1
|
Oba Y, Koga T, Takano Y, Ogawa NO, Ohkouchi N, Sasaki K, Sato H, Glavin DP, Dworkin JP, Naraoka H, Tachibana S, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y. Uracil in the carbonaceous asteroid (162173) Ryugu. Nat Commun 2023; 14:1292. [PMID: 36944653 PMCID: PMC10030641 DOI: 10.1038/s41467-023-36904-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth's atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of organic molecules including racemic amino acids in the Ryugu samples. Here we report the detection of uracil, one of the four nucleobases in ribonucleic acid, in aqueous extracts from Ryugu samples. In addition, nicotinic acid (niacin, a B3 vitamer), its derivatives, and imidazoles were detected in search for nitrogen heterocyclic molecules. The observed difference in the concentration of uracil between A0106 and C0107 may be related to the possible differences in the degree of alteration induced by energetic particles such as ultraviolet photons and cosmic rays. The present study strongly suggests that such molecules of prebiotic interest commonly formed in carbonaceous asteroids including Ryugu and were delivered to the early Earth.
Collapse
Affiliation(s)
- Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan.
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, 237-0061, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences (IAB), Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hajime Sato
- Human Metabolome Technologies Inc., Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shogo Tachibana
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoki Nakamura
- Department of Earth Material Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Systems Science, Hiroshima University, 739-8526, Higashi-Hiroshima, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, 252-5210, Japan
| | | |
Collapse
|
2
|
Todd ZR. Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life (Basel) 2022; 12:1268. [PMID: 36013447 PMCID: PMC9410288 DOI: 10.3390/life12081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.g., ammonia, nitrite, nitrate), accessible forms of phosphorus (e.g., phosphate, phosphite, etc.), and sources of sulfur (e.g., sulfide, sulfite) may have been necessary for the origins of life, given the biochemistry seen in Earth life today. This review describes potential sources of nitrogen-, sulfur-, and phosphorus-containing molecules in the context of planetary environments. For the early Earth, such considerations may be able to aid in the understanding of our own origins. Additionally, as we learn more about potential environments on other planets (for example, with upcoming next-generation telescope observations or new missions to explore other bodies in our Solar System), evaluating potential sources for elements necessary for life (as we know it) can help constrain the potential habitability of these worlds.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
BASALGETE R, Torres-Díaz D, Lafosse A, Amiaud L, Féraud G, Jeseck P, Philippe L, Michaut X, Fillion JH, Bertin M. Indirect X-ray photodesorption of 15N 2 and 13CO from mixed and layered ices. J Chem Phys 2022; 157:084308. [DOI: 10.1063/5.0100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
X-ray photodesorption yields of 15N2 and 13CO are derived as a function of the incident photon energy near the N (~ 400 eV) and O K-edge (~ 500 eV) for pure 15N2 ice and mixed 13CO:15N2 ices. The photodesorption spectra from the mixed ices reveal an indirect desorption mechanism for which the desorption of 15N2 and 13CO is triggered by the photo-absorption of respectively 13CO and 15N2. This mechanism is confirmed by the X-ray photodesorption of 13CO from a layered 13CO/15N2 ice irradiated at 401 eV, on the N 1s -> π* transition of 15N2. This latter experiment enables to quantify the relevant depth involved in the indirect desorption process, which is found to be 30 - 40 ML in that case. This value is further related to the energy transport of Auger electrons emitted from the photo-absorbing 15N2molecules that scatter towards the ice surface, inducing the desorption of 13CO. The photodesorption yields corrected from the energy that can participate to the desorption process (expressed in molecules desorbed by eV deposited) do not depend on the photon energy hence neither on the photo-absorbing molecule nor on its state after Auger decay. This demonstrates that X-ray induced electron stimulated desorption (XESD), mediated by Auger scattering, is the dominant process explaining the desorption of 15N2 and 13CO from the ices studied in this work.
Collapse
Affiliation(s)
| | | | - Anne Lafosse
- Chemistry Department, University Paris-Sud, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Harper OJ, Gans B, Loison JC, Garcia GA, Hrodmarsson HR, Boyé-Péronne S. Photoionization Cross Section of the NH 2 Free Radical in the 11.1-15.7 eV Energy Range. J Phys Chem A 2021; 125:2764-2769. [PMID: 33783226 DOI: 10.1021/acs.jpca.1c01876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NH2 radical is a key component in many astrophysical environments, both in its neutral and cationic forms, being involved in the formation of complex N-bearing species. To gain insight into the photochemical processes into which it operates and to model accurately the ensuing chemical networks, the knowledge of its photoionization efficiency is required, but no quantitative determination has been carried out so far. Combining a flow-tube H-abstraction radical source, a double imaging photoelectron-photoion spectrometer, and a vacuum-ultraviolet synchrotron excitation, the absolute photoionization cross section of the amino radical has been measured in the present work for the first time at two photon energies: σionNH2(12.7 eV) = 7.8 ± 2.2 Mb and σionNH2(13.2 eV) = 7.8 ± 2.0 Mb. These values have been employed to scale the total ion yield previously recorded by Gibson et al. ( J. Chem. Phys. 1985, 83, 4319-4328). The resulting cross section curve spanning the 11.1-15.7 eV energy range will help in refining the current astrophysical models.
Collapse
Affiliation(s)
- Oliver J Harper
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Bérenger Gans
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Jean-Christophe Loison
- Institut des Sciences Moléculaires, UMR 5255 CNRS-Université de Bordeaux, Bât. A12, 351 cours de la Libération, F-33405 Talence Cedex, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex, France
| | - Helgi R Hrodmarsson
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex, France
| | - Séverine Boyé-Péronne
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
5
|
Patt A, Simon JM, Salazar JM, Picaud S. Adsorption of CO and N 2 molecules at the surface of solid water. A grand canonical Monte Carlo study. J Chem Phys 2020; 153:204502. [PMID: 33261471 DOI: 10.1063/5.0031254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adsorption of carbon monoxide and nitrogen molecules at the surface of four forms of solid water is investigated by means of grand canonical Monte Carlo simulations. The trapping ability of crystalline Ih and low-density amorphous ices, along with clathrate hydrates of structures I and II, is compared at temperatures relevant for astrophysics. It is shown that when considering a gas phase that contains mixtures of carbon monoxide and nitrogen, the trapping of carbon monoxide is favored with respect to nitrogen at the surface of all solids, irrespective of the temperature. The results of the calculations also indicate that some amounts of molecules can be incorporated in the bulk of the water structures, and the molecular selectivity of the incorporation process is investigated. Again, it is shown that incorporation of carbon monoxide is favored with respect to nitrogen in most of the situations considered here. In addition, the conclusions of the present simulations emphasize the importance of the strength of the interactions between the guest molecules and the water network. They indicate that the accuracy of the corresponding interaction potentials is a key point, especially for simulating clathrate selectivity. This highlights the necessity of having interaction potential models that are transferable to different water environments.
Collapse
Affiliation(s)
- Antoine Patt
- Institut UTINAM UMR 6213, CNRS/Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Marc Simon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303, CNRS, Université de Bourgogne Franche-Comté, F-21078 Dijon Cedex, France
| | - J Marcos Salazar
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303, CNRS, Université de Bourgogne Franche-Comté, F-21078 Dijon Cedex, France
| | - Sylvain Picaud
- Institut UTINAM UMR 6213, CNRS/Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020; 216:102. [PMID: 32801398 PMCID: PMC7392949 DOI: 10.1007/s11214-020-00718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/03/2020] [Indexed: 06/02/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
7
|
Poch O, Istiqomah I, Quirico E, Beck P, Schmitt B, Theulé P, Faure A, Hily-Blant P, Bonal L, Raponi A, Ciarniello M, Rousseau B, Potin S, Brissaud O, Flandinet L, Filacchione G, Pommerol A, Thomas N, Kappel D, Mennella V, Moroz L, Vinogradoff V, Arnold G, Erard S, Bockelée-Morvan D, Leyrat C, Capaccioni F, De Sanctis MC, Longobardo A, Mancarella F, Palomba E, Tosi F. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 2020; 367:367/6483/eaaw7462. [PMID: 32165559 DOI: 10.1126/science.aaw7462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/11/2019] [Accepted: 02/14/2020] [Indexed: 11/02/2022]
Abstract
The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.
Collapse
Affiliation(s)
- Olivier Poch
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France.
| | - Istiqomah Istiqomah
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Eric Quirico
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Pierre Beck
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France.,Institut Universitaire de France (IUF), Paris, France
| | - Bernard Schmitt
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Patrice Theulé
- Aix-Marseille Université, CNRS, Centre National d'Etudes Spatiales (CNES), Laboratoire d'Astrophysique de Marseille (LAM), Marseille, France
| | - Alexandre Faure
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Pierre Hily-Blant
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Lydie Bonal
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Andrea Raponi
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Mauro Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Batiste Rousseau
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Sandra Potin
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Olivier Brissaud
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Laurène Flandinet
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Gianrico Filacchione
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Antoine Pommerol
- Physikalisches Institut, Sidlerstrasse 5, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Thomas
- Physikalisches Institut, Sidlerstrasse 5, University of Bern, CH-3012 Bern, Switzerland
| | - David Kappel
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany.,Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Vito Mennella
- Istituto Nazionale di Astrofisica (INAF)-Osservatorio Astronomico di Capodimonte, Napoli, Italy
| | - Lyuba Moroz
- Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Vassilissa Vinogradoff
- CNRS, Aix-Marseille Université, Laboratoire Physique des Interactions Ioniques et Moléculaires (PIIM), Unité Mixte de Recherche (UMR) CNRS 7345, 13397 Marseille, France
| | - Gabriele Arnold
- Institute for Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
| | - Stéphane Erard
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Dominique Bockelée-Morvan
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Cédric Leyrat
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
| | - Fabrizio Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Maria Cristina De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Andrea Longobardo
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy.,Dipartimento di Scienze e Tecnologie (DIST), Università Parthenope, 80143 Napoli, Italy
| | - Francesca Mancarella
- Dipartimento di Matematica e Fisica "E. De Giorgi," Università del Salento, Lecce, Italy
| | - Ernesto Palomba
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| | - Federico Tosi
- Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy
| |
Collapse
|
8
|
Rocha WRM, Pilling S, Domaracka A, Rothard H, Boduch P. Infrared complex refractive index of N-containing astrophysical ices free of water processed by cosmic-ray simulated in laboratory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117826. [PMID: 31784228 DOI: 10.1016/j.saa.2019.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Several nitrogen-containing molecules have been unambiguously identified in the Solar System and in the Interstellar Medium. It is believed that such a rich inventory of species is a result of the energetic processing of astrophysical ices during the interaction with ionizing radiation. An intrinsic parameter of matter, the complex refractive index, stores all the "chemical memory" triggered by energetic processing, and therefore might be used to probe ice observations in the infrared. In this study, four N-containing ices have been condensed in an ultra-high vacuum chamber and processed by heavy ions (O and Ni) with energies between 0.2 and 15.7 MeV at the Grand Accélérateur National d'Ions Lourds (GANIL), in Caen, France. All chemical changes were monitored in situ by Infrared Absorption Spectroscopy. The complex refractive index was calculated directly from the absorbance spectrum, by using the Lambert-Beer and Kramers-Kroning relations, and the values are available in an online database: https://www1.univap.br/gaa/nkabs-database/data.htm. As a result, other than the database, it was observed that non-polar ices are more destroyed by sputtering than polar ones. Such destruction and chemical evolution lead to variation in the IR albedo of samples addressed in this paper.
Collapse
Affiliation(s)
- W R M Rocha
- Niels Bohr Institute & Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5-7, Copenhagen K. DK-1350, Denmark; Universidade do Vale do Paraíba (UNIVAP), Laboratório de Astroquímica e Astrobiologia (LASA), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, CEP: 12244000, SP, Brazil.
| | - S Pilling
- Universidade do Vale do Paraíba (UNIVAP), Laboratório de Astroquímica e Astrobiologia (LASA), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, CEP: 12244000, SP, Brazil; Departamento de Física, Instituto Tecnólogico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos 12228-900 , SP, Brazil
| | - A Domaracka
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France
| | - H Rothard
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France
| | - P Boduch
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France
| |
Collapse
|
9
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020. [PMID: 32801398 DOI: 10.1007/s11214-019-0625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
10
|
Combi M, Shou Y, Fougere N, Tenishev V, Altwegg K, Rubin M, Bockelée-Morvan D, Capaccioni F, Cheng YC, Fink U, Gombosi T, Hansen KC, Huang Z, Marshall D, Toth G. The Surface Distributions of the Production of the Major Volatile Species, H 2O, CO 2, CO and O 2, from the Nucleus of Comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as Measured by the ROSINA Double Focusing Mass Spectrometer. ICARUS 2020; 335:113421. [PMID: 31631900 PMCID: PMC6800715 DOI: 10.1016/j.icarus.2019.113421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) suite of instruments operated throughout the over two years of the Rosetta mission operations in the vicinity of comet 67P/Churyumov-Gerasimenko. It measured gas densities and composition throughout the comet's atmosphere, or coma. Here we present two-years' worth of measurements of the relative densities of the four major volatile species in the coma of the comet, H2O, CO2, CO and O2, by one of the ROSINA sub-systems called the Double Focusing Mass Spectrometer (DFMS). The absolute total gas densities were provided by the Comet Pressure Sensor (COPS), another ROSINA sub-system. DFMS is a very high mass resolution and high sensitivity mass spectrometer able to resolve at a tiny fraction of an atomic mass unit. We have analyzed the combined DFMS and COPS measurements using an inversion scheme based on spherical harmonics that solves for the distribution of potential surface activity of each species as the comet rotates, changing solar illumination, over short time intervals and as the comet changes distance from the sun and orientation of its spin axis over long time intervals. We also use the surface boundary conditions derived from the inversion scheme to simulate the whole coma with our fully kinetic Direct Simulation Monte Carlo model and calculate the production rates of the four major species throughout the mission. We compare the derived production rates with revised remote sensing observations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) as well as with published observations from the Microwave Instrument for the Rosetta Orbiter (MIRO). Finally we use the variation of the surface production of the major species to calculate the total mass loss over the mission and, for different estimates of the dust/gas ratio, calculate the variation of surface loss all over the nucleus.
Collapse
Affiliation(s)
- Michael Combi
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yinsi Shou
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolas Fougere
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Valeriy Tenishev
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Martin Rubin
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Dominique Bockelée-Morvan
- LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France
| | - Fabrizio Capaccioni
- 4INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, via del fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Yu-Chi Cheng
- LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France
| | - Uwe Fink
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Tamas Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth C Hansen
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhenguang Huang
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - David Marshall
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Gabor Toth
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Buyak B, Ternopil Volodymyr Hnatiuk National Pedagogical University, Korsun I, Matsyuk V, Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil Volodymyr Hnatiuk National Pedagogical University. Contribution of Ukrainian Scientists to the Development of Technology. SCIENCE AND INNOVATION 2019. [DOI: 10.15407/scine15.06.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Garrod RT. Simulations of ice chemistry in cometary nuclei. THE ASTROPHYSICAL JOURNAL 2019; 884:10.3847/1538-4357/ab418e. [PMID: 31806913 PMCID: PMC6894404 DOI: 10.3847/1538-4357/ab418e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The first computational model of solid-phase chemistry in cometary nuclear ices is presented. An astrochemical kinetics model, MAGICKAL, is adapted to trace the chemical evolution in multiple layers of cometary ice, over a representative period of 5 Gyr. Physical conditions are chosen appropriate for "cold storage" of the cometary nucleus in the outer Solar System, prior to any active phase. The chemistry is simulated at a selection of static temperatures in the range 5 - 60 K, while the ice is exposed to the interstellar radiation field, inducing a photo-chemistry in the outer ice layers that produces significant formation of complex organic molecules. A treatment for the chemistry resulting from cosmic-ray bombardment of the ices is also introduced into the model, along with a new formulation for low-temperature photo-chemistry. Production of simple and complex molecules to depth on the order of 10 m or more is achieved, with local fractional abundances comparable to observed values in many cases. The production of substantial amounts of O2 (and H2O2) is found, suggesting that long-term processing by high-energy cosmic rays of cometary ices in situ, over a period on the order of 1 Gyr, may be sufficient to explain the large observed abundances of O2, if the overall loss of material from the comet is limited to a depth on the order of 10 m. Entry into the inner solar system could produce a further enhancement in the molecular content of the nuclear ices that may be quantifiable using this modeling approach.
Collapse
Affiliation(s)
- Robin T Garrod
- Departments of Astronomy and Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
13
|
Cunsolo V, Foti S, Ner‐Kluza J, Drabik A, Silberring J, Muccilli V, Saletti R, Pawlak K, Harwood E, Yu F, Ciborowski P, Anczkiewicz R, Altweg K, Spoto G, Pawlaczyk A, Szynkowska MI, Smoluch M, Kwiatkowska D. Mass Spectrometry Applications. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/aaf561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Luspay-Kuti A, Mousis O, Lunine JI, Ellinger Y, Pauzat F, Raut U, Bouquet A, Mandt KE, Maggiolo R, Ronnet T, Brugger B, Ozgurel O, Fuselier SA. Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives. SPACE SCIENCE REVIEWS 2018; 214:115. [PMID: 30613113 PMCID: PMC6317742 DOI: 10.1007/s11214-018-0541-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.
Collapse
Affiliation(s)
- Adrienn Luspay-Kuti
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA
| | - Olivier Mousis
- Laboratoire d'Astrophysique de Marseille, UMR CNRS 7326, Aix-Marseille Université & OSU Pythéas, Marseille, France
| | - Jonathan I Lunine
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yves Ellinger
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 75005 Paris, France
| | - Françoise Pauzat
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 75005 Paris, France
| | - Ujjwal Raut
- Department of Space Research, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, USA
| | - Alexis Bouquet
- Department of Space Research, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Kathleen E Mandt
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA
| | - Romain Maggiolo
- Royal Institute for Space Aeronomy, 3 Avenue Circulaire, Brussels, Belgium
| | - Thomas Ronnet
- Laboratoire d'Astrophysique de Marseille, UMR CNRS 7326, Aix-Marseille Université & OSU Pythéas, Marseille, France
| | - Bastien Brugger
- Laboratoire d'Astrophysique de Marseille, UMR CNRS 7326, Aix-Marseille Université & OSU Pythéas, Marseille, France
| | - Ozge Ozgurel
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 75005 Paris, France
| | - Stephen A Fuselier
- Department of Space Research, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
16
|
Noble Gas Abundance Ratios Indicate the Agglomeration of 67P/Churyumov–Gerasimenko from Warmed-up Ice. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/2041-8213/aadf89] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Hoppe P, Rubin M, Altwegg K. Presolar Isotopic Signatures in Meteorites and Comets: New Insights from the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2018; 214:106. [PMID: 37265997 PMCID: PMC10229468 DOI: 10.1007/s11214-018-0540-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 08/20/2018] [Indexed: 06/01/2023]
Abstract
Comets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed. ESA's recent Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In this paper we review our current knowledge on the isotopic compositions of H, C, N, O, Si, S, Ar, and Xe in primitive Solar System materials studied in terrestrial laboratories and how the Rosetta data acquired with the ROSINA (Rosetta Orbiter Sensor for Ion and Neutral Analysis) and COSIMA (COmetary Secondary Ion Mass Analyzer) mass spectrometer fit into this picture. The H, Si, S, and Xe isotope data of comet 67P/CG suggest that this comet might be particularly primitive and might have preserved large amounts of unprocessed presolar matter. We address the question whether the refractory Si component of 67P/CG contains a presolar isotopic fingerprint from a nearby Type II supernova (SN) and discuss to which extent C and O isotope anomalies originating from presolar grains should be observable in dust from 67P/CG. Finally, we explore whether the isotopic fingerprint of a potential late SN contribution to the formation site of 67P/CG in the solar nebula can be seen in the volatile component of 67P/CG.
Collapse
Affiliation(s)
- Peter Hoppe
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Tanaka H, Yagasaki T, Matsumoto M. On the phase behaviors of hydrocarbon and noble gas clathrate hydrates: Dissociation pressures, phase diagram, occupancies, and equilibrium with aqueous solution. J Chem Phys 2018; 149:074502. [DOI: 10.1063/1.5044568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hideki Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Takuma Yagasaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Masakazu Matsumoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Rubin M, Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Briois C, Calmonte U, Combi M, De Keyser J, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Kopp E, Korth A, Laufer D, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Sémon T, Tzou CY, Waite JH, Wurz P. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. SCIENCE ADVANCES 2018; 4:eaar6297. [PMID: 29978041 PMCID: PMC6031375 DOI: 10.1126/sciadv.aar6297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer Double Focusing Mass Spectrometer on board the European Space Agency's Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it was found that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances. This discrepancy suggested an additional exotic component of xenon in comet 67P/Churyumov-Gerasimenko. We show that krypton also exhibits an isotopic composition close to solar. Furthermore, we found the argon to krypton and the krypton to xenon ratios in the comet to be lower than solar, which is a necessity to postulate an addition of exotic xenon in the comet.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Corresponding author.
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland
| | - Hans Balsiger
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Akiva Bar-Nun
- Department of Geophysics, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Jean-Jacques Berthelier
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, UMR 6115 CNRS–Université d’Orléans, Orléans, France
| | - Ursina Calmonte
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Michael Combi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Johan De Keyser
- Koninklijk Belgisch Instituut voor Ruimte-Aeronomie–Institut Royal Belge d’Aéronomie Spatiale, Ringlaan 3, B-1180 Brussels, Belgium
| | - Björn Fiethe
- Institute of Computer and Network Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - Stephen A. Fuselier
- Space Science Directorate, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
- University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sebastien Gasc
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Tamas I. Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Kenneth C. Hansen
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Ernest Kopp
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Axel Korth
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Diana Laufer
- Department of Geophysics, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Léna Le Roy
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Urs Mall
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Bernard Marty
- Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France
| | - Olivier Mousis
- Laboratoire d’Astrophysique de Marseille, CNRS, Aix-Marseille Université, 13388 Marseille, France
| | - Tobias Owen
- Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
| | - Henri Rème
- Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France
- Centre National d’Études Spatiales, 2 Place Maurice Quentin, 75001 Paris, France
| | - Thierry Sémon
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Chia-Yu Tzou
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Jack H. Waite
- Institute of Computer and Network Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - Peter Wurz
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland
| |
Collapse
|
20
|
O'D Alexander CM, McKeegan KD, Altwegg K. Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. SPACE SCIENCE REVIEWS 2018; 214:36. [PMID: 30842688 PMCID: PMC6398961 DOI: 10.1007/s11214-018-0474-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/09/2023]
Abstract
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed ≤4 Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter's orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn's orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.
Collapse
Affiliation(s)
- Conel M O'D Alexander
- Dept. Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA. . Tel. (202) 478 8478
| | - Kevin D McKeegan
- Department of Earth, Planetary, and Space Sciences, University of California-Los Angeles, Los Angeles, CA 90095-1567, USA.
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
| |
Collapse
|
21
|
Turner AM, Abplanalp MJ, Blair TJ, Dayuha R, Kaiser RI. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments. THE ASTROPHYSICAL JOURNAL. SUPPLEMENT SERIES 2018; 234:6. [PMID: 30842689 PMCID: PMC6398957 DOI: 10.3847/1538-4365/aa9183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron-nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov-Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
Collapse
Affiliation(s)
- Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Tyler J Blair
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Remwilyn Dayuha
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA;
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
22
|
Bassez MP. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. ORIGINS LIFE EVOL B 2017; 47:453-480. [PMID: 28361301 DOI: 10.1007/s11084-017-9534-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
Collapse
Affiliation(s)
- Marie-Paule Bassez
- Institut de Technologie, Université de Strasbourg, 72 route du Rhin, 67400, Illkirch, France.
| |
Collapse
|
23
|
Bockelée-Morvan D, Biver N. The composition of cometary ices. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0252. [PMID: 28554972 DOI: 10.1098/rsta.2016.0252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 05/25/2023]
Abstract
The chemical composition of cometary ices provides clues for the conditions of formation and evolution of the early Solar System. A large number of molecules have been identified in cometary atmospheres, from both ground-based observations and space, including in situ investigations. This includes large organic molecules, which are also observed in star-forming regions. This paper presents a review of molecular abundances measured in cometary atmospheres from remote sensing observations with ground-based and space-based telescopes. The diversity of composition observed in comet populations is presented and discussed.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- D Bockelée-Morvan
- LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, University Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
| | - N Biver
- LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, University Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
| |
Collapse
|
24
|
Taylor MGGT, Altobelli N, Buratti BJ, Choukroun M. The Rosetta mission orbiter science overview: the comet phase. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0262. [PMID: 28554981 PMCID: PMC5454230 DOI: 10.1098/rsta.2016.0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov-Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
| | - N Altobelli
- ESA/ESAC, 28692 Villanueva de la Cañada, Spain
| | - B J Buratti
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| | - M Choukroun
- JPL/California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
25
|
Marty B, Altwegg K, Balsiger H, Bar-Nun A, Bekaert DV, Berthelier JJ, Bieler A, Briois C, Calmonte U, Combi M, De Keyser J, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Hässig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Waite JH, Wurz P. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science 2017; 356:1069-1072. [DOI: 10.1126/science.aal3496] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/03/2017] [Indexed: 11/02/2022]
Affiliation(s)
- B. Marty
- Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France
| | - K. Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - H. Balsiger
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - A. Bar-Nun
- Department of Geoscience, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - D. V. Bekaert
- Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France
| | - J.-J. Berthelier
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Avenue de Neptune, 94100 Saint-Maur, France
| | - A. Bieler
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, USA
| | - C. Briois
- Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS–Université d’Orléans, France
| | - U. Calmonte
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - M. Combi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, USA
| | - J. De Keyser
- Koninklijk Belgisch Instituut voor Ruimte-Aeronomie/Institut Royal d’Aéronomie Spatiale de Belgique (BIRA-IASB), Ringlaan 3, B-1180 Brussels, Belgium
| | - B. Fiethe
- Institute of Computer and Network Engineering (IDA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - S. A. Fuselier
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - S. Gasc
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - T. I. Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, USA
| | - K. C. Hansen
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, USA
| | - M. Hässig
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - A. Jäckel
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - E. Kopp
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - A. Korth
- Max-Planck-Institut für Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - L. Le Roy
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - U. Mall
- Max-Planck-Institut für Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - O. Mousis
- Laboratoire d’Astrophysique de Marseille, CNRS, Aix Marseille Université, 13388 Marseille, France
| | - T. Owen
- Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
| | - H. Rème
- Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France
| | - M. Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - T. Sémon
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - C.-Y. Tzou
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - J. H. Waite
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - P. Wurz
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| |
Collapse
|
26
|
Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, Grimes J, Perry ME, Miller KE, Bouquet A, Lunine JI, Brockwell T, Bolton SJ. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 2017; 356:155-159. [DOI: 10.1126/science.aai8703] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/20/2017] [Indexed: 11/02/2022]
|
27
|
IMAGING OBSERVATIONS OF THE HYDROGEN COMA OF COMET 67P/CHURYUMOV–GERASIMENKO IN 2015 SEPTEMBER BY THEPROCYON/LAICA. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-3881/153/2/76] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Dehant V, Asael D, Baland RM, Baludikay BK, Beghin J, Belza J, Beuthe M, Breuer D, Chernonozhkin S, Claeys P, Cornet Y, Cornet L, Coyette A, Debaille V, Delvigne C, Deproost MH, De WInter N, Duchemin C, El Atrassi F, François C, De Keyser J, Gillmann C, Gloesener E, Goderis S, Hidaka Y, Höning D, Huber M, Hublet G, Javaux EJ, Karatekin Ö, Kodolanyi J, Revilla LL, Maes L, Maggiolo R, Mattielli N, Maurice M, McKibbin S, Morschhauser A, Neumann W, Noack L, Pham LBS, Pittarello L, Plesa AC, Rivoldini A, Robert S, Rosenblatt P, Spohn T, Storme JY, Tosi N, Trinh A, Valdes M, Vandaele AC, Vanhaecke F, Van Hoolst T, Van Roosbroek N, Wilquet V, Yseboodt M. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS. ORIGINS LIFE EVOL B 2016; 46:369-384. [PMID: 27337974 DOI: 10.1007/s11084-016-9488-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
Abstract
The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.
Collapse
Affiliation(s)
- V Dehant
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium.
| | - D Asael
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - R M Baland
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | | | - J Beghin
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - J Belza
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Universiteit Ghent (Ughent), Ghent, Belgium
| | - M Beuthe
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - D Breuer
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | | | - Ph Claeys
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Y Cornet
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - L Cornet
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - A Coyette
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - V Debaille
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - C Delvigne
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M H Deproost
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - N De WInter
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - C Duchemin
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - F El Atrassi
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - C François
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - J De Keyser
- Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium
| | - C Gillmann
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - E Gloesener
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - S Goderis
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Y Hidaka
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - D Höning
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - M Huber
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - G Hublet
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E J Javaux
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - Ö Karatekin
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - J Kodolanyi
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - L Maes
- Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium
| | - R Maggiolo
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - N Mattielli
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M Maurice
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - S McKibbin
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A Morschhauser
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - W Neumann
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - L Noack
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - L B S Pham
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - L Pittarello
- Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A C Plesa
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - A Rivoldini
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - S Robert
- Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium
| | - P Rosenblatt
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - T Spohn
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - J -Y Storme
- Université de Liège (Ulg), 4000, Liège 1, Belgium
| | - N Tosi
- Deutsche Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - A Trinh
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | - M Valdes
- Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A C Vandaele
- Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium
| | | | - T Van Hoolst
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| | | | - V Wilquet
- Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium
| | - M Yseboodt
- Royal Observatory of Belgium (ROB), 3 Avenue Circulaire, B-1180, Brussels, Belgium
| |
Collapse
|
29
|
Mandt KE, Mousis O, Luspay-Kuti A. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape. PLANETARY AND SPACE SCIENCE 2016; 130:104-109. [PMID: 31068733 PMCID: PMC6501213 DOI: 10.1016/j.pss.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.
Collapse
Affiliation(s)
- Kathleen E. Mandt
- Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA
- Depertment of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
| | - Adrienn Luspay-Kuti
- Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA
| |
Collapse
|
30
|
|
31
|
Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 2016; 526:678-81. [PMID: 26511578 DOI: 10.1038/nature15707] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 11/08/2022]
Abstract
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
Collapse
|
32
|
HIGH-TIME RESOLUTION IN SITU INVESTIGATION OF MAJOR COMETARY VOLATILES AROUND 67P/C–G AT 3.1–2.3 au MEASURED WITH ROSINA-RTOF. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/819/2/126] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/2041-8205/819/2/l33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Cessateur G, Keyser JD, Maggiolo R, Gibbons A, Gronoff G, Gunell H, Dhooghe F, Loreau J, Vaeck N, Altwegg K, Bieler A, Briois C, Calmonte U, Combi MR, Fiethe B, Fuselier SA, Gombosi TI, Hässig M, Le Roy L, Neefs E, Rubin M, Sémon T. Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov-Gerasimenko. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:804-816. [PMID: 27134807 PMCID: PMC4845638 DOI: 10.1002/2015ja022013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/01/2015] [Accepted: 12/24/2015] [Indexed: 06/04/2023]
Abstract
Observations of the green and red-doublet emission lines have previously been realized for several comets. We present here a chemistry-emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov-Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85% within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red-doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red-doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.
Collapse
Affiliation(s)
- G. Cessateur
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
| | - J. De Keyser
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
- Center for Plasma AstrophysicsKatholieke Universiteit LeuvenHeverleeBelgium
| | - R. Maggiolo
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
| | - A. Gibbons
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
- Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBrusselsBelgium
| | - G. Gronoff
- Science Directorate, Chemistry and Dynamics BranchNASA Langley Research CenterHamptonVirginiaUSA
- SSAIHamptonVirginiaUSA
| | - H. Gunell
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
| | - F. Dhooghe
- Space Physics DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
| | - J. Loreau
- Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBrusselsBelgium
| | - N. Vaeck
- Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBrusselsBelgium
| | - K. Altwegg
- Physikalisches InstitutUniversity of BernBernSwitzerland
- Center for Space and HabitabilityUniversity of BernBernSwitzerland
| | - A. Bieler
- Physikalisches InstitutUniversity of BernBernSwitzerland
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - C. Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'EspaceUMR 7328 CNRS, Université dOrléansOrléansFrance
| | - U. Calmonte
- Physikalisches InstitutUniversity of BernBernSwitzerland
| | - M. R. Combi
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - B. Fiethe
- Institute of Computer and Network Engineering (IDA)TU BraunschweigBraunschweigGermany
| | - S. A. Fuselier
- Space Science DivisionSouthwest Research InstituteSan AntonioTexasUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTexasUSA
| | - T. I. Gombosi
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - M. Hässig
- Physikalisches InstitutUniversity of BernBernSwitzerland
- Space Science DivisionSouthwest Research InstituteSan AntonioTexasUSA
| | - L. Le Roy
- Physikalisches InstitutUniversity of BernBernSwitzerland
| | - E. Neefs
- Engineering DivisionRoyal Belgian Institute for Space AeronomyBrusselsBelgium
| | - M. Rubin
- Physikalisches InstitutUniversity of BernBernSwitzerland
| | - T. Sémon
- Physikalisches InstitutUniversity of BernBernSwitzerland
| |
Collapse
|
35
|
Rubin M, Altwegg K, Dishoeck EFV, Schwehm G. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2041-8205/815/1/l11] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Mandt K, Mousis O, Marty B, Cavalié T, Harris W, Hartogh P, Willacy K. Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. SPACE SCIENCE REVIEWS 2015; 197:297-342. [PMID: 31105346 PMCID: PMC6525011 DOI: 10.1007/s11214-015-0161-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Comets play a dual role in understanding the formation and evolution of the solar system. First, the composition of comets provides information about the origin of the giant planets and their moons because comets formed early and their composition is not expected to have evolved significantly since formation. They, therefore serve as a record of conditions during the early stages of solar system formation. Once comets had formed, their orbits were perturbed allowing them to travel into the inner solar system and impact the planets. In this way they contributed to the volatile inventory of planetary atmospheres. We review here how knowledge of comet composition up to the time of the Rosetta mission has contributed to understanding the formation processes of the giant planets, their moons and small icy bodies in the solar system. We also discuss how comets contributed to the volatile inventories of the giant and terrestrial planets.
Collapse
Affiliation(s)
- K.E. Mandt
- Southwest Research Institute, San Antonio, TX, USA
| | - O. Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
| | - B. Marty
- CRPG-CNRS, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | - T. Cavalié
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - W. Harris
- University of Arizona, Tucson, AZ, USA
| | - P. Hartogh
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - K. Willacy
- Jet Propulsion Laboratory, Pasadena, CA, USA
| |
Collapse
|
37
|
Balsiger H, Altwegg K, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P, Briois C, Calmonte U, Combi M, De Keyser J, Eberhardt P, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Hässig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Waite JH, Wurz P. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. SCIENCE ADVANCES 2015; 1:e1500377. [PMID: 26601264 PMCID: PMC4643765 DOI: 10.1126/sciadv.1500377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 05/15/2023]
Abstract
Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope (36)Ar and by the (36)Ar/(38)Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.
Collapse
Affiliation(s)
- Hans Balsiger
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Corresponding author:
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Akiva Bar-Nun
- Department of Geoscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Jean-Jacques Berthelier
- LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales)/IPSL (Institut Pierre Simon Laplace)–CNRS–UPMC (University Pierre et Marie Curie)–UVSQ (Université de Versailles Saint-Quentin-en-Yvelines), 4 Avenue de Neptune, F-94100 Saint-Maur, France
| | - Andre Bieler
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Peter Bochsler
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), UMR 6115 CNRS–Université d’Orléans, 45071 Orléans, France
| | - Ursina Calmonte
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Michael Combi
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Johan De Keyser
- Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, B-1180 Brussels, Belgium
| | - Peter Eberhardt
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Björn Fiethe
- Institute of Computer and Network Engineering (IDA), Technische Universität (TU) Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
| | - Stephen A. Fuselier
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - Sébastien Gasc
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Tamas I. Gombosi
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Kenneth C. Hansen
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA
| | - Myrtha Hässig
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - Annette Jäckel
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Ernest Kopp
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Axel Korth
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Lena Le Roy
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Urs Mall
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Bernard Marty
- CRPG (Centre de Recherches Pétrographiques et Géochimiques)–CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France
| | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
| | - Tobias Owen
- Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
| | - Henri Rème
- Université de Toulouse; UPS (Université Paul Sabatier)–OMP (L’Observatoire Midi-Pyrénées); IRAP (L’Institut de Recherche en Astrophysique et Planétologie), 31400 Toulouse, France
| | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Thierry Sémon
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Chia-Yu Tzou
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - J. Hunter Waite
- Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - Peter Wurz
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| |
Collapse
|
38
|
Wright IP, Sheridan S, Barber SJ, Morgan GH, Andrews DJ, Morse AD. CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy. Science 2015; 349:aab0673. [DOI: 10.1126/science.aab0673] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- I. P. Wright
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S. Sheridan
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S. J. Barber
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - G. H. Morgan
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - D. J. Andrews
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - A. D. Morse
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
39
|
Lectez S, Simon JM, Mousis O, Picaud S, Altwegg K, Rubin M, Salazar JM. A ∼32–70 K FORMATION TEMPERATURE RANGE FOR THE ICE GRAINS AGGLOMERATED BY COMET 67 P/CHURYUMOV–GERASIMENKO. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2041-8205/805/1/l1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|