation of cdk2 activity at the end of mitosis depends on PKA and is required to activate the proteolysis cascade that leads to mitosis exit.
Collapse
Affiliation(s)
- V D'Angiolella
- Dipartimento di Medicina Sperimentale G. Salvatore, Medical School, University of Catanzaro, Via T. Campanella 5, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Bodart JF, Rodeau JL, Vilain JP, Flament S. c-Mos proteolysis is independent of the CA(2+) rise induced by 6-DMAP in Xenopus oocytes. Exp Cell Res 2001; 266:187-92. [PMID: 11339837 DOI: 10.1006/excr.2001.5213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus oocytes, metaphase II arrest is due to a cytostatic factor (CSF) that involves c-Mos, maintaining a high MPF (cdk1/cyclin B) activity in the cell. At fertilization, a rise in intracellular calcium triggers the proteolysis of both cyclin B and c-Mos. The kinase inhibitor 6-dimethylaminopurine (6-DMAP) is also able to release matured Xenopus oocytes from metaphase II block. This is characterized by c-Mos proteolysis without degradation of cyclin B. We hypothesized that 6-DMAP induced an increase in intracellular calcium. Using the calcium-sensitive fluorescent dye Fura-2, we observed a systematic increase in intracellular calcium following 6-DMAP application. In matured oocytes previously microinjected with the calcium chelator BAPTA, no calcium changes occurred after 6-DMAP addition; however, c-Mos was still proteolysed. In oocytes at the GVBD stage, c-Mos proteolysis occurred in response to 6-DMAP but not to calcium ionophore treatment. We suggest that c-Mos proteolysis is rather controlled by a phosphorylation-dependent process.
Collapse
Affiliation(s)
- J F Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulairw, UPRES EA 1033, Université de Lille 1, SN3, F-59655 Villeneuve d'Ascq cedex, France
| | | | | | | |
Collapse
|
26
|
Yoshida N, Yamashita M. Non-dependence of cyclin E/Cdk2 kinase activity on the initiation of oocyte maturation in goldfish. Dev Growth Differ 2000; 42:285-94. [PMID: 10910135 DOI: 10.1046/j.1440-169x.2000.00506.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk2 kinase activity increases during oocyte maturation but neither cyclin A nor B is associated with Cdk2 in mature oocytes in goldfish. As a potential Cdk2 partner in meiosis, a cyclin E homolog was isolated from a goldfish oocyte cDNA library. A monoclonal antibody was raised against bacterially produced full-length goldfish cyclin E. Both cyclin E and Cdk2 were already present in immature oocytes and their protein levels did not change remarkably during oocyte maturation. Cyclin E formed a complex mainly with Cdk2 just at the time of germinal vesicle breakdown (GVBD) in association with the increase in Cdk2 kinase activity, although a fraction of cyclin E bound to Cdk(s) other than Cdk2 and Cdc2. Ectopic activation of cyclin E/Cdk2 by the injection of cyclin E messenger RNA (mRNA) into immature oocytes did not induce maturation-promoting factor (MPF) activation and GVBD. Furthermore, inhibition of cyclin E/Cdk2 kinase activity by the injection of p21SDI1 into the oocytes treated with 17alpha,20beta-dihydroxy-4-pregnen-3-one had no effect on MPF activation and GVBD. These results indicate that cyclin E/Cdk2 kinase activity is insufficient and unnecessary for initiating goldfish oocyte maturation.
Collapse
Affiliation(s)
- N Yoshida
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
27
|
Hill J, Winger Q, Jones K, Keller D, King WA, Westhusin M. The Effect of Donor Cell Serum Starvation and Oocyte Activation Compounds on the Development of Somatic Cell Cloned Embryos. ACTA ACUST UNITED AC 1999; 1:201-8. [PMID: 16218820 DOI: 10.1089/15204559950019834] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two experiments, one comparing nuclear transfer (NT) embryo activation compounds, the other donor cell treatments, were conducted with a goal of identifying factors that improve the in vitro development of cloned bovine embryos. In experiment 1, 539 NT embryos were produced by combining serum starved bovine fetal fibroblasts with enucleated in vitro matured oocytes, activated with ionomycin, then randomly allocated to be incubated for 4 hours in either Butyrolactone-I (BL-I) or 6-dimethylaminopurine (DMAP). There was no significant difference in development to blastocyst or compact morula of fused embryos at Day 6.5 between BL-I and DMAP activated embryos (22.4% vs. 20.2%; p = 0.18). Karyotyping of 20 blastocysts and compact morula from each group determined that 65% of BL1 and 63% of DMAP embryos were diploid with the remainder mixoploid (2n + 4n). In Experiment 2, the development of 389 NT embryos reconstructed from either serum starved or serum fed fetal fibroblasts was assessed. More Day 7 blastocysts and compact morula developed in the serum starved group (34.5% vs. 18.8%; p = 0.008). To verify the viability of BL-I activated embryos, 10 blastocytes from experiment 2 were transferred into 4 recipient cows. Two morphologically normal fetuses, genetically identical to the original fetal cell line, were surgically recovered at day 45 of gestation. In summary, serum starvation of bovine fetal fibroblasts prior to NT significantly improved development to blastocyst. Additionally, we have shown that BL-I is a novel alternative compound for use in combination with ionomycin to activate NT embryos.
Collapse
Affiliation(s)
- J Hill
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Yamamoto S, Yamashita M, Iwao Y. Rise of intracellular Ca2+ level causes the decrease of cyclin B1 and Mos in the newt eggs at fertilization. Mol Reprod Dev 1999; 53:341-9. [PMID: 10369395 DOI: 10.1002/(sici)1098-2795(199907)53:3<341::aid-mrd10>3.0.co;2-e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unfertilized eggs of the newt, Cynops pyrrhogaster, are arrested at the second meiotic metaphase, with activity of the M-phase promoting factor (MPF) maintained at a high level. After fertilization, the eggs resume the cell cycle, and emit the second polar body. When the change in [Ca2+]i in the fertilized eggs was monitored by aequorin, an early increase in [Ca2+]i was observed 5-10 min after insemination and continued for about 30 sec. A late increase in [Ca2+]i then occurred 10-15 min after fertilization and continued for 30-40 min. The injection of 1,2-Bis (2 aminophenoxy) ethane-N,N,N',N',-tetraacetic acid (BAPTA) into unfertilized eggs inhibited reinitiation of the cell cycle after fertilization. Western blot analysis with antibodies against cyclin B1 or Mos indicated that both cyclin B1 and Mos were present in unfertilized eggs, but both disappeared within 30 min after fertilization. Treatment with Ca2+-ionophore decreased both cyclin B1 and Mos. Chymotryptic activity in Cynops egg extracts was not significantly increased after fertilization or activation by treatment with the Ca2+-ionophore. No change in [Ca2+]i was observed following treatment with cycloheximide, but the amount of both cyclin B1 and Mos rapidly decreased. These results indicate that resumption of meiosis in Cynops eggs is induced by an increase in [Ca2+]i at fertilization, which causes degradation of both cyclin B1 and Mos by inhibition of de novo synthesis of those proteins.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Biological Science, Faculty of Science, Yamaguchi University, Japan
| | | | | |
Collapse
|
30
|
Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 1999; 18:1869-77. [PMID: 10202150 PMCID: PMC1171272 DOI: 10.1093/emboj/18.7.1869] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.
Collapse
Affiliation(s)
- J L Lenormand
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0367, USA
| | | | | | | | | |
Collapse
|
31
|
Ravnik SE, Wolgemuth DJ. Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol 1999; 207:408-18. [PMID: 10068472 DOI: 10.1006/dbio.1998.9156] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To begin to examine the function of the A-type cyclins during meiosis in the male, we have examined the developmental and cellular distribution of the cyclin A1 and cyclin A2 proteins, as well as their candidate cyclin-dependent kinase partners, Cdk1 and Cdk2, in the spermatogenic lineage. Immunohistochemical localization revealed that cyclin A1 is present only in male germ cells just prior to or during the first, but not the second, meiotic division. By contrast, cyclin A2 was expressed in spermatogonia and was most abundant in preleptotene spermatocytes, cells which will enter the meiotic pathway. Immunohistochemical detection of Cdk1 was most apparent in early pachytene spermatocytes, while staining intensity diminished in diplotene and meiotically dividing spermatocytes, the cells in which cyclin A1 expression was strongest. Cdk2 was highly expressed in all spermatocytes. Notably, in cells undergoing the meiotic reduction divisions, Cdk2 appeared to localize specifically to the chromatin. This was not the case for spermatogonia undergoing mitotic divisions. In the testis, cyclin A1 has been shown to bind both Cdk1 and Cdk2 but we show here that cyclin A2 binds only Cdk2. These results indicate that the A-type cyclins and their associated kinases have different functions in the initiation and passage of male germ cells through meiosis.
Collapse
Affiliation(s)
- S E Ravnik
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | | |
Collapse
|
32
|
Mowat MR, Stewart N. Mechanisms of cell cycle blocks at the G2/M transition and their role in differentiation and development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:73-100. [PMID: 9928527 DOI: 10.1007/978-3-642-72149-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- M R Mowat
- Manitoba Institute of Cell Biology, Manitoba Cancer Treatment and Research Foundation, Winnipeg, Canada
| | | |
Collapse
|
33
|
Keiper BD, Rhoads RE. Translational recruitment of Xenopus maternal mRNAs in response to poly(A) elongation requires initiation factor eIF4G-1. Dev Biol 1999; 206:1-14. [PMID: 9918691 DOI: 10.1006/dbio.1998.9131] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus oocytes accumulate maternal mRNAs which are then recruited to ribosomes during meiotic cell cycle progression in response to progesterone and coincident with poly(A) elongation. Prior to stimulation, most protein synthesis ( approximately 70%) does not require intact translation factor eIF4G (B. D. Keiper and R. E. Rhoads, 1997, Nucleic Acids Res. 25, 395-402). In the present study we have addressed the requirement of eIF4G in the recruitment of mRNAs during meiosis. Cleavage of eIF4G by coxsackievirus protease 2A inhibited progesterone-induced meiotic progression in 88% of the oocytes; prevented the recruitment of maternal mRNAs encoding cyclin B1, c-Mos, D7, and B9; and disrupted the association of eIF4G with poly(A)-binding protein. Poly(A) elongation, however, was not inhibited by eIF4G cleavage. Injection of MPF restored meiotic cell cycle progression to >60% of the oocytes but not the recruitment of cyclin B1 or B9 mRNA. Previously recruited maternal mRNAs were removed from polyribosomes following subsequent cleavage of eIF4G, indicating that eIF4G is required both to recruit and also to maintain maternal mRNAs on polyribosomes. The expression of a cleavage-resistant variant of human eIF4G-1 (G486E) significantly restored the ability to synthesize c-Mos in response to progesterone and to translate exogenous beta-globin mRNA, indicating that the inhibition by protease 2A is due to cleavage of eIF4G alone. These results indicate that intact eIF4G is required for the poly(A)-dependent recruitment of several maternal mRNAs (cyclin B1, c-Mos, D7, and B9) during meiotic cell cycle progression but not for the synthesis of most proteins.
Collapse
Affiliation(s)
- B D Keiper
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1501 Kings Highway, Shreveport, Louisiana, 71130-3932, USA
| | | |
Collapse
|
34
|
Ciemerych MA, Kubiak JZ. Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Dev Biol 1998; 200:198-211. [PMID: 9705227 DOI: 10.1006/dbio.1998.8930] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that during in vitro maturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H x C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.
Collapse
Affiliation(s)
- M A Ciemerych
- Institute of Zoology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
35
|
Sauer K, Lehner CF. The role of cyclin E in the regulation of entry into S phase. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:125-39. [PMID: 9552358 DOI: 10.1007/978-1-4615-1809-9_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin E is a crucial regulator of entry into S phase in higher eukaryotes and acts in association with the protein kinase cdk2. Cyclin E expression is transcriptionally controlled in mammalian cells resulting in a maximum just before entry into S phase. Premature expression of cyclin E advances entry into S phase, while lack of cyclin E prevents entry into S phase. Cyclin E/cdk2 activity is regulated at multiple levels (by transcription, phosphorylation and inhibitor proteins) and appears to be involved in triggering initiation of DNA replication and in regulating genes important for proliferation and progression through S phase.
Collapse
Affiliation(s)
- K Sauer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Tübingen, Germany
| | | |
Collapse
|
36
|
Abstract
Usually, oocyte meiosis reinitiation appears as a two step process during which release from the prophase block is followed by a second arrest in metaphase I or II. In this review, we will examine the mechanisms required to maintain the metaphase arrest and stabilize MPF activity at this stage. Then, we will analyse the processes required to exit from the metaphase block. These may drive the cells forward to the metaphase-anaphase transition, as a result of fertilization, activation or protein synthesis inhibition. Instead, inhibiting protein phosphorylation drives the oocyte back to interphase. All these treatments result in derepression of DNA synthesis.
Collapse
Affiliation(s)
- P Colas
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
37
|
Bellé R, Minella O, Cormier P, Morales J, Poulhe R, Mulner-Lorillon O. Phosphorylation of elongation factor-1 (EF-1) by cdc2 kinase. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:265-70. [PMID: 9552369 DOI: 10.1007/978-1-4615-1809-9_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elongation factor-1 (EF-1) is a major substrate for cdc2 kinase in Xenopus oocytes. The guanine-nucleotide exchange factor EF-1 beta gamma delta, appears to have a highly complex macromolecular structure containing several GTP/GDP exchange proteins, valyl-tRNA synthetase, and a putative anchoring protein EF-1 gamma. During meiotic cell division, the factor becomes phosphorylated by cdc2 kinase, not only on EF-1 gamma, but also on two different phospho-acceptors on EF-1 delta. Phosphorylation is concomitant with changes in protein synthesis in vivo. Xenopus oocytes, and potentially all cells, contain a multitude of heteromeric forms of the complex which postulates that EF-1 beta gamma delta is not a "house keeping" factor but a sophisticated regulatory element.
Collapse
Affiliation(s)
- R Bellé
- Biologie Cellulaire de l'Ovocyte, CNRS URA 1449, INRA, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Motlik J, Pavlok A, Kubelka M, Kalous J, Kalab P. Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology 1998; 49:461-9. [PMID: 10732027 DOI: 10.1016/s0093-691x(97)00418-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two principal kinases, p34cdc2 kinase and MAP kinase play a pivotal role in maturation of mammalian oocytes. In the porcine and bovine oocytes both kinases are activated around the time of germinal vesicle breakdown (GVBD). Butyrolactone I (BL I), a specific inhibitor of cdk kinases, prevents effectively and reversibly resumption of meiosis in the porcine and bovine oocytes. Neither p34cdc2 kinase nor MAP kinase are activated in oocytes inhibited in the GV stage. The bovine oocytes maintained for 48 h in the medium supplemented with BL I, progress subsequently to metaphase II in 91%, their cumuli expand optimally and after in vitro fertilization they possess two pronuclei. When the cdc2 kinase is blocked in the porcine oocytes by BL I, MAP kinase, activated by okadaic acid treatment, is able to substitute cdc2 kinase and induce GVBD. The histone H1 kinase activity sharply decreases in the metaphase II oocytes treated by BL I and one or two female pronuclei are formed. These data indicate that BL I is a useful tool either for the two step in vitro culture of mammalian oocytes or for their activation in nuclear transfer experiments.
Collapse
Affiliation(s)
- J Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of Czech Republic, Libechov, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Walter SA, Guadagno TM, Ferrell JE. Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Mol Biol Cell 1997; 8:2157-69. [PMID: 9362060 PMCID: PMC25699 DOI: 10.1091/mbc.8.11.2157] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023] Open
Abstract
Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.
Collapse
Affiliation(s)
- S A Walter
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| | | | | |
Collapse
|
40
|
Abstract
Oocyte and egg are suitable model systems for studying cell division since meiotic maturation resembles a G2/M transition and early embryonic divisions are precisely timed and occur without zygotic transcription. The analysis of oocytes and eggs from different species provides the opportunity to understand the roles of proteins that the critical to the progression and maintenance of the cell cycle. Among them, cyclins are certainly worthy of investigation. Mitotic cyclins (cyclins A and B) are clearly implicated in meiosis and early embryonic cell cycles. More recent studies have revealed that G1-type cyclins (cyclins E and D) could also play a role in both processes and cyclin H has been suggesed to participate to CAK activity (cdc2-activating kinase) in oocytes. The study of cyclins in oocytes and eggs clearly offer insights into their roles during the cell cycle.
Collapse
Affiliation(s)
- F Taieb
- Laboratoire de Physiologie de la Reproduction, INRA/URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
41
|
Thibier C, De Smedt V, Poulhe R, Huchon D, Jessus C, Ozon R. In vivo regulation of cytostatic activity in Xenopus metaphase II-arrested oocytes. Dev Biol 1997; 185:55-66. [PMID: 9169050 DOI: 10.1006/dbio.1997.8543] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metaphase II arrest of Xenopus oocyte is characterized by the presence of M-phase-promoting factor (MPF) and of a microtubular spindle, both of which are stable in the presence of protein synthesis inhibitors. We studied in vivo this equilibrium state that is settled during meiotic maturation. At time of germinal vesicle breakdown (GVBD), cdc2 kinase and MAP kinase activities are stimulated. A component of the cyclin ubiquitin ligase, CDC27, is phosphorylated at the same time and remains phosphorylated until fertilization, indicating that an important component of the ligase complex is modified as early as GVBD. During a first period extending from GVBD until the cortical anchorage of the metaphase II spindle, homogeneous pools of cdc2 kinase and mitogen-activated protein (MAP) kinase activities are present in oocyte and are strictly dependent on protein turnover, since protein synthesis inhibition induces their total inactivation and drives oocytes into interphase. The metaphase II spindle, once anchored into the cortex, is no more sensitive to protein synthesis inhibition, likewise MAP kinase activity. During this cellular arrest, cdc2 kinase is divided into two distinctly regulated pools. The first one contains cyclin B that actively turns over and is subjected to a microtubular checkpoint. The second one is stable. Alteration of intracellular compartmentation of metaphase II oocytes either by gentle centrifugation or by cold shock inactivates MAP kinase and targets all cyclin B molecules for full destruction. We therefore suggest that MAP kinase participates to the cytostatic activity by preventing part of cyclin B molecules from entering the ubiquitination/degradation machinery which is still turned on in metaphase II oocytes.
Collapse
Affiliation(s)
- C Thibier
- Laboratorie de Physiologie de la Reproduction, URA-CNRS 1449, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Eukaryotic cellular mRNAs contain a cap at their 5'-ends, but some viral and cellular mRNAs bypass the cap-dependent mechanism of translation initiation in favor of internal entry of ribosomes at specific RNA sequences. Cap-dependent initiation requires intact initiation factor eIF4G (formerly eIF-4gamma, eIF-4Fgamma or p220), whereas internal initiation can proceed with eIF4G cleaved by picornaviral 2A or L proteases. Injection of recombinant coxsackievirus B4 protease 2A into Xenopus oocytes led to complete cleavage of endogenous eIF4G, but protein synthesis decreased by only 35%. Co-injection of edeine reduced synthesis by >90%, indicating that eIF4G-independent synthesis involved ongoing initiation. The spectrum of endogenous proteins synthesized was very similar in the presence or absence of intact eIF4G. Translation of exogenous rabbit globin mRNA, by contrast, was drastically inhibited by eIF4G cleavage. The N-terminal cleavage product of eIF4G (cpN), which binds eIF4E, was completely degraded within 6-12 h, while the C-terminal cleavage product (cpC), which binds to eIF3 and eIF4A, was more stable over the same period. Thus, translation initiation of most endogenous mRNAs inXenopusoocytes requires no eIF4G, or perhaps only cpC, suggesting a cap-independent mechanism.
Collapse
Affiliation(s)
- B D Keiper
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1501 King's Highway, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- M S Murakami
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | |
Collapse
|
44
|
Gebauer F, Richter JD. Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis. Bioessays 1997; 19:23-8. [PMID: 9008414 DOI: 10.1002/bies.950190106] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One distinguishing feature of vertebrate oocyte meiosis is its discontinuity; oocytes are released from their prophase I arrest, usually by hormonal stimulation, only to again halt at metaphase II, where they await fertilization. The product of the c-mos proto-oncogene, Mos, is a key regulator of this maturation process. Mos is a serine-threonine kinase that activates and/or stabilizes maturation-promoting factor (MPF), the master cell cycle switch, through a pathway that involves the mitogen-activated protein kinase (MAPK) cascade. Oocytes arrested at prophase I lack detectable levels of Mos, which must be synthesized from a pool of maternal mRNAs for proper maturation. While Mos is necessary throughout maturation in Xenopus, it seems to be required only for meiosis II in the mouse. The translational activation of c-mos mRNA at specific times during meiosis requires cytoplasmic polyadenylation. Cis- and trans-acting factors for polyadenylation are, therefore, essential elements of maturation.
Collapse
Affiliation(s)
- F Gebauer
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
45
|
Abstract
Mos, a protein kinase, is specifically expressed and functions during meiotic maturation (or G2/M progression) of vertebrate oocytes. When expressed ectopically, however, it can also readily induce oncogenic transformation (or uncontrolled G1/S transitions) in somatic cells. In both of these cell types, Mos activates mitogen-activated protein kinase (MAPK), which seems largely to mediate its different functions in both oocyte maturation and cellular transformation. In oocyte maturation, the Mos-MAPK pathway probably serves to activate and stabilize M-phase promoting factor (MPF) (possibly by inhibiting some negative regulator(s) of this factor), while in cellular transformation, it seems to stabilize and activate the nuclear oncoprotein c-Fos as well as to induce transcription of its gene. Thus, the different functions of Mos in oocytes and somatic cells may arise chiefly from its different MAPK-mediated targets in the respective cell types. This review discusses the cellular basis that may enable Mos to act differently in oocytes and somatic cells.
Collapse
Affiliation(s)
- N Sagata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
46
|
Newman B, Dai Y. Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev 1996; 44:275-88. [PMID: 8858597 DOI: 10.1002/(sici)1098-2795(199607)44:3<275::aid-mrd1>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of the c-mos gene has been intensively studied, but its role in the mammal is still a subject for debate. For this reason, and because the gene is regulated posttranscriptionally, further study of the gene from other mammalian species is timely. The pig c-mos gene has been cloned, and the genomic sequence is presented here. The gene has no introns and shows close similarity to human and monkey genes, with striking sequence similarities in both the 5' and 3' flanking regions. The significance of this similarity in the context of gene regulation is discussed. c-mos expression was found to be restricted to gonadal tissues in the pig. The major start sites for transcription initiation in ovary and testis were identified by primer extension and found to be distinct, as in the mouse. Within the ovary, expression is confined to oocytes. Messenger RNA is synthesized in growing oocytes, and remains stable during oocyte maturation, but begins to be degraded in electrically stimulated eggs. Unexpectedly, RNase protection assays revealed that the 3' ends of transcripts in the pig ovary are heterogeneous, and this, together with the identification of three distinct cDNA clones, shows that multiple polyadenylation sites are used. The significance of these transcripts in terms of translational control is discussed.
Collapse
Affiliation(s)
- B Newman
- Department of Development and Signalling, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
47
|
Zhang J, Masui Y. Calcium-dependent development of secondary cytostatic factor (2 degrees CSF) from Xenopus laevis oocytes and zygotes. ZYGOTE 1996; 4:11-9. [PMID: 8735366 DOI: 10.1017/s0967199400002847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fresh cytosols extracted from unfertilised eggs of Xenopus laevis contain a cytostatic factor (CSF) which arrests the cell cycle at metaphase when microinjected into cleaving blastomeres. This CSF is sensitive to Ca2+ and is designated primary CSF (1 degrees CSF). During storage of Ca2(+)-containing cytosols at 2 degrees C, a stable CSF activity appears which is designated secondary CSF (2 degrees CSF). In the present study, we report that 2 degrees CSF activity can be induced in cytosols extracted from stage VI oocytes, unfertilised eggs, electrically activated eggs or blastulae, in the presence of Ca2+. Both the intensity and the rate of 2 degrees CSF development are dependent on the concentration of Ca2+ ions added to the cytosol. At Ca2+ concentrations of 5-10 mM, 2 degrees CSF activity reaches a maximum in about 7 days. Secondary CSF is relatively resistant to heat but loses all activity after 5 min at 70 degrees C. When stored at-80 degrees C, 2 degrees CSF activity remains detectable for about 6 weeks. Cytological observations show that blastomeres arrested by microinjection of 2 degrees CSF developed in cytosols of unfertilised eggs, activated eggs or blastulae contain metaphase chromosomes embedded in a bipolar spindle that has no asters developed at its poles. In contrast, blastomeres arrested by 2 degrees CSF in cytosols of stage VI oocytes contain condensed chromosomes but no spindle is formed. The mechanisms of the development of 2 degrees CSF in Ca2(+)-containing cytosols and its mode of action are discussed.
Collapse
Affiliation(s)
- J Zhang
- Department of Zoology, University of Toronto, Canada
| | | |
Collapse
|
48
|
Sagata N. Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol 1996; 6:22-8. [PMID: 15157528 DOI: 10.1016/0962-8924(96)81034-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metaphase arrest in meiosis I or II before fertilization is a common and unique feature of oogenesis in many animal species. How and why oocytes from many species are arrested at metaphase, rather than after the completion of meiosis, has long remained a mystery. This article reviews recent advances in our understanding of the mechanisms and biological significance of meiotic metaphase arrest in animal oocytes.
Collapse
Affiliation(s)
- N Sagata
- Dept of Biology Faculty of Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-81, Japan
| |
Collapse
|
49
|
Iwao Y, Masui Y. Activation of newt eggs in the absence of Ca2+ activity by treatment with cycloheximide or D2O. Dev Growth Differ 1995. [DOI: 10.1046/j.1440-169x.1995.t01-5-00003.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Moses RM, Kline D. Release of mouse eggs from metaphase arrest by protein synthesis inhibition in the absence of a calcium signal or microtubule assembly. Mol Reprod Dev 1995; 41:264-73. [PMID: 7654380 DOI: 10.1002/mrd.1080410218] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mouse egg activation, which includes release from meiotic metaphase II arrest, results from fertilization-induced increase in intracellular calcium concentration ([Ca2+]i). However, during egg activation caused by exposure to the protein synthesis inhibitor, cycloheximide, [Ca2+]i did not change. Although eggs fertilized in the presence of microtubule inhibitors remain arrested at metaphase, eggs treated for 32 hr with cycloheximide and the microtubule inhibitor, colcemid, formed nuclei. In untreated eggs aged in culture for 24 hr, the microtubule spindles became deformed. These eggs formed nuclei after exposure to cycloheximide, but not the calcium ionophore A23187. Our results indicate that eggs in which protein synthesis is inhibited are released from metaphase without an increase in [Ca2+]i, and despite disruption of the spindle.
Collapse
Affiliation(s)
- R M Moses
- Department of Zoology, University of Toronto, Canada
| | | |
Collapse
|