1
|
Preston LJ, Jungblut AD, Montgomery W, Ballard CJ, Wilbraham J. The Preservation and Spectral Detection of Historic Museum Specimen Microbial Mat Biosignatures Within Martian Dust: Lessons Learned for Mars Exploration and Sample Return. ASTROBIOLOGY 2024; 24:684-697. [PMID: 38979614 DOI: 10.1089/ast.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.
Collapse
Affiliation(s)
- Louisa J Preston
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Wren Montgomery
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Connor J Ballard
- Department of Space & Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
| | - Jo Wilbraham
- Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
2
|
Christ O, Nestola F, Alvaro M. Open questions on carbonaceous matter in meteorites. Commun Chem 2024; 7:118. [PMID: 38811753 PMCID: PMC11137045 DOI: 10.1038/s42004-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Oliver Christ
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| | - Fabrizio Nestola
- Department of Geosciences, University of Padua, 35131, Padua, Italy
| | - Matteo Alvaro
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
3
|
Mahjoub A, Altwegg K, Poston MJ, Rubin M, Hodyss R, Choukroun M, Ehlmann BL, Hänni N, Brown ME, Blacksberg J, Eiler JM, Hand KP. Complex organosulfur molecules on comet 67P: Evidence from the ROSINA measurements and insights from laboratory simulations. SCIENCE ADVANCES 2023; 9:eadh0394. [PMID: 37285429 DOI: 10.1126/sciadv.adh0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard the Rosetta mission revolutionized our understanding of cometary material composition. One of Rosetta's key findings is the complexity of the composition of comet 67P/Churyumov-Gerasimenko. Here, we used ROSINA data to analyze dust particles that were volatilized during a dust event in September 2016 and report the detection of large organosulfur species and an increase in the abundances of sulfurous species previously detected in the coma. Our data support the presence of complex sulfur-bearing organics on the surface of the comet. In addition, we conducted laboratory simulations that show that this material may have formed from chemical reactions that were initiated by the irradiation of mixed ices containing H2S. Our findings highlight the importance of sulfur chemistry in cometary and precometary materials and the possibility of characterizing organosulfur materials in other comets and small icy bodies using the James Webb Space Telescope.
Collapse
Affiliation(s)
- Ahmed Mahjoub
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Space Science Institute, 4765 Walnut St, Suite B, Boulder, CO 80301, USA
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | | | - Martin Rubin
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Robert Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Mathieu Choukroun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Bethany L Ehlmann
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Nora Hänni
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Michael E Brown
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Jordana Blacksberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - John M Eiler
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
4
|
Calapez F, Dias R, Cesário R, Gonçalves D, Pedras B, Canário J, Martins Z. Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons. Life (Basel) 2023; 13:478. [PMID: 36836835 PMCID: PMC9960113 DOI: 10.3390/life13020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments.
Collapse
Affiliation(s)
- Francisco Calapez
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rodrigo Dias
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rute Cesário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Pedras
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Royer C, Pilorget C, Hamm V, Bibring JP, Poulet F. A new concept of acousto-optic tunable filter-based near-infrared hyperspectral imager for planetary surface exploration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:044501. [PMID: 35489938 DOI: 10.1063/5.0075256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
In the past two decades, near-infrared (NIR) hyperspectral imaging instruments have revolutionized our conception of planetary surfaces in terms of evolution, geology, mineralogy, and alteration processes. The cornerstone of this remote analysis technique is the synergy between imagery, giving the geomorphological context of the observations, and NIR spectroscopy whose spectral range is sensitive to the main absorption features of most of the minerals present on planetary surfaces. The development of a generation of space instrument based on Acousto-Optic Tunable Filters (AOTFs) increases the capacity of these spectrometers to be set up in a variety of space probes. The ExoCam concept, developed at Institut d'Astrophysique Spatiale and profiting from the lab's previous experience (MicrOmega onboard Phobos-Grunt, Hayabusa 2 and ExoMars), thus, proposes for the first time to do hyperspectral imagery through a wide aperture AOTF (15 × 15 mm2) in the 0.95-3.6 µm spectral range. The characterization of this instrumental concept, led on a representative breadboard built for this purpose, showed that the acousto-optic diffraction preserves the image quality up to the diffraction/resolution limit over the whole field of view. The spectral resolution (from 2 to 25 nm over the spectral range) and accuracy of the instrument are also consistent with the identification of planetary surface minerals. This paper describes the ExoCam concept and objectives, the setup of an optical breadboard representative of a space instrument based on this concept, and the results of performance characterizations realized on the breadboard.
Collapse
Affiliation(s)
- Clément Royer
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
| | - C Pilorget
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
| | - V Hamm
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
| | - J-P Bibring
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
| | - F Poulet
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
| |
Collapse
|
6
|
Feng R, Zhang Y, Liu J, Zhang Y, Li J, Baoyin H. Soft Robotic Perspective and Concept for Planetary Small Body Exploration. Soft Robot 2021; 9:889-899. [PMID: 34939854 DOI: 10.1089/soro.2021.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tens of thousands of planetary small bodies (asteroids, comets, and small moons) are flying beside our Earth with little understanding. Explorers on the surfaces of these bodies, unlike the Lunar or Mars rovers, have only few attempts and no sophisticated solution. Current concerns mainly focus on landing uncertainties and mobility limitations, which soft robots may suitably aid utilizing their compliance and adaptivity. In this study, we present a perspective of designating soft robots for the surface exploration. Based on the lessons from recent space missions and an astronomy survey, we summarize the surface features of typical small bodies and the associated challenges for possible soft robotic design. Different kinds of soft mobile robots are reviewed, whose morphology and locomotion are analyzed for the microgravity, rugged environment. We also propose an alternative to current asteroid hoppers, as a case of applying progress in soft material. Specifically, the structure is a deployable cube whose outer shell is made of shape memory polymer, so that it can achieve morphing and variable stiffness between liftoff and landing phases. Dynamic simulations of the free-fall landing are carried out with a rigid counterpart for comparison. The results show that the soft deployed shell can effectively contribute to dissipating the kinetic energy and attenuating the excessive rebounds.
Collapse
Affiliation(s)
- Ruoyu Feng
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Jinyu Liu
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yonglong Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Junfeng Li
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Hexi Baoyin
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Visible-light photoionization of aromatic molecules in water-ice: Organic chemistry across the universe with less energy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
McKay AJ, Roth NX. Organic Matter in Cometary Environments. Life (Basel) 2021; 11:37. [PMID: 33430031 PMCID: PMC7826631 DOI: 10.3390/life11010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
Comets contain primitive material leftover from the formation of the Solar System, making studies of their composition important for understanding the formation of volatile material in the early Solar System. This includes organic molecules, which, for the purpose of this review, we define as compounds with C-H and/or C-C bonds. In this review, we discuss the history and recent breakthroughs of the study of organic matter in comets, from simple organic molecules and photodissociation fragments to large macromolecular structures. We summarize results both from Earth-based studies as well as spacecraft missions to comets, highlighted by the Rosetta mission, which orbited comet 67P/Churyumov-Gerasimenko for two years, providing unprecedented insights into the nature of comets. We conclude with future prospects for the study of organic matter in comets.
Collapse
Affiliation(s)
- Adam J. McKay
- Department of Physics, American University, Washington, DC 20016, USA
- Planetary Systems Laboratory Code 693, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Nathan X. Roth
- Astrochemistry Laboratory Code 691, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA;
- Universities Space Research Association, Columbia, MD 21046, USA
| |
Collapse
|
9
|
Marschall R, Skorov Y, Zakharov V, Rezac L, Gerig SB, Christou C, Dadzie SK, Migliorini A, Rinaldi G, Agarwal J, Vincent JB, Kappel D. Cometary Comae-Surface Links: The Physics of Gas and Dust from the Surface to a Spacecraft. SPACE SCIENCE REVIEWS 2020; 216:130. [PMID: 33184519 PMCID: PMC7647976 DOI: 10.1007/s11214-020-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/28/2020] [Indexed: 06/04/2023]
Abstract
A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.
Collapse
Affiliation(s)
- Raphael Marschall
- Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302 USA
- International Space Science Institute (ISSI), Hallerstrasse 6, 3012 Bern, Switzerland
| | - Yuri Skorov
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | | | - Ladislav Rezac
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Selina-Barbara Gerig
- Physikalisches Institut, University of Bern, Sidlerstr. 5, 3012 Bern, Switzerland
- NCCR PlanetS, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Chariton Christou
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland UK
| | - S. Kokou Dadzie
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland UK
| | | | | | - Jessica Agarwal
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Jean-Baptiste Vincent
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - David Kappel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstrasse 2, 12489 Berlin, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
10
|
O'Rourke L, Heinisch P, Blum J, Fornasier S, Filacchione G, Van Hoang H, Ciarniello M, Raponi A, Gundlach B, Blasco RA, Grieger B, Glassmeier KH, Küppers M, Rotundi A, Groussin O, Bockelée-Morvan D, Auster HU, Oklay N, Paar G, Perucha MDPC, Kovacs G, Jorda L, Vincent JB, Capaccioni F, Biver N, Parker JW, Tubiana C, Sierks H. The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature 2020; 586:697-701. [PMID: 33116289 DOI: 10.1038/s41586-020-2834-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/28/2020] [Indexed: 11/09/2022]
Abstract
On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.
Collapse
Affiliation(s)
- Laurence O'Rourke
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain.
| | - Philip Heinisch
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Blum
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sonia Fornasier
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France.,Institut Universitaire de France (IUF), Paris, France
| | - Gianrico Filacchione
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Hong Van Hoang
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France.,Université Grenoble Alpes, CNRS, Institut de Planétologie et Astrophysique de Grenoble (IPAG), UMR, Grenoble, France
| | - Mauro Ciarniello
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Andrea Raponi
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Bastian Gundlach
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rafael Andrés Blasco
- Telespazio Vega UK Ltd for the European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Björn Grieger
- Aurora Technology BV for the European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Karl-Heinz Glassmeier
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Küppers
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Alessandra Rotundi
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy.,Dipartimento di Scienze e Tecnologie, Universitá degli Studi di Napoli Parthenope, Naples, Italy
| | | | - Dominique Bockelée-Morvan
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France
| | - Hans-Ulrich Auster
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gerhard Paar
- Joanneum Research Forschungsgesellschaft, Graz, Austria
| | | | - Gabor Kovacs
- Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Laurent Jorda
- Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
| | | | - Fabrizio Capaccioni
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
| | - Nicolas Biver
- LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France
| | - Joel Wm Parker
- Planetary Science Directorate, Southwest Research Institute (SwRI), Boulder, CO, USA
| | - Cecilia Tubiana
- Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy.,Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | - Holger Sierks
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| |
Collapse
|
11
|
Cometary panspermia and origin of life? ADVANCES IN GENETICS 2020. [PMID: 33081926 DOI: 10.1016/bs.adgen.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
A range of astronomical observations are shown to be in accord with the theory of cometary panspermia. This theory posits that comets harbor a viable biological component in the form of bacteria and viruses that led to origin and evolution of life on Earth. The data includes (1) infrared, visual and ultraviolet spectra of interstellar dust, (2) infrared spectra of the dust released from comet Halley in 1986, (3) infrared spectra of comet Hale-Bopp in 1997, (4) near and mid-infrared spectra of comet Tempel I in 2005, (5) the discovery of an amino acid and degradation products attributable to biology in the material recovered from the Stardust Mission in 2009, (6) jets from comet Lovejoy showing both a sugar and Ethyl alcohol and finally, (7) a diverse set of data that has emerged from the Rosetta mission. The conjunction of all the available data points to cometary biology and interstellar panspermia as being inevitable.
Collapse
|
12
|
Halukeerthi SO, Shephard JJ, Talewar SK, Evans JSO, Rosu-Finsen A, Salzmann CG. Amorphous Mixtures of Ice and C 60 Fullerene. J Phys Chem A 2020; 124:5015-5022. [DOI: 10.1021/acs.jpca.0c03439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siriney O. Halukeerthi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jacob J. Shephard
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sukhpreet K. Talewar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - John S. O. Evans
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Alexander Rosu-Finsen
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Christoph G. Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
13
|
Poch O, Istiqomah I, Quirico E, Beck P, Schmitt B, Theulé P, Faure A, Hily-Blant P, Bonal L, Raponi A, Ciarniello M, Rousseau B, Potin S, Brissaud O, Flandinet L, Filacchione G, Pommerol A, Thomas N, Kappel D, Mennella V, Moroz L, Vinogradoff V, Arnold G, Erard S, Bockelée-Morvan D, Leyrat C, Capaccioni F, De Sanctis MC, Longobardo A, Mancarella F, Palomba E, Tosi F. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 2020; 367:367/6483/eaaw7462. [PMID: 32165559 DOI: 10.1126/science.aaw7462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/11/2019] [Accepted: 02/14/2020] [Indexed: 11/02/2022]
Abstract
The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.
Collapse
Affiliation(s)
- Olivier Poch
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France.
| | - Istiqomah Istiqomah
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Eric Quirico
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Pierre Beck
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France.,Institut Universitaire de France (IUF), Paris, France
| | - Bernard Schmitt
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Patrice Theulé
- Aix-Marseille Université, CNRS, Centre National d'Etudes Spatiales (CNES), Laboratoire d'Astrophysique de Marseille (LAM), Marseille, France
| | - Alexandre Faure
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Pierre Hily-Blant
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Lydie Bonal
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Andrea Raponi
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Mauro Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Batiste Rousseau
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Sandra Potin
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Olivier Brissaud
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Laurène Flandinet
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Gianrico Filacchione
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Antoine Pommerol
- Physikalisches Institut, Sidlerstrasse 5, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Thomas
- Physikalisches Institut, Sidlerstrasse 5, University of Bern, CH-3012 Bern, Switzerland
| | - David Kappel
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Vito Mennella
- Istituto Nazionale di Astrofisica (INAF)-Osservatorio Astronomico di Capodimonte, Napoli, Italy
| | - Lyuba Moroz
- Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Vassilissa Vinogradoff
- CNRS, Aix-Marseille Université, Laboratoire Physique des Interactions Ioniques et Moléculaires (PIIM), Unité Mixte de Recherche (UMR) CNRS 7345, 13397 Marseille, France
| | - Gabriele Arnold
- Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Stéphane Erard
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Dominique Bockelée-Morvan
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Cédric Leyrat
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Fabrizio Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Maria Cristina De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Andrea Longobardo
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy.,Dipartimento di Scienze e Tecnologie (DIST), Università Parthenope, 80143 Napoli, Italy
| | - Francesca Mancarella
- Dipartimento di Matematica e Fisica "E. De Giorgi," Università del Salento, Lecce, Italy
| | - Ernesto Palomba
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Federico Tosi
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| |
Collapse
|
14
|
Raymond AW, Kelvin Lee KL, McCarthy MC, Drouin BJ, Mazur E. Detecting Laser-Volatilized Salts with a Miniature 100-GHz Spectrometer. J Phys Chem A 2020; 124:1429-1436. [PMID: 32045246 DOI: 10.1021/acs.jpca.9b10548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rotational transitions are unique identifiers of molecular species, including isotopologues. This article describes the rotational detections of two laser-volatilized salts, NaCl and KCl, made with a miniature Fourier transform millimeter-wave (FTmmW) cavity spectrometer that could one day be used to measure solid composition in the field or in space. The two salts are relevant targets for icy moons in the outer solar system, and in principle, other molecular solids could be analyzed with the FTmmW instrument. By coupling the spectrometer to a collisionally cooling laser ablation source, (a) we demonstrate that the FTmmW instrument is sensitive enough to detect ablation products, and (b) we use the small size of the FTmmW cavity to measure ablation product signal along the carrier gas beam. We find that for 532 nm nanosecond pulses, ablated molecules are widely dispersed in the carrier-gas jet. In addition to the miniature spectrometer results, we present several complementary measurements intended to characterize the laser ablation process. For pulse energies between 10 and 30 mJ, the ablation product yield increases linearly, reaching approximately 1012 salt molecules per 30 mJ pulse. Using mass spectrometry, we observe Li+, Na+, and K+ in the plumes of ablated NaCl, KCl, and LiCl, which implies dissociation of the volatilized material. We do not observe salt ions (e.g., NaCl+). However, with 800 nm femtosecond laser pulses, the triatomic ion clusters Li2Cl+, Na2Cl+, and K2Cl+ are produced. Finally, we observe incomplete volatilization with the nanosecond pulses: some of the ejecta are liquid droplets. The insights about ablation plume physics gleaned from these experiments should guide future implementations of the laser-volatilization technique.
Collapse
Affiliation(s)
- Alexander W Raymond
- Center for Astrophysics
- Harvard & Smithsonian , 60 Garden Street , Cambridge , Massachusetts 02138 , United States
| | - Kin Long Kelvin Lee
- Center for Astrophysics
- Harvard & Smithsonian , 60 Garden Street , Cambridge , Massachusetts 02138 , United States
| | - Michael C McCarthy
- Center for Astrophysics
- Harvard & Smithsonian , 60 Garden Street , Cambridge , Massachusetts 02138 , United States.,John A. Paulson School of Engineering and Applied Sciences , Harvard University , 9 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Brian J Drouin
- Jet Propulsion Laboratory , California Institute of Technology , 4800 Oak Grove Drive , Pasadena , California 91109-8909 , United States
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 9 Oxford Street , Cambridge , Massachusetts 02138 , United States.,Department of Physics , Harvard University , 9 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
15
|
Filacchione G, Capaccioni F, Ciarniello M, Raponi A, Rinaldi G, De Sanctis MC, Bockelèe-Morvan D, Erard S, Arnold G, Mennella V, Formisano M, Longobardo A, Mottola S. An orbital water-ice cycle on comet 67P from colour changes. Nature 2020; 578:49-52. [PMID: 32025011 DOI: 10.1038/s41586-020-1960-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
Solar heating of a cometary surface provides the energy necessary to sustain gaseous activity, through which dust is removed1,2. In this dynamical environment, both the coma3,4 and the nucleus5,6 evolve during the orbit, changing their physical and compositional properties. The environment around an active nucleus is populated by dust grains with complex and variegated shapes7, lifted and diffused by gases freed from the sublimation of surface ices8,9. The visible colour of dust particles is highly variable: carbonaceous organic material-rich grains10 appear red while magnesium silicate-rich11,12 and water-ice-rich13,14 grains appear blue, with some dependence on grain size distribution, viewing geometry, activity level and comet family type. We know that local colour changes are associated with grain size variations, such as in the bluer jets made of submicrometre grains on comet Hale-Bopp15 or in the fragmented grains in the coma16 of C/1999 S4 (LINEAR). Apart from grain size, composition also influences the coma's colour response, because transparent volatiles can introduce a substantial blueing in scattered light, as observed in the dust particles ejected after the collision of the Deep Impact probe with comet 9P/Tempel 117. Here we report observations of two opposite seasonal colour cycles in the coma and on the surface of comet 67P/Churyumov-Gerasimenko through its perihelion passage18. Spectral analysis indicates an enrichment of submicrometre grains made of organic material and amorphous carbon in the coma, causing reddening during the passage. At the same time, the progressive removal of dust from the nucleus causes the exposure of more pristine and bluish icy layers on the surface. Far from the Sun, we find that the abundance of water ice on the nucleus is reduced owing to redeposition of dust and dehydration of the surface layer while the coma becomes less red.
Collapse
Affiliation(s)
| | | | - Mauro Ciarniello
- INAF-IAPS, Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Andrea Raponi
- INAF-IAPS, Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Giovanna Rinaldi
- INAF-IAPS, Institute for Space Astrophysics and Planetology, Rome, Italy
| | | | - Dominique Bockelèe-Morvan
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Universitè, Université Paris Diderot Sorbonne Paris Cité, Meudon, France
| | - Stèphane Erard
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Universitè, Université Paris Diderot Sorbonne Paris Cité, Meudon, France
| | - Gabriele Arnold
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Vito Mennella
- INAF-Osservatorio Astronomico di Capodimonte, Naples, Italy
| | | | - Andrea Longobardo
- INAF-IAPS, Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Stefano Mottola
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
16
|
Waller SE, Belousov A, Kidd RD, Nikolić D, Madzunkov SM, Wiley JS, Darrach MR. Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. ASTROBIOLOGY 2019; 19:1196-1210. [PMID: 31347911 DOI: 10.1089/ast.2018.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new technique that has applications for the detection of nonvolatile organics on Ocean Worlds has been developed. Here, liquid mixtures of fatty acids (FAs) and/or amino acids (AAs) are introduced directly into a miniature quadrupole ion trap mass spectrometer (QITMS) developed at Jet Propulsion Laboratory and analyzed. Two ionization methods, electron impact and chemical ionization (EI and CI, respectively), are compared and contrasted. Further, multiple CI reagents are tested to explore their potential to "soften" ionization of FAs and AAs. Both EI and CI yield mass spectra that bear signatures of FAs or AAs; however, soft CI yields significantly cleaner mass spectra that are easier to interpret. The combination of soft CI with tandem mass spectrometry (MS/MS) has also been demonstrated for AAs, generating "fingerprint" mass spectra of fragments from protonated parent ions. To mimic potential Ocean World conditions, water is used as the primary collision gas in MS/MS experiments. This technique has the potential for the in situ analysis of molecules in the cryogenic plumes of Ocean Worlds (e.g., Enceladus) and comets with the ultimate goal of detecting potential biosignatures.
Collapse
Affiliation(s)
- Sarah E Waller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Anton Belousov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Richard D Kidd
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Dragan Nikolić
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Stojan M Madzunkov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Joshua S Wiley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Murray R Darrach
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
17
|
On Mautner-Type Probability of Capture of Intergalactic Meteor Particles by Habitable Exoplanets. SCI 2019. [DOI: 10.3390/sci1020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both macro and microprojectiles (e.g., interplanetary, interstellar and even intergalactic material)are seen as important vehicles for the exchange of potential (bio)material within our solar system as wellas between stellar systems in our Galaxy. Accordingly, this requires estimates of the impact probabilitiesfor different source populations of projectiles, including for intergalactic meteor particles which havereceived relatively little attention since considered as rare events (discrete occurrences that are statisticallyimprobable due to their very infrequent appearance). We employ the simple but yet comprehensivemodel of intergalactic microprojectile capture by the gravity of exoplanets which enables us to estimatethe map of collisional probabilities for an available sample of exoplanets in habitable zones around hoststars. The model includes a dynamical description of the capture adopted from Mautner model ofinterstellar exchange of microparticles and changed for our purposes. We use statistical and informationmetrics to calculate probability map of intergalactic meteorite particle capture. Moreover, by calculatingthe entropy index map we measure the concentration of these rare events. We further adopted a modelfrom immigration theory, to show that the transient distribution of birth/death/immigration of materialfor the simplest case has a high value.
Collapse
|
18
|
Noun M, Baklouti D, Brunetto R, Borondics F, Calligaro T, Dionnet Z, Le Sergeant d'Hendecourt L, Nsouli B, Ribaud I, Roumie M, Della-Negra S. A Mineralogical Context for the Organic Matter in the Paris Meteorite Determined by A Multi-Technique Analysis. Life (Basel) 2019; 9:E44. [PMID: 31151218 PMCID: PMC6617381 DOI: 10.3390/life9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022] Open
Abstract
This study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content. The results of the combined techniques show that at the micron scale, the organic matter was always spatially associated with the fine-grained and partially-hydrated amorphous silicates and to the presence of iron in different chemical states. These systematic associations, illustrated in previous studies of other carbonaceous chondrites, were further supported by the identification by TOF-SIMS of cyanide and/or cyanate salts that could be direct remnants of precursor ices that accreted with dust during the parent body formation, and by the detection of different metal-containing large organic ions. Finally, the results obtained emphasized the importance of studying the specific interactions taking place between organic and mineral phases in the chondrite matrix, in order to investigate their role in the evolution story of primitive organic matter in meteorite parent bodies.
Collapse
Affiliation(s)
- Manale Noun
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Donia Baklouti
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Rosario Brunetto
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Ferenc Borondics
- Synchrotron Soleil, L'Orme des Merisiers, BP48, Saint Aubin, 91192 Gif sur Yvette CEDEX, France.
| | - Thomas Calligaro
- Centre de Recherche et de Restauration des musées de France, UMR 171, Palais du Louvre, 75001 Paris, France.
- PSL Research University, Institut de Recherche Chimie Paris, Chimie ParisTech, CNRS UMR 8247, 75005 Paris, France.
| | - Zélia Dionnet
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Università degli Studi di Napoli Parthenope, Dip. di Scienze e Tecnologie, CDN IC4, I-80143 Naples, Italy.
| | - Louis Le Sergeant d'Hendecourt
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Université Aix-Marseille, Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), UMR CNRS 7345, F-13397 Marseille, France.
| | - Bilal Nsouli
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Isabelle Ribaud
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| | - Mohamad Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Serge Della-Negra
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| |
Collapse
|
19
|
Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/aaf561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Arevalo R, Selliez L, Briois C, Carrasco N, Thirkell L, Cherville B, Colin F, Gaubicher B, Farcy B, Li X, Makarov A. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1875-1886. [PMID: 30048021 DOI: 10.1002/rcm.8244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Nathalie Carrasco
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Benjamin Farcy
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Xiang Li
- Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | |
Collapse
|
21
|
|
22
|
Potin S, Brissaud O, Beck P, Schmitt B, Magnard Y, Correia JJ, Rabou P, Jocou L. SHADOWS: a spectro-gonio radiometer for bidirectional reflectance studies of dark meteorites and terrestrial analogs: design, calibrations, and performances on challenging surfaces. APPLIED OPTICS 2018; 57:8279-8296. [PMID: 30461780 DOI: 10.1364/ao.57.008279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We have developed a new spectro-gonio radiometer, SHADOWS, to study in the laboratory the bidirectional reflectance distribution function of dark and precious samples. The instrument operates over a wide spectral range from the visible to the near-infrared (350-5000 nm) and is installed in a cold room to operate at a temperature as low as -20°C. The high flux monochromatic beam is focused on the sample, resulting in an illumination spot of about 5.2 mm in diameter. The reflected light is measured by two detectors with high sensitivity (down to 0.005% in reflectance) and absolute accuracy of 1%. The illumination and observations angles, including azimuth, can be varied over wide ranges. This paper presents the scientific and technical constraints of the spectro-gonio radiometer, its design and additional capabilities, as well as the performances and limitations of the instrument.
Collapse
|
23
|
Lavado N, García de la Concepción J, Babiano R, Cintas P. Formation of Cyanamide-Glyoxal Oligomers in Aqueous Environments Relevant to Primeval and Astrochemical Scenarios: A Spectroscopic and Theoretical Study. Chemistry 2018; 24:4069-4085. [PMID: 29319888 DOI: 10.1002/chem.201705747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/12/2022]
Abstract
The condensation of cyanamide and glyoxal, two well-known prebiotic monomers, in an aqueous phase has been investigated in great detail, demonstrating the formation of oligomeric species of varied structure, though consistent with generalizable patterns. This chemistry involving structurally simple substances also illustrates the possibility of building molecular complexity under prebiotically plausible conditions, not only on Earth, but also in extraterrestrial scenarios. We show that cyanamide-glyoxal reactions in water lead to mixtures comprising both acyclic and cyclic fragments, largely based on fused five- and six-membered rings, which can be predicted by computation. Remarkably, such a mixture could be identified using high-resolution electrospray ionization (ESI) mass spectrometry and spectroscopic methods. A few mechanistic pathways can be postulated, most involving the intermediacy of glyoxal cyanoimine and further chain growth, thus increasing the diversity of the observed products. This rationale is supported by theoretical analyses with clear-cut identification of all of the stationary points and transition-state structures. The properties and structural differences of oligomers obtained under thermodynamic conditions in water as opposed to those isolated by precipitation from organic media are also discussed.
Collapse
Affiliation(s)
- Nieves Lavado
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| | - Juan García de la Concepción
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, IACYS-Unidad de Química Verde y Desarrollo Sostenible, 06006, Badajoz, Spain
| |
Collapse
|
24
|
O'D Alexander CM, McKeegan KD, Altwegg K. Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. SPACE SCIENCE REVIEWS 2018; 214:36. [PMID: 30842688 PMCID: PMC6398961 DOI: 10.1007/s11214-018-0474-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/09/2023]
Abstract
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed ≤4 Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter's orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn's orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.
Collapse
Affiliation(s)
- Conel M O'D Alexander
- Dept. Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA. . Tel. (202) 478 8478
| | - Kevin D McKeegan
- Department of Earth, Planetary, and Space Sciences, University of California-Los Angeles, Los Angeles, CA 90095-1567, USA.
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
| |
Collapse
|
25
|
Turner AM, Abplanalp MJ, Blair TJ, Dayuha R, Kaiser RI. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments. THE ASTROPHYSICAL JOURNAL. SUPPLEMENT SERIES 2018; 234:6. [PMID: 30842689 PMCID: PMC6398957 DOI: 10.3847/1538-4365/aa9183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron-nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov-Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
Collapse
Affiliation(s)
- Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Tyler J Blair
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Remwilyn Dayuha
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
26
|
Cortese-Krott MM, Koning A, Kuhnle GG, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, Olson KR, Feelisch M. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal 2017; 27:684-712. [PMID: 28398072 PMCID: PMC5576088 DOI: 10.1089/ars.2017.7083] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. CRITICAL ISSUES To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. FUTURE DIRECTIONS Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anne Koning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunter G.C. Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Peter Nagy
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | | | - Andreas Pasch
- Department of Clinical Chemistry, University of Bern and Calciscon AG, Bern, Switzerland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California
| | - Alan A. Jackson
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kenneth R. Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
De Sanctis MC, Ammannito E, McSween HY, Raponi A, Marchi S, Capaccioni F, Capria MT, Carrozzo FG, Ciarniello M, Fonte S, Formisano M, Frigeri A, Giardino M, Longobardo A, Magni G, McFadden LA, Palomba E, Pieters CM, Tosi F, Zambon F, Raymond CA, Russell CT. Localized aliphatic organic material on the surface of Ceres. Science 2017; 355:719-722. [PMID: 28209893 DOI: 10.1126/science.aaj2305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/17/2017] [Indexed: 11/02/2022]
Abstract
Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.
Collapse
Affiliation(s)
- M C De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - E Ammannito
- Earth Planetary and Space Sciences, University of California-Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095-1567, USA.,Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - H Y McSween
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA
| | - A Raponi
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - S Marchi
- Southwest Research Institute, Boulder, CO 80302, USA.,Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M T Capria
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F G Carrozzo
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - S Fonte
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Formisano
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - A Frigeri
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Giardino
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - A Longobardo
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - G Magni
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - L A McFadden
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - E Palomba
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - C M Pieters
- Brown University, Department of Earth, Environmental, and Planetary Sciences, Providence, RI 02912, USA
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F Zambon
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - C A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA
| | - C T Russell
- Earth Planetary and Space Sciences, University of California-Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095-1567, USA
| |
Collapse
|
28
|
Tachibana S, Kouchi A, Hama T, Oba Y, Piani L, Sugawara I, Endo Y, Hidaka H, Kimura Y, Murata KI, Yurimoto H, Watanabe N. Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures. SCIENCE ADVANCES 2017; 3:eaao2538. [PMID: 28975154 PMCID: PMC5621975 DOI: 10.1126/sciadv.aao2538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Interstellar ice is believed to be a cradle of complex organic compounds, commonly found within icy comets and interstellar clouds, in association with ultraviolet (UV) irradiation and subsequent warming. We found that UV-irradiated amorphous ices composed of H2O, CH3OH, and NH3 and of pure H2O behave like liquids over the temperature ranges of 65 to 150 kelvin and 50 to 140 kelvin, respectively. This low-viscosity liquid-like ice may enhance the formation of organic compounds including prebiotic molecules and the accretion of icy dust to form icy planetesimals under certain interstellar conditions.
Collapse
Affiliation(s)
- Shogo Tachibana
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Kouchi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Tetsuya Hama
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Yasuhiro Oba
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Laurette Piani
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Iyo Sugawara
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yukiko Endo
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroshi Hidaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Ken-ichiro Murata
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Hisayoshi Yurimoto
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| |
Collapse
|
29
|
Wooden DH, Ishii HA, Zolensky ME. Cometary dust: the diversity of primitive refractory grains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160260. [PMID: 28554979 PMCID: PMC5454228 DOI: 10.1098/rsta.2016.0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- D H Wooden
- NASA Ames Research Center, Moffett Field, CA 94035-0001, USA
| | - H A Ishii
- University of Hawaii, Hawai'i Institute of Geophysics and Planetology, Honolulu, HI 96822, USA
| | - M E Zolensky
- NASA Johnson Space Center, ARES, X12 2010 NASA Parkway, Houston, TX 77058-3607, USA
| |
Collapse
|
30
|
Snodgrass C, A'Hearn MF, Aceituno F, Afanasiev V, Bagnulo S, Bauer J, Bergond G, Besse S, Biver N, Bodewits D, Boehnhardt H, Bonev BP, Borisov G, Carry B, Casanova V, Cochran A, Conn BC, Davidsson B, Davies JK, de León J, de Mooij E, de Val-Borro M, Delacruz M, DiSanti MA, Drew JE, Duffard R, Edberg NJT, Faggi S, Feaga L, Fitzsimmons A, Fujiwara H, Gibb EL, Gillon M, Green SF, Guijarro A, Guilbert-Lepoutre A, Gutiérrez PJ, Hadamcik E, Hainaut O, Haque S, Hedrosa R, Hines D, Hopp U, Hoyo F, Hutsemékers D, Hyland M, Ivanova O, Jehin E, Jones GH, Keane JV, Kelley MSP, Kiselev N, Kleyna J, Kluge M, Knight MM, Kokotanekova R, Koschny D, Kramer EA, López-Moreno JJ, Lacerda P, Lara LM, Lasue J, Lehto HJ, Levasseur-Regourd AC, Licandro J, Lin ZY, Lister T, Lowry SC, Mainzer A, Manfroid J, Marchant J, McKay AJ, McNeill A, Meech KJ, Micheli M, Mohammed I, Monguió M, Moreno F, Muñoz O, Mumma MJ, Nikolov P, Opitom C, Ortiz JL, Paganini L, Pajuelo M, Pozuelos FJ, Protopapa S, Pursimo T, Rajkumar B, Ramanjooloo Y, Ramos E, Ries C, Riffeser A, Rosenbush V, Rousselot P, Ryan EL, Santos-Sanz P, Schleicher DG, Schmidt M, Schulz R, et alSnodgrass C, A'Hearn MF, Aceituno F, Afanasiev V, Bagnulo S, Bauer J, Bergond G, Besse S, Biver N, Bodewits D, Boehnhardt H, Bonev BP, Borisov G, Carry B, Casanova V, Cochran A, Conn BC, Davidsson B, Davies JK, de León J, de Mooij E, de Val-Borro M, Delacruz M, DiSanti MA, Drew JE, Duffard R, Edberg NJT, Faggi S, Feaga L, Fitzsimmons A, Fujiwara H, Gibb EL, Gillon M, Green SF, Guijarro A, Guilbert-Lepoutre A, Gutiérrez PJ, Hadamcik E, Hainaut O, Haque S, Hedrosa R, Hines D, Hopp U, Hoyo F, Hutsemékers D, Hyland M, Ivanova O, Jehin E, Jones GH, Keane JV, Kelley MSP, Kiselev N, Kleyna J, Kluge M, Knight MM, Kokotanekova R, Koschny D, Kramer EA, López-Moreno JJ, Lacerda P, Lara LM, Lasue J, Lehto HJ, Levasseur-Regourd AC, Licandro J, Lin ZY, Lister T, Lowry SC, Mainzer A, Manfroid J, Marchant J, McKay AJ, McNeill A, Meech KJ, Micheli M, Mohammed I, Monguió M, Moreno F, Muñoz O, Mumma MJ, Nikolov P, Opitom C, Ortiz JL, Paganini L, Pajuelo M, Pozuelos FJ, Protopapa S, Pursimo T, Rajkumar B, Ramanjooloo Y, Ramos E, Ries C, Riffeser A, Rosenbush V, Rousselot P, Ryan EL, Santos-Sanz P, Schleicher DG, Schmidt M, Schulz R, Sen AK, Somero A, Sota A, Stinson A, Sunshine JM, Thompson A, Tozzi GP, Tubiana C, Villanueva GL, Wang X, Wooden DH, Yagi M, Yang B, Zaprudin B, Zegmott TJ. The 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0249. [PMID: 28554971 PMCID: PMC5454223 DOI: 10.1098/rsta.2016.0249] [Show More Authors] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 05/15/2023]
Abstract
We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively 'well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends-in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- C Snodgrass
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - M F A'Hearn
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - F Aceituno
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - V Afanasiev
- Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz, Russia
| | - S Bagnulo
- Armagh Observatory, College Hill, Armagh BT61 9DG, UK
| | - J Bauer
- Jet Propulsion Laboratory, M/S 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - G Bergond
- Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain
| | - S Besse
- ESA/ESAC, PO Box 78, 28691 Villanueva de la Cañada, Spain
| | - N Biver
- LESIA, Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France
| | - D Bodewits
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - H Boehnhardt
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - B P Bonev
- Department of Physics, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA
| | - G Borisov
- Armagh Observatory, College Hill, Armagh BT61 9DG, UK
- Institute of Astronomy and National Astronomical Observatory, 72 Tsarigradsko Chaussée Boulevard, BG-1784 Sofia, Bulgaria
| | - B Carry
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Lagrange, France
- IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, France
| | - V Casanova
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - A Cochran
- University of Texas Austin/McDonald Observatory, 1 University Station, Austin, TX 78712, USA
| | - B C Conn
- Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australian Capital Territory, Australia
- Gemini Observatory, Recinto AURA, Colina El Pino s/n, Casilla 603, La Serena, Chile
| | - B Davidsson
- Jet Propulsion Laboratory, M/S 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - J K Davies
- The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
| | - J de León
- Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain
- Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - E de Mooij
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - M de Val-Borro
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
- Department of Physics, The Catholic University of America, Washington, DC 20064, USA
| | - M Delacruz
- Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
| | - M A DiSanti
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
| | - J E Drew
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - R Duffard
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - N J T Edberg
- Swedish Institute of Space Physics, Ångströmlaboratoriet, Lägerhyddsvägen 1, 751 21 Uppsala, Sweden
| | - S Faggi
- INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50 125 Firenze, Italy
| | - L Feaga
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - A Fitzsimmons
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - H Fujiwara
- Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720, USA
| | - E L Gibb
- Department of Physics and Astronomy, University of Missouri - St. Louis, St. Louis, MO 63121, USA
| | - M Gillon
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
| | - S F Green
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - A Guijarro
- Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain
| | - A Guilbert-Lepoutre
- Institut UTINAM, UMR 6213 CNRS-Université de Franche Comté, Besançon, France
| | - P J Gutiérrez
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - E Hadamcik
- CNRS/INSU; UPMC (Sorbonne Univ.); UVSQ (UPSay); LATMOS-IPSL, 11 Bld d'Alembert, 78280 Guyancourt, France
| | - O Hainaut
- European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
| | - S Haque
- Department of Physics, University of the West Indies, St Augustine, Trinidad, West Indies
| | - R Hedrosa
- Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain
| | - D Hines
- Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - U Hopp
- University Observatory, Ludwig-Maximilian-University Munich, Scheiner Strasse 1, 81679 Munich, Germany
| | - F Hoyo
- Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain
| | - D Hutsemékers
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
| | - M Hyland
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - O Ivanova
- Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic
| | - E Jehin
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
| | - G H Jones
- Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT, UK
- The Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| | - J V Keane
- Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
| | - M S P Kelley
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - N Kiselev
- Main Astronomical Observatory of National Academy of Sciences, Kyiv, UKraine
| | - J Kleyna
- Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
| | - M Kluge
- University Observatory, Ludwig-Maximilian-University Munich, Scheiner Strasse 1, 81679 Munich, Germany
| | - M M Knight
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - R Kokotanekova
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - D Koschny
- Research and Scientific Support Department, European Space Agency, 2201 Noordwijk, The Netherlands
| | - E A Kramer
- Jet Propulsion Laboratory, M/S 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - J J López-Moreno
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - P Lacerda
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - L M Lara
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - J Lasue
- Université de Toulouse, UPS-OMP, IRAP-CNRS, Toulouse, France
| | - H J Lehto
- Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland
| | - A C Levasseur-Regourd
- UPMC (Sorbonne Univ.); UVSQ (UPSay); CNRS/INSU; LATMOS-IPSL, BC 102, 4 Place Jussieu, 75005 Paris, France
| | - J Licandro
- Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain
- Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Z Y Lin
- Graduate Institute of Astronomy, National Central University, No. 300 Zhongda Road, Zhongli District, Taoyuan City, 320 Taiwan
| | - T Lister
- Las Cumbres Observatory, 6740 Cortona Drive, Ste. 102, Goleta, CA 93117, USA
| | - S C Lowry
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, The University of Kent, Canterbury CT2 7NH, UK
| | - A Mainzer
- Jet Propulsion Laboratory, M/S 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - J Manfroid
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
| | - J Marchant
- Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, UK
| | - A J McKay
- University of Texas Austin/McDonald Observatory, 1 University Station, Austin, TX 78712, USA
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
| | - A McNeill
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - K J Meech
- Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
| | - M Micheli
- ESA SSA-NEO Coordination Centre, Frascati (RM), Italy
| | - I Mohammed
- Caribbean Institute of Astronomy, Trinidad, West Indies
| | - M Monguió
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - F Moreno
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - O Muñoz
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - M J Mumma
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
| | - P Nikolov
- Institute of Astronomy and National Astronomical Observatory, 72 Tsarigradsko Chaussée Boulevard, BG-1784 Sofia, Bulgaria
| | - C Opitom
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
- European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
| | - J L Ortiz
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - L Paganini
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
| | - M Pajuelo
- IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, France
- Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima, Perú
| | - F J Pozuelos
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
- Institut d'Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, 4000 Liège, Belgium
| | - S Protopapa
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - T Pursimo
- Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Santa Cruz de Tenerife, Spain
| | - B Rajkumar
- Department of Physics, University of the West Indies, St Augustine, Trinidad, West Indies
| | - Y Ramanjooloo
- Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
| | - E Ramos
- Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain
| | - C Ries
- University Observatory, Ludwig-Maximilian-University Munich, Scheiner Strasse 1, 81679 Munich, Germany
| | - A Riffeser
- University Observatory, Ludwig-Maximilian-University Munich, Scheiner Strasse 1, 81679 Munich, Germany
| | - V Rosenbush
- Main Astronomical Observatory of National Academy of Sciences, Kyiv, UKraine
| | - P Rousselot
- University of Franche-Comté, Observatoire des Sciences de l'Univers THETA, Institut UTINAM - UMR CNRS 6213, BP 1615, 25010 Besançon Cedex, France
| | - E L Ryan
- SETI Institute, 189 Bernardo Avenue Suite 200, Mountain View, CA 94043, USA
| | - P Santos-Sanz
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - D G Schleicher
- Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA
| | - M Schmidt
- University Observatory, Ludwig-Maximilian-University Munich, Scheiner Strasse 1, 81679 Munich, Germany
| | - R Schulz
- Scientific Support Office, European Space Agency, 2201 AZ Noordwijk, The Netherlands
| | - A K Sen
- Department of Physics, Assam University, Silchar 788011, India
| | - A Somero
- Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland
| | - A Sota
- Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
| | - A Stinson
- Armagh Observatory, College Hill, Armagh BT61 9DG, UK
| | - J M Sunshine
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| | - A Thompson
- Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, UK
| | - G P Tozzi
- INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50 125 Firenze, Italy
| | - C Tubiana
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - G L Villanueva
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 693.0, Greenbelt, MD 20771, USA
| | - X Wang
- Yunnan Observatories, CAS, China, PO Box 110, Kunming 650011, Yunnan Province, People's Republic of China
- Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, Kunming 650011, People's Republic of China
| | - D H Wooden
- NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035-1000, USA
| | - M Yagi
- National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
| | - B Yang
- European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
| | - B Zaprudin
- Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland
| | - T J Zegmott
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, The University of Kent, Canterbury CT2 7NH, UK
| |
Collapse
|
31
|
Boehnhardt H, Bibring JP, Apathy I, Auster HU, Ercoli Finzi A, Goesmann F, Klingelhöfer G, Knapmeyer M, Kofman W, Krüger H, Mottola S, Schmidt W, Seidensticker K, Spohn T, Wright I. The Philae lander mission and science overview. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0248. [PMID: 28554970 PMCID: PMC5454222 DOI: 10.1098/rsta.2016.0248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 05/25/2023]
Abstract
The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- Hermann Boehnhardt
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | | | - Istvan Apathy
- Atomic Energy Research Institute, PO Box 49, 1525 Budapest, Hungary
| | - Hans Ulrich Auster
- Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
| | | | - Fred Goesmann
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Göstar Klingelhöfer
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University, Staudinger Weg 9, 55099 Mainz, Germany
| | - Martin Knapmeyer
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Wlodek Kofman
- UGA-Grenoble CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274, 38058 Grenoble, France
| | - Harald Krüger
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Stefano Mottola
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Walter Schmidt
- Space Research Division, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Klaus Seidensticker
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Tilman Spohn
- Institute of Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ian Wright
- Planetary and Space Science Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
32
|
Taylor MGGT, Altobelli N, Buratti BJ, Choukroun M. The Rosetta mission orbiter science overview: the comet phase. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0262. [PMID: 28554981 PMCID: PMC5454230 DOI: 10.1098/rsta.2016.0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov-Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
| | - N Altobelli
- ESA/ESAC, 28692 Villanueva de la Cañada, Spain
| | - B J Buratti
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| | - M Choukroun
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
33
|
Mattioda AL, Bauschlicher CW, Ricca A, Bregman J, Hudgins DM, Allamandola LJ. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: The acridine series. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:286-308. [PMID: 28391158 DOI: 10.1016/j.saa.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The matrix-isolated, mid-infrared spectra of seven acridine-based polycyclic aromatic nitrogen heterocycles (PANHs) have been measured and compared to their non-nitrogen containing parent molecule. The acridine species investigated include acridine, benz[a]acridine, benz[c]acridine, dibenz[a,j]acridine, dibenz[c,h]acridine, dibenz[a,h]acridine and dibenz[a,c]acridine. The previously reported results for 1 and 2-azabenz[a]anthracenes are included for comparison. The experimentally determined band frequencies and intensities are compared with their B3LYP/6-31G(d) values. The overall agreement between experimental and theoretical values is good and in line with our previous investigations. Shifts, typically to the blue, are noted for the C-H out-of-plane (CHoop) motions upon insertion of a nitrogen atom. The formation of a bay region upon addition of additional benzene rings to the anthracene/acridine structure splits the solo hydrogen motions into a bay region solo and an external solo hydrogen, with the bay region solo hydrogen coupling to the quartet hydrogen motions and the external solo hydrogen coupling with the duo hydrogen motions resulting in an extreme decrease in intensity for the CHoop solo hydrogen band when the external hydrogen is replaced by a nitrogen atom. The C-C and C-H in-plane region of this acridine series exhibits the characteristic two fold increase in intensity, noted previously for PANHs. The strong ≈1400cm-1 band, which was identified in the previous PANH study, is noted in several molecular species as well as another strong PANH feature between 1480 and 1515cm-1 for several molecules. The presence of these strong bands appear to be primarily responsible for the two-fold increase in the C-H in-plane region's (1100-1600cm-1) intensity. The C-H stretching region can be characterized by contributions from the solo (bay or external), duo and quartet hydrogens, similar to what was observed in the dibenzopolyacene compounds.
Collapse
Affiliation(s)
- A L Mattioda
- (d)NASA Ames Research Center, Moffett Field, CA 94035, United States.
| | - C W Bauschlicher
- (d)NASA Ames Research Center, Moffett Field, CA 94035, United States.
| | - A Ricca
- Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Suite 200, Mountain View, CA 94035, United States; (d)NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - J Bregman
- Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Suite 200, Mountain View, CA 94035, United States; (d)NASA Ames Research Center, Moffett Field, CA 94035, United States
| | | | - L J Allamandola
- (c)Bay Area Environmental Research Institute, Mail Stop 245-6, United States; (d)NASA Ames Research Center, Moffett Field, CA 94035, United States
| |
Collapse
|
34
|
Sarafian AR, Hauri EH, McCubbin FM, Lapen TJ, Berger EL, Nielsen SG, Marschall HR, Gaetani GA, Righter K, Sarafian E. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160209. [PMID: 28416730 PMCID: PMC5394258 DOI: 10.1098/rsta.2016.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Collapse
Affiliation(s)
- Adam R Sarafian
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Erik H Hauri
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | | | - Thomas J Lapen
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Eve L Berger
- GeoControl Systems Inc., Jacobs JETS Contract, NASA JSC, Houston, TX, USA
| | - Sune G Nielsen
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Horst R Marschall
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Goethe Universität Frankfurt, Institut für Geowissenschaften, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Glenn A Gaetani
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kevin Righter
- NASA JSC, Mailcode XI2, 2101 NASA Parkway, Houston, TX 77058, USA
| | - Emily Sarafian
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
35
|
Yao Y, Giapis KP. Dynamic molecular oxygen production in cometary comae. Nat Commun 2017; 8:15298. [PMID: 28480881 PMCID: PMC5424151 DOI: 10.1038/ncomms15298] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Collapse
Affiliation(s)
- Yunxi Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Konstantinos P Giapis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Abstract
The Dawn spacecraft finds evidence for organic material and water ice on Ceres
Collapse
Affiliation(s)
- Michael Küppers
- European Space Astronomy Center, European Space Agency, Camino bajo del Castillo S/N, Madrid, Spain
| |
Collapse
|
37
|
Filacchione G, Raponi A, Capaccioni F, Ciarniello M, Tosi F, Capria MT, De Sanctis MC, Migliorini A, Piccioni G, Cerroni P, Barucci MA, Fornasier S, Schmitt B, Quirico E, Erard S, Bockelee-Morvan D, Leyrat C, Arnold G, Mennella V, Ammannito E, Bellucci G, Benkhoff J, Bibring JP, Blanco A, Blecka MI, Carlson R, Carsenty U, Colangeli L, Combes M, Combi M, Crovisier J, Drossart P, Encrenaz T, Federico C, Fink U, Fonti S, Fulchignoni M, Ip WH, Irwin P, Jaumann R, Kuehrt E, Langevin Y, Magni G, McCord T, Moroz L, Mottola S, Palomba E, Schade U, Stephan K, Taylor F, Tiphene D, Tozzi GP, Beck P, Biver N, Bonal L, Combe JP, Despan D, Flamini E, Formisano M, Frigeri A, Grassi D, Gudipati MS, Kappel D, Longobardo A, Mancarella F, Markus K, Merlin F, Orosei R, Rinaldi G, Cartacci M, Cicchetti A, Hello Y, Henry F, Jacquinod S, Reess JM, Noschese R, Politi R, Peter G. Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science 2016; 354:1563-1566. [DOI: 10.1126/science.aag3161] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/28/2016] [Indexed: 11/02/2022]
Affiliation(s)
- G. Filacchione
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - A. Raponi
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - F. Capaccioni
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. Ciarniello
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - F. Tosi
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. T. Capria
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. C. De Sanctis
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - A. Migliorini
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - G. Piccioni
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - P. Cerroni
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. A. Barucci
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - S. Fornasier
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - B. Schmitt
- Université Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, Grenoble, France
| | - E. Quirico
- Université Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, Grenoble, France
| | - S. Erard
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - D. Bockelee-Morvan
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - C. Leyrat
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - G. Arnold
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - V. Mennella
- INAF Osservatorio di Capodimonte, Naples, Italy
| | - E. Ammannito
- Department of Earth, Planetary, and Space Sciences, University of California–Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095-1567, USA
| | - G. Bellucci
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - J. Benkhoff
- ESA (European Space Agency), European Space Research and Technology Centre, Noordwjik, Netherlands
| | - J. P. Bibring
- Institut d’Astrophysique Spatial, CNRS, Orsay, France
| | - A. Blanco
- Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Università del Salento, Lecce, Italy
| | - M. I. Blecka
- Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - R. Carlson
- NASA JPL (Jet Propulsion Laboratory), California Institute of Technology, Pasadena, CA 91109, USA
| | - U. Carsenty
- Université Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, Grenoble, France
| | - L. Colangeli
- ESA (European Space Agency), European Space Research and Technology Centre, Noordwjik, Netherlands
| | - M. Combes
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - M. Combi
- Space Physics Research Laboratory, The University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Crovisier
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - P. Drossart
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - T. Encrenaz
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | | | - U. Fink
- Lunar Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - S. Fonti
- Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Università del Salento, Lecce, Italy
| | - M. Fulchignoni
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - W.-H. Ip
- National Central University, Taipei, Taiwan
| | - P. Irwin
- Departement of Physics, Oxford University, Oxford, UK
| | - R. Jaumann
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - E. Kuehrt
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - Y. Langevin
- Institut d’Astrophysique Spatial, CNRS, Orsay, France
| | - G. Magni
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - T. McCord
- Bear Fight Institute, Winthrop, WA 98862, USA
| | - L. Moroz
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - S. Mottola
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - E. Palomba
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - U. Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - K. Stephan
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - F. Taylor
- Departement of Physics, Oxford University, Oxford, UK
| | - D. Tiphene
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - G. P. Tozzi
- INAF Osservatorio Astrofisico di Arcetri, Firenze, Italy
| | - P. Beck
- Université Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, Grenoble, France
| | - N. Biver
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - L. Bonal
- Université Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble, Grenoble, France
| | | | - D. Despan
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | | | - M. Formisano
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - A. Frigeri
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - D. Grassi
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. S. Gudipati
- NASA JPL (Jet Propulsion Laboratory), California Institute of Technology, Pasadena, CA 91109, USA
| | - D. Kappel
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - A. Longobardo
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - F. Mancarella
- Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Università del Salento, Lecce, Italy
| | - K. Markus
- Institute for Planetary Research, DLR (Deutschen Zentrums für Luft- und Raumfahrt), Berlin, Germany
| | - F. Merlin
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - R. Orosei
- INAF Istituto di Radioastronomia, Bologna, Italy
| | - G. Rinaldi
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - M. Cartacci
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - A. Cicchetti
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - Y. Hello
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - F. Henry
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - S. Jacquinod
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - J. M. Reess
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Paris Sciences and Letters Research University, CNRS (Centre National de la Recherche Scientifique), Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, France
| | - R. Noschese
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - R. Politi
- INAF-IAPS (Istituto Nazionale di AstroFisica–Istituto di Astrofisica e Planetologia Spaziali), Rome, Italy
| | - G. Peter
- Institute of Optical Sensor Systems, DLR, Berlin, Germany
| |
Collapse
|
38
|
Jones AP. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160224. [PMID: 28083090 PMCID: PMC5210672 DOI: 10.1098/rsos.160224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.
Collapse
Affiliation(s)
- A. P. Jones
- Author for correspondence: A. P. Jones e-mail:
| |
Collapse
|
39
|
Fornasier S, Mottola S, Keller HU, Barucci MA, Davidsson B, Feller C, Deshapriya JDP, Sierks H, Barbieri C, Lamy PL, Rodrigo R, Koschny D, Rickman H, A’Hearn M, Agarwal J, Bertaux JL, Bertini I, Besse S, Cremonese G, Da Deppo V, Debei S, De Cecco M, Deller J, El-Maarry MR, Fulle M, Groussin O, Gutierrez PJ, Güttler C, Hofmann M, Hviid SF, Ip WH, Jorda L, Knollenberg J, Kovacs G, Kramm R, Kührt E, Küppers M, Lara ML, Lazzarin M, Moreno JJL, Marzari F, Massironi M, Naletto G, Oklay N, Pajola M, Pommerol A, Preusker F, Scholten F, Shi X, Thomas N, Toth I, Tubiana C, Vincent JB. Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 2016; 354:1566-1570. [DOI: 10.1126/science.aag2671] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 11/03/2022]
|
40
|
Matthewman R, Crawford IA, Jones AP, Joy KH, Sephton MA. Organic Matter Responses to Radiation under Lunar Conditions. ASTROBIOLOGY 2016; 16:900-912. [PMID: 27870583 PMCID: PMC5273402 DOI: 10.1089/ast.2015.1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation-Moon-Regolith-Amino acids-Biomarkers. Astrobiology 16, 900-912.
Collapse
Affiliation(s)
- Richard Matthewman
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Ian A. Crawford
- Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK
| | - Adrian P. Jones
- Department of Earth Sciences, University College London, London, UK
| | - Katherine H. Joy
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
41
|
|
42
|
Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 2016; 526:678-81. [PMID: 26511578 DOI: 10.1038/nature15707] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 11/08/2022]
Abstract
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
Collapse
|
43
|
Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT. AstRoMap European Astrobiology Roadmap. ASTROBIOLOGY 2016; 16:201-43. [PMID: 27003862 PMCID: PMC4834528 DOI: 10.1089/ast.2015.1441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system.
Collapse
Affiliation(s)
- Gerda Horneck
- European Astrobiology Network Association
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | | - Frances Westall
- Centre National de la Recherche Scientifique–Centre de Biophysique Moléculaire, Orleans, France
| | - John Lee Grenfell
- Institute for Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felipe Gomez
- INTA Centre for Astrobiology, Torrejón de Ardoz, Madrid, Spain
| | - Stefan Leuko
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Microbiology, Technical University München, München, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Kleomenis Tsiganis
- Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | - Ernesto Palomba
- INAF–Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Jesse Harrison
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, Valladolid University, Valladolid, Spain
| | | | | | | | - Petra Rettberg
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | |
Collapse
|
44
|
Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Nature 2016; 529:368-72. [PMID: 26760209 DOI: 10.1038/nature16190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/28/2015] [Indexed: 11/08/2022]
Abstract
Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
Collapse
|
45
|
Rubin M, Altwegg K, Dishoeck EFV, Schwehm G. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2041-8205/815/1/l11] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Woon DE. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles. Phys Chem Chem Phys 2015; 17:28705-18. [PMID: 26445904 DOI: 10.1039/c5cp03393d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Icy grain mantles that accrete on refractory dust particles in the very cold interstellar medium or beyond the snow line in protoplanetary disks serve as minute incubators for heterogeneous chemistry. Ice mantle chemistry can differ significantly from the gas phase chemistry that occurs in these environments and is often richer. Modeling ices and their chemistry is a challenging task for quantum theoretical methods, but theory promises insight into these systems that is difficult to attain with experiments. Density functional theory (DFT) is predominately employed for modeling reactions in icy grain mantles due to its favorable scalability, but DFT has limitations that risk undercutting its reliability for this task. In this work, basic protocols are proposed for identifying the degree to which DFT methods are able to reproduce experimental or higher level theoretical results for the fundamental interactions upon which ice mantle chemistry depends, including both reactive interactions and non-reactive scaffolding interactions. The exemplar of this study is the reaction of C(+) with H2O, where substantial methodological differences are found in the prediction of gas phase relative energetics for stationary points (about 10 kcal mol(-1) for the C-O bond energy of the H2OC(+) intermediate), which in turn casts doubt about employing it to treat the C(+) + H2O reaction on an ice surface. However, careful explorations demonstrate that B3LYP with small correlation consistent basis sets performs in a sufficiently reliable manner to justify using it to identify plausible chemical pathways, where the dominant products were found to be neutral HOC and the CO(-) anion plus one and two H3O(+) cations, respectively. Predicted vibrational and electronic spectra are presented that would serve to verify or disconfirm the pathways; the latter were computed with time-dependent DFT. Conclusions are compared with those of a recent similar study by McBride and coworkers (J. Phys. Chem. A, 2014, 118, 6991).
Collapse
Affiliation(s)
- David E Woon
- Department of Chemistry, University of Illinois at Urbana-Champaign, Box 92-6, CLSL, 600 S. Mathews, Urbana, IL 61801, USA.
| |
Collapse
|
47
|
De Sanctis MC, Capaccioni F, Ciarniello M, Filacchione G, Formisano M, Mottola S, Raponi A, Tosi F, Bockelée-Morvan D, Erard S, Leyrat C, Schmitt B, Ammannito E, Arnold G, Barucci MA, Combi M, Capria MT, Cerroni P, Ip WH, Kuehrt E, McCord TB, Palomba E, Beck P, Quirico E. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko. Nature 2015; 525:500-3. [PMID: 26399830 DOI: 10.1038/nature14869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022]
Abstract
Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.
Collapse
Affiliation(s)
- M C De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - F Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - M Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - G Filacchione
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - M Formisano
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - S Mottola
- Institute for Planetary Research, DLR, Rutherfordstraße 2, 12489 Berlin, Germany
| | - A Raponi
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - D Bockelée-Morvan
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
| | - S Erard
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
| | - C Leyrat
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
| | - B Schmitt
- Université Grenoble Alpes - CNRS Institut de Planetologie et Astrophysique de Grenoble, Batiment D de Physique, BP 53, 38041 Grenoble Cedex 9, France
| | - E Ammannito
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy.,University of California, Los Angeles, California 90095, USA
| | - G Arnold
- Institute for Planetary Research, DLR, Rutherfordstraße 2, 12489 Berlin, Germany
| | - M A Barucci
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
| | - M Combi
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, Michigan 48109, USA
| | - M T Capria
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - P Cerroni
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - W-H Ip
- National Central University, No. 300, Jhongda Road, Jhongli District, Taoyuan City, 32001 Taipei, Taiwan
| | - E Kuehrt
- Institute for Planetary Research, DLR, Rutherfordstraße 2, 12489 Berlin, Germany
| | - T B McCord
- Bear Fight Institute, 22 Fiddler's Road, Box 667, Winthrop, Washington 98862, USA
| | - E Palomba
- Istituto di Astrofisica e Planetologia Spaziali - INAF, via del fosso del cavaliere 100, 00133 Rome, Italy
| | - P Beck
- Université Grenoble Alpes - CNRS Institut de Planetologie et Astrophysique de Grenoble, Batiment D de Physique, BP 53, 38041 Grenoble Cedex 9, France
| | - E Quirico
- Université Grenoble Alpes - CNRS Institut de Planetologie et Astrophysique de Grenoble, Batiment D de Physique, BP 53, 38041 Grenoble Cedex 9, France
| | | |
Collapse
|
48
|
Massironi M, Simioni E, Marzari F, Cremonese G, Giacomini L, Pajola M, Jorda L, Naletto G, Lowry S, El-Maarry MR, Preusker F, Scholten F, Sierks H, Barbieri C, Lamy P, Rodrigo R, Koschny D, Rickman H, Keller HU, A'Hearn MF, Agarwal J, Auger AT, Barucci MA, Bertaux JL, Bertini I, Besse S, Bodewits D, Capanna C, Da Deppo V, Davidsson B, Debei S, De Cecco M, Ferri F, Fornasier S, Fulle M, Gaskell R, Groussin O, Gutiérrez PJ, Güttler C, Hviid SF, Ip WH, Knollenberg J, Kovacs G, Kramm R, Kührt E, Küppers M, La Forgia F, Lara LM, Lazzarin M, Lin ZY, Lopez Moreno JJ, Magrin S, Michalik H, Mottola S, Oklay N, Pommerol A, Thomas N, Tubiana C, Vincent JB. Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature 2015; 526:402-5. [PMID: 26416730 DOI: 10.1038/nature15511] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/10/2015] [Indexed: 11/09/2022]
Abstract
The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Collapse
Affiliation(s)
- Matteo Massironi
- Dipartimento di Geoscienze, University of Padova, via G. Gradenigo 6, 35131 Padova, Italy.,Centro di Ateneo di Studi ed Attività Spaziali "Giuseppe Colombo" (CISAS), University of Padova, via Venezia 15, 35131 Padova, Italy
| | | | - Francesco Marzari
- University of Padova, Department of Physics and Astronomy, Vicolo dell'Osservatorio 3, 35122 Padova, Italy
| | - Gabriele Cremonese
- INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy
| | - Lorenza Giacomini
- Dipartimento di Geoscienze, University of Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | - Maurizio Pajola
- Centro di Ateneo di Studi ed Attività Spaziali "Giuseppe Colombo" (CISAS), University of Padova, via Venezia 15, 35131 Padova, Italy
| | - Laurent Jorda
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), UMR 7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
| | - Giampiero Naletto
- Centro di Ateneo di Studi ed Attività Spaziali "Giuseppe Colombo" (CISAS), University of Padova, via Venezia 15, 35131 Padova, Italy.,CNR-IFN UOS Padova LUXOR, via Trasea 7, 35131 Padova, Italy.,Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova, Italy
| | - Stephen Lowry
- The University of Kent, School of Physical Sciences, Canterbury, Kent CT2 7NZ, UK
| | | | - Frank Preusker
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
| | - Frank Scholten
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
| | - Holger Sierks
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Cesare Barbieri
- University of Padova, Department of Physics and Astronomy, Vicolo dell'Osservatorio 3, 35122 Padova, Italy
| | - Philippe Lamy
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), UMR 7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
| | - Rafael Rodrigo
- Centro de Astrobiologia, CSIC-INTA, 28850 Torrejon de Ardoz, Madrid, Spain.,International Space Science Institute, Hallerstraße 6, 3012 Bern, Switzerland
| | - Detlef Koschny
- Scientific Support Office, European Space Research and Technology Centre/ESA, Keplerlaan 1, Postbus 299, 2201 AZ Noordwijk ZH, The Netherlands
| | - Hans Rickman
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.,PAS Space Research Center, Bartycka 18A, 00716 Warszawa, Poland
| | - Horst Uwe Keller
- Institut für Geophysik und extraterrestrische Physik (IGEP), Technische Universität Braunschweig, Mendelssohnstraße 3, 38106 Braunschweig, Germany
| | - Michael F A'Hearn
- University of Maryland, Department of Astronomy, College Park, Maryland 20742-2421, USA.,Akademie der Wissenschaften zu Göttingen and Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Jessica Agarwal
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Anne-Thérèse Auger
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), UMR 7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
| | - M Antonella Barucci
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Universite Paris Diderot, 5 place J. Janssen, 92195 Meudon, France
| | - Jean-Loup Bertaux
- LATMOS, CNRS/UVSQ/IPSL, 11 boulevard d'Alembert, 78280 Guyancourt, France
| | - Ivano Bertini
- Centro di Ateneo di Studi ed Attività Spaziali "Giuseppe Colombo" (CISAS), University of Padova, via Venezia 15, 35131 Padova, Italy
| | - Sebastien Besse
- Scientific Support Office, European Space Research and Technology Centre/ESA, Keplerlaan 1, Postbus 299, 2201 AZ Noordwijk ZH, The Netherlands
| | - Dennis Bodewits
- University of Maryland, Department of Astronomy, College Park, Maryland 20742-2421, USA
| | - Claire Capanna
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), UMR 7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
| | - Vania Da Deppo
- CNR-IFN UOS Padova LUXOR, via Trasea 7, 35131 Padova, Italy
| | - Björn Davidsson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Stefano Debei
- Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
| | | | - Francesca Ferri
- Centro di Ateneo di Studi ed Attività Spaziali "Giuseppe Colombo" (CISAS), University of Padova, via Venezia 15, 35131 Padova, Italy
| | - Sonia Fornasier
- LESIA-Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Universite Paris Diderot, 5 place J. Janssen, 92195 Meudon, France
| | - Marco Fulle
- INAF-Osservatorio Astronomico, Via Tiepolo 11, 34014 Trieste, Italy
| | | | - Olivier Groussin
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille), UMR 7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
| | - Pedro J Gutiérrez
- Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomìa s/n, 18008 Granada, Spain
| | - Carsten Güttler
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Stubbe F Hviid
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany.,Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Wing-Huen Ip
- National Central University, Graduate Institute of Astronomy, 300 Chung-Da Road, Chung-Li 32054 Taiwan
| | - Jörg Knollenberg
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
| | - Gabor Kovacs
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Rainer Kramm
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Ekkehard Kührt
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
| | - Michael Küppers
- Operations Department, European Space Astronomy Centre/ESA, PO Box 78, 28691 Villanueva de la Canada, Madrid, Spain
| | - Fiorangela La Forgia
- University of Padova, Department of Physics and Astronomy, Vicolo dell'Osservatorio 3, 35122 Padova, Italy
| | - Luisa M Lara
- Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomìa s/n, 18008 Granada, Spain
| | - Monica Lazzarin
- University of Padova, Department of Physics and Astronomy, Vicolo dell'Osservatorio 3, 35122 Padova, Italy
| | - Zhong-Yi Lin
- National Central University, Graduate Institute of Astronomy, 300 Chung-Da Road, Chung-Li 32054 Taiwan
| | - Josè J Lopez Moreno
- Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomìa s/n, 18008 Granada, Spain
| | - Sara Magrin
- University of Padova, Department of Physics and Astronomy, Vicolo dell'Osservatorio 3, 35122 Padova, Italy
| | - Harald Michalik
- Institut für Datentechnik und Kommunikationsnetze der TU Braunschweig, Hans-Sommer Straße 66, 38106 Braunschweig, Germany
| | - Stefano Mottola
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany
| | - Nilda Oklay
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Antoine Pommerol
- Physikalisches Institut der Universität Bern, Sidlerstraße 5, 3012 Bern, Switzerland
| | - Nicolas Thomas
- Physikalisches Institut der Universität Bern, Sidlerstraße 5, 3012 Bern, Switzerland
| | - Cecilia Tubiana
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| | - Jean-Baptiste Vincent
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Alí-Lagoa V, Delbo’ M, Libourel G. RAPID TEMPERATURE CHANGES AND THE EARLY ACTIVITY ON COMET 67P/CHURYUMOV–GERASIMENKO. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2041-8205/810/2/l22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Kofman W, Herique A, Barbin Y, Barriot JP, Ciarletti V, Clifford S, Edenhofer P, Elachi C, Eyraud C, Goutail JP, Heggy E, Jorda L, Lasue J, Levasseur-Regourd AC, Nielsen E, Pasquero P, Preusker F, Puget P, Plettemeier D, Rogez Y, Sierks H, Statz C, Svedhem H, Williams I, Zine S, Van Zyl J. COMETARY SCIENCE. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 2015; 349:aab0639. [PMID: 26228153 DOI: 10.1126/science.aab0639] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae's final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites.
Collapse
Affiliation(s)
- Wlodek Kofman
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Alain Herique
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Yves Barbin
- MIO, UM 110, CNRS-Institut National des Sciences de l'Univers (INSU), Université de Toulon, Aix-Marseille Université, IRD 83957 La Garde, France
| | | | - Valérie Ciarletti
- Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) (UPSay); Université Pierre et Marie Curie (UPMC) (Sorbonne Univ.); CNRS/INSU; Laboratoire Atmosphéres, Milieux, Observations Spatiales (LATMOS)-Institut Pierre-Simon Laplace (IPSL), 11 Boulevard d'Alembert, 78280 Guyancourt, France
| | - Stephen Clifford
- Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA
| | - Peter Edenhofer
- Ruhr-University of Bochum, Faculty of Electrical Engineering and Information Technology, 44780 Bochum, Germany
| | - Charles Elachi
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA
| | - Christelle Eyraud
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Jean-Pierre Goutail
- Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) (UPSay); Université Pierre et Marie Curie (UPMC) (Sorbonne Univ.); CNRS/INSU; Laboratoire Atmosphéres, Milieux, Observations Spatiales (LATMOS)-Institut Pierre-Simon Laplace (IPSL), 11 Boulevard d'Alembert, 78280 Guyancourt, France
| | - Essam Heggy
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA. University of Southern California, Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, Los Angeles, CA 90089, USA
| | - Laurent Jorda
- Laboratoire d'Astrophysique de Marseille Pôle de l'Étoile Site de Château-Gombert 38, Rue Frédéric Joliot-Curie 13388 Marseille, France
| | - Jérémie Lasue
- Université de Toulouse; UPS-OMP; IRAP; (2) CNRS; IRAP; 9 Avenue Colonel Roche, BP 44 346, F-31028 Toulouse Cedex 4, Toulouse, France
| | | | - Erling Nielsen
- Max-Planck-Institüt fur Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Pierre Pasquero
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Frank Preusker
- German Aerospace Center (DLR) Rutherfordstraße 2 12489 Berlin, Germany
| | - Pascal Puget
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Dirk Plettemeier
- Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Germany
| | - Yves Rogez
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Holger Sierks
- Max-Planck-Institüt fur Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Christoph Statz
- Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Germany
| | - Hakan Svedhem
- European Space Agency (ESA)/European Space Research and Technology Centre (ESTEC) Noordwijk, Netherlands
| | - Iwan Williams
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sonia Zine
- Université Grenoble Alpes, IPAG, F-38000 Grenoble, France (2) Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France
| | - Jakob Van Zyl
- Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 300-243E, Pasadena, CA 91109, USA
| |
Collapse
|