1
|
Week B, Ralph PL, Tavalire HF, Cresko WA, Bohannan BJM. Quantitative Genetics of Microbiome Mediated Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628599. [PMID: 39763787 PMCID: PMC11702574 DOI: 10.1101/2024.12.16.628599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Multicellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation. Here we begin to address this gap by extending the foundations of quantitative genetic theory to include host-associated microbes, as well as alleles of hosts, as factors that explain quantitative host trait variation. We introduce a way to partition host-associated microbiomes into componenents relevant for predicting a microbiome-mediated response to selection. We then apply our general framework to a simulation model of microbiome inheritance to illustrate principles for predicting host trait dynamics, and to generalize classical narrow and broad sense heritabilities to account for microbial effects. We demonstrate that microbiome-mediated responses to host selection can arise from various transmission modes, not solely vertical, with the contribution of non-vertical modes depending on host life history. Our work lays a foundation for integrating microbiome-mediated host variation and adaptation into our understanding of natural variation.
Collapse
|
2
|
Morris AH, Bohannan BJM. Estimates of microbiome heritability across hosts. Nat Microbiol 2024; 9:3110-3119. [PMID: 39548346 DOI: 10.1038/s41564-024-01865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Microbiomes contribute to variation in many plant and animal traits, suggesting that microbiome-mediated traits could evolve through selection on the host. However, for such evolution to occur, microbiomes must exhibit sufficient heritability to contribute to host adaptation. Previous work has attempted to estimate the heritability of a variety of microbiome attributes. Here we show that most published estimates are limited to vertebrate and plant hosts, but significant heritability of microbiome attributes has been frequently reported. This indicates that microbiomes could evolve in response to host-level selection, but studies across a wider range of hosts are necessary before general conclusions can be made. We suggest future studies focus on standardizing heritability measurements for the purpose of meta-analyses and investigate the role of the environment in contributing to heritable microbiome variation. This could have important implications for the use of microbiomes in conservation, agriculture and medicine.
Collapse
Affiliation(s)
- Andrew H Morris
- Institute of Ecology & Evolution, University of Oregon, Eugene, OR, USA.
| | | |
Collapse
|
3
|
Costantini M, Videvall E, Foster J, Medeiros M, Gillece J, Paxton E, Crampton L, Mounce H, Wang A, Fleischer R, Campana M, Reed F. The Role of Geography, Diet, and Host Phylogeny on the Gut Microbiome in the Hawaiian Honeycreeper Radiation. Ecol Evol 2024; 14:e70372. [PMID: 39416467 PMCID: PMC11480636 DOI: 10.1002/ece3.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The animal gut microbiome can have a strong influence on the health, fitness, and behavior of its hosts. The composition of the gut microbial community can be influenced by factors such as diet, environment, and evolutionary history (phylosymbiosis). However, the relative influence of these factors is unknown in most bird species. Furthermore, phylosymbiosis studies have largely focused on clades that diverged tens of millions of years ago, and little is known about the degree of gut microbiome divergence in more recent species radiations. This study explores the drivers of microbiome variation across the unique and recent Hawaiian honeycreeper radiation (Fringillidae: Drepanidinae). Fecal samples were collected from 14 extant species spanning the main islands of the Hawaiian archipelago and were sequenced using three metabarcoding markers to characterize the gut microbiome, invertebrate diet, and plant diet of Hawaiian honeycreepers. We then used these metabarcoding data and the honeycreeper host phylogeny to evaluate their relative roles in shaping the gut microbiome. Microbiome variation across birds was highly individualized; however, source island had a small but significant effect on microbiome structure. The microbiomes did not recapitulate the host phylogenetic tree, indicating that evolutionary history does not strongly influence microbiome structure in the honeycreeper clade. These results expand our understanding of the roles of diet, geography, and phylogeny on avian microbiome structure, while also providing important ecological information about the diet and gut microbiota of wild Hawaiian honeycreepers.
Collapse
Affiliation(s)
- Maria S. Costantini
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
- Department of Ecology, Evolution and Organismal BiologyBrown UniversityProvidenceRhode IslandUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRhode IslandUSA
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jeffrey T. Foster
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Matthew C. I. Medeiros
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - John D. Gillece
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Eben H. Paxton
- Pacific Island Ecosystems Research CenterU.S. Geological SurveyHawai'i National ParkHawai'iUSA
| | - Lisa H. Crampton
- Kaua'i Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaHonoluluHawai'iUSA
| | - Hanna L. Mounce
- Maui Forest Bird Recovery Project, Pacific Cooperative Studies UnitUniversity of Hawai'i at MānoaMakawaoHawai'iUSA
| | - Alex X. Wang
- Hawai'i Division of Forestry and WildlifeHiloHawai'iUSA
| | - Robert C. Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDCUSA
| | - Floyd A. Reed
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| |
Collapse
|
4
|
Whitney TL, Mallott EK, Diakiw LO, Christie DM, Ting N, Amato KR, Tecot SR, Baden AL. Ecological and genetic variables co-vary with social group identity to shape the gut microbiome of a pair-living primate. Am J Primatol 2024; 86:e23657. [PMID: 38967215 DOI: 10.1002/ajp.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Primates exhibit diverse social systems that are intricately linked to their biology, behavior, and evolution, all of which influence the acquisition and maintenance of their gut microbiomes (GMs). However, most studies of wild primate populations focus on taxa with relatively large group sizes, and few consider pair-living species. To address this gap, we investigate how a primate's social system interacts with key environmental, social, and genetic variables to shape the GM in pair-living, red-bellied lemurs (Eulemur rubriventer). Previous research on this species suggests that social interactions within groups influence interindividual microbiome similarity; however, the impacts of other nonsocial variables and their relative contributions to gut microbial variation remain unclear. We sequenced the 16S ribosomal RNA hypervariable V4-V5 region to characterize the GM from 26 genotyped individuals across 11 social groups residing in Ranomafana National Park, Madagascar. We estimated the degree to which sex, social group identity, genetic relatedness, dietary diversity, and home range proximity were associated with variation in the gut microbial communities residing in red-bellied lemurs. All variables except sex played a significant role in predicting GM composition. Our model had high levels of variance inflation, inhibiting our ability to determine which variables were most predictive of gut microbial composition. This inflation is likely due to red-bellied lemurs' pair-living, pair-bonded social system that leads to covariation among environmental, social, and genetic variables. Our findings highlight some of the factors that predict GM composition in a tightly bonded, pair-living species and identify variables that require further study. We propose that future primate microbiome studies should simultaneously consider environmental, social, and genetic factors to improve our understanding of the relationships among sociality, the microbiome, and primate ecology and evolution.
Collapse
Affiliation(s)
- Tabor L Whitney
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Laura O Diakiw
- Department of Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Diana M Christie
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York City, New York, USA
- Department of Anthropology, The Graduate Center of the City University of New York, New York City, New York, USA
- The New York Consortium in Evolutionary Primatology, New York City, New York, USA
| |
Collapse
|
5
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Liu X, Yu J, Huan Z, Xu M, Song T, Yang R, Zhu W, Jiang J. Comparing the gut microbiota of Sichuan golden monkeys across multiple captive and wild settings: roles of anthropogenic activities and host factors. BMC Genomics 2024; 25:148. [PMID: 38321370 PMCID: PMC10848473 DOI: 10.1186/s12864-024-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Captivity and artificial food provision are common conservation strategies for the endangered golden snub-nosed monkey (Rhinopithecus roxellana). Anthropogenic activities have been reported to impact the fitness of R. roxellana by altering their gut microbiota, a crucial indicator of animal health. Nevertheless, the degree of divergence in gut microbiota between different anthropogenically-disturbed (AD) R. roxellana and their counterparts in the wild has yet to be elucidated. Here, we conducted a comparative analysis of the gut microbiota across nine populations of R. roxellana spanning China, which included seven captive populations, one wild population, and another wild population subject to artificial food provision. RESULTS Both captivity and food provision significantly altered the gut microbiota. AD populations exhibited common variations, such as increased Bacteroidetes and decreased Firmicutes (e.g., Ruminococcus), Actinobacteria (e.g., Parvibacter), Verrucomicrobia (e.g., Akkermansia), and Tenericutes. Additionally, a reduced Firmicutes/Bacteroidetes ratiosuggested diminished capacity for complex carbohydrate degradation in captive individuals. The results of microbial functional prediction suggested that AD populations displayed heightened microbial genes linked to vitamin and amino acid metabolism, alongside decreased genes associated antibiotics biosynthesis (e.g., penicillin, cephalosporin, macrolides, and clavulanic acid) and secondary metabolite degradation (e.g., naphthalene and atrazine). These microbial alterations implied potential disparities in the health status between AD and wild individuals. AD populations exhibited varying degrees of microbial changes compared to the wild group, implying that the extent of these variations might serve as a metric for assessing the health status of AD populations. Furthermore, utilizing the individual information of captive individuals, we identified associations between variations in the gut microbiota of R. roxellana and host age, as well as pedigree. Older individuals exhibited higher microbial diversity, while a closer genetic relatedness reflected a more similar gut microbiota. CONCLUSIONS Our aim was to assess how anthropogenic activities and host factors influence the gut microbiota of R. roxellana. Anthropogenic activities led to consistent changes in gut microbial diversity and function, while host age and genetic relatedness contributed to interindividual variations in the gut microbiota. These findings may contribute to the establishment of health assessment standards and the optimization of breeding conditions for captive R. roxellana populations.
Collapse
Affiliation(s)
- Xuanzhen Liu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Jianqiu Yu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Zongjin Huan
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Mei Xu
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Ting Song
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Ruilin Yang
- Chengdu Zoo & Chengdu Research Institute of Wildlife, 610081, Chengdu, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| |
Collapse
|
7
|
Decaestecker E, Van de Moortel B, Mukherjee S, Gurung A, Stoks R, De Meester L. Hierarchical eco-evo dynamics mediated by the gut microbiome. Trends Ecol Evol 2024; 39:165-174. [PMID: 37863775 DOI: 10.1016/j.tree.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
The concept of eco-evolutionary (eco-evo) dynamics, stating that ecological and evolutionary processes occur at similar time scales and influence each other, has contributed to our understanding of responses of populations, communities, and ecosystems to environmental change. Phenotypes, central to these eco-evo processes, can be strongly impacted by the gut microbiome. The gut microbiome shapes eco-evo dynamics in the host community through its effects on the host phenotype. Complex eco-evo feedback loops between the gut microbiome and the host communities might thus be common. Bottom-up dynamics occur when eco-evo interactions shaping the gut microbiome affect host phenotypes with consequences at population, community, and ecosystem levels. Top-down dynamics occur when eco-evo dynamics shaping the host community structure the gut microbiome.
Collapse
Affiliation(s)
- Ellen Decaestecker
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium.
| | - Broos Van de Moortel
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Laboratory of Reproductive Genomics, KU Leuven, B-3000 Leuven, Belgium
| | - Aditi Gurung
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, B-3000 Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), D-12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
8
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
9
|
Hu J, Miller G, Shi W. Abundance, diversity, and composition of root-associated microbial communities varied with tall fescue cultivars under water deficit. Front Microbiol 2023; 13:1078836. [PMID: 36713160 PMCID: PMC9878326 DOI: 10.3389/fmicb.2022.1078836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
The plant breeding program has developed many cultivars of tall fescue (Festuca arundinacea) with low maintenance and stress tolerance. While the root-associated microbial community helps confer stress tolerance in the host plant, it is still largely unknown how the microbiota varies with plant cultivars under water stress. The study aimed to characterize drought-responsive bacteria and fungi in the roots and rhizosphere of different tall fescue cultivars. Intact grass-soil cores were collected from six cultivars grown in a field trial under no-irrigation for 3 years. Tall fescue under irrigation was also sampled from an adjacent area as the contrast. Bacterial and fungal communities in roots, rhizosphere, and bulk soil were examined for abundance, diversity, and composition using quantitative-PCR and high-throughput amplicon sequencing of 16S rRNA gene and ITS regions, respectively. Differences in microbial community composition and structure between non-irrigated and irrigated samples were statistically significant in all three microhabitats. No-irrigation enriched Actinobacteria in all three microhabitats, but mainly enriched Basidiomycota in the root endosphere and only Glomeromycota in bulk soil. Tall fescue cultivars slightly yet significantly modified endophytic microbial communities. Cultivars showing better adaptability to drought encompassed more relatively abundant Actinobacteria, Basidiomycota, or Glomeromycota in roots and the rhizosphere. PICRUSt2-based predictions revealed that the relative abundance of functional genes in roots related to phytohormones, antioxidant enzymes, and nutrient acquisition was enhanced under no-irrigation. Significant associations between Streptomyces and putative drought-ameliorating genes underscore possible mechanics for microbes to confer tall fescue with water stress tolerance. This work sheds important insight into the potential use of endophytic microbes for screening drought-adaptive genotypes and cultivars.
Collapse
|
10
|
Huang L, Chen C. Employing pigs to decipher the host genetic effect on gut microbiome: advantages, challenges, and perspectives. Gut Microbes 2023; 15:2205410. [PMID: 37122143 PMCID: PMC10153013 DOI: 10.1080/19490976.2023.2205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The gut microbiota is a complex and diverse ecosystem comprised of trillions of microbes and plays an essential role in host's immunity, metabolism, and even behaviors. Environmental and host factors drive the huge variations in the gut microbiome among individuals. Here, we summarize accumulated evidences about host genetic effect on the gut microbial compositions with emphases on the correlation between host genetic kinship and the similarity of microbial compositions, heritability estimates of microbial taxa, and identification of genomic variants associated with the gut microbiome in pigs as well as in humans. A proportion of bacterial taxa have been reported to be heritable, and numerous variants associated with the diversity of the gut microbiota or specific taxa have been identified in both humans and pigs. LCT and ABO gene have been replicated in multiple studies, and its mechanism have been elucidated clearly. We also discuss the main advantages and challenges using pigs as experimental animals in exploring host genetic effect on the gut microbial composition and provided our insights on the perspectives in this area.
Collapse
Affiliation(s)
- Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Bregman G, Lalzar M, Livne L, Bigal E, Zemah-Shamir Z, Morick D, Tchernov D, Scheinin A, Meron D. Preliminary study of shark microbiota at a unique mix-species shark aggregation site, in the Eastern Mediterranean Sea. Front Microbiol 2023; 14:1027804. [PMID: 36910211 PMCID: PMC9996248 DOI: 10.3389/fmicb.2023.1027804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.
Collapse
Affiliation(s)
- Goni Bregman
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Leigh Livne
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Danny Morick
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Yin J, Zhang Z, Zhu C, Wang T, Wang R, Ruan L. Heritability of tomato rhizobacteria resistant to Ralstonia solanacearum. MICROBIOME 2022; 10:227. [PMID: 36517876 PMCID: PMC9753271 DOI: 10.1186/s40168-022-01413-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/04/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Ralstonia solanacearum (Rs) is a soilborne phytopathogen that causes bacterial wilt and substantial yield losses in many plants, such as tomatoes. A resistant tomato cultivar can recruit a beneficial microbiome from soil to resist Rs. However, whether this recruitment is inheritable from resistant parent to progeny has not been determined. RESULTS In the present study, we investigated the rhizosphere microbiomes of tomatoes with clear kinship and different resistance against Rs. Resistant tomatoes grown with the additions of natural soil or its extract showed lower disease indexes than those grown in the sterile soil, demonstrating the importance of soil microbiome in resisting Rs. The results of 16S ribosomal RNA gene amplicon sequencing revealed that the resistant cultivars had more robust rhizosphere microbiomes than the susceptible ones. Besides, the resistant progeny HF12 resembled its resistant parent HG64 in the rhizosphere microbiome. The rhizosphere microbiome had functional consistency between HF12 and HG64 as revealed by metagenomics. Based on multi-omics analysis and experimental validation, two rhizobacteria (Sphingomonas sp. Cra20 and Pseudomonas putida KT2440) were enriched in HF12 and HG64 with the ability to offer susceptible tomatoes considerable protection against Rs. Multiple aspects were involved in the protection, including reducing the virulence-related genes of Rs and reshaping the transcriptomes of the susceptible tomatoes. CONCLUSIONS We found promising bacteria to suppress the tomato bacterial wilt in sustainable agriculture. And our research provides insights into the heritability of Rs-resistant tomato rhizobacteria, echoing the inheritance of tomato genetic material. Video Abstract.
Collapse
Affiliation(s)
- Jiakang Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziliang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengcheng Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ruihong Wang
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, 860000, Tibet, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources & Environment, Tibet Agriculture & Animal Husbandry University, Nyingchi, 860000, Tibet, China.
| |
Collapse
|
13
|
Morar N. Dynamic Aspects of Human Genetics: Is the Human Germline the Bioethical Key to Human Genetic Engineering? THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:46-49. [PMID: 36040894 DOI: 10.1080/15265161.2022.2105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
14
|
Zhang J, Liu X, Su Y, Li T. An update on T2-toxins: metabolism, immunotoxicity mechanism and human assessment exposure of intestinal microbiota. Heliyon 2022; 8:e10012. [PMID: 35928103 PMCID: PMC9344027 DOI: 10.1016/j.heliyon.2022.e10012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are naturally produced secondary metabolites or low molecular organic compounds produced by fungus with high diversification, which cause mycotoxicosis (food contamination) in humans and animals. T-2 toxin is simply one of the metabolites belonging to fungi trichothecene mycotoxin. Specifically, Trichothecenes-2 (T-2) mycotoxin of genus fusarium is considered one of the most hotspot agricultural commodities and carcinogenic compounds worldwide. There are well-known examples of salmonellosis in mice and pigs, necrotic enteritis in chickens, catfish enteric septicemia and colibacillosis in pigs as T-2 toxic agent. On the other hand, it has shown a significant reduction in the Salmonella population's aptitude in the pig intestinal tract. Although the impact of the excess Fusarium contaminants on humans in creating infectious illness is less well-known, some toxins are harmful; for example, salmonellosis and colibacillosis have been frequently observed in humans. More than 20 different metabolites are synthesized and excreted after ingestion, but the T-2 toxin is one of the most protuberant metabolites. Less absorption of mycotoxins in intestinal tract results in biotransformation of toxic metabolites into less toxic variants. In addition to these, effects of microbiota on harmful mycotoxins are not limited to intestinal tract, it may harm the other human vital organs. However, detoxification of microbiota is considered as an alternative way to decontaminate the feed for both animals and humans. These transformations of toxic metabolites depend upon the formation of metabolites. This study is complete in all perspectives regarding interactions between microbiota and mycotoxins, their mechanism and practical applications based on experimental studies.
Collapse
|
15
|
Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proc Natl Acad Sci U S A 2022; 119:e2201285119. [PMID: 35867817 PMCID: PMC9335298 DOI: 10.1073/pnas.2201285119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent demonstrations of a genetic basis for variation among hosts in the microbiome leave unresolved the question of how commonly host genetic effects influence individual microbes, and whether these effects impact host fitness. We used replicated field studies in the north and south of Sweden to map host genetic effects in microbial community networks using genome-wide association mapping. By focusing on consistent effects across sites, we found effects of genetic variation on important microbial hubs that contributed to plant fitness in a manner robust to the environment. Our results suggest that ongoing efforts to harness host genotype effects on the microbiome for agricultural purposes can be successful and highlight the value of explicitly considering abiotic variation in those efforts. Although complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes.
Collapse
|
16
|
Mueller UG, Linksvayer TA. Microbiome breeding: conceptual and practical issues. Trends Microbiol 2022; 30:997-1011. [PMID: 35595643 DOI: 10.1016/j.tim.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Microbiome breeding is a new artificial selection technique that seeks to change the genetic composition of microbiomes in order to benefit plant or animal hosts. Recent experimental and theoretical analyses have shown that microbiome breeding is possible whenever microbiome-encoded genetic factors affect host traits (e.g., health) and microbiomes are transmissible between hosts with sufficient fidelity, such as during natural microbiome transmission between individuals of social animals, or during experimental microbiome transplanting between plants. To address misunderstandings that stymie microbiome-breeding programs, we (i) clarify and visualize the corresponding elements of microbiome selection and standard selection; (ii) elucidate the eco-evolutionary processes underlying microbiome selection within a quantitative genetic framework to summarize practical guidelines that optimize microbiome breeding; and (iii) characterize the kinds of host species most amenable to microbiome breeding.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Timothy A Linksvayer
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
17
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Rudolph K, Schneider D, Fichtel C, Daniel R, Heistermann M, Kappeler PM. Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. MICROBIOME 2022; 10:28. [PMID: 35139921 PMCID: PMC8827170 DOI: 10.1186/s40168-021-01223-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Various aspects of sociality can benefit individuals' health. The host social environment and its relative contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understanding the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacommunity of an animal's social network, remains difficult since multiple processes operate simultaneously within and among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome on multiple scales among and within seven neighbouring groups of wild Verreaux's sifakas (Propithecus verreauxi) - a folivorous primate of Madagascar. RESULTS Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We found that group members share more similar gut microbiota and differ in alpha diversity, while none of the environmental predictors explained the patterns of between-group variation. Maternal relatedness played an important role in within-group microbial homogeneity and may also explain why adult group members shared the least similar gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, or faecal glucocorticoid metabolites were not detected. CONCLUSIONS Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic and social factors have a stronger impact on gut microbiome variation in this primate species. Video abstract.
Collapse
Affiliation(s)
- Katja Rudolph
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| |
Collapse
|
19
|
Bourrat P. Unifying heritability in evolutionary theory. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 91:201-210. [PMID: 34968803 DOI: 10.1016/j.shpsa.2021.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 06/14/2023]
Abstract
Despite being widely used in both biology and psychology as if it were a single notion, heritability is not a unified concept. This is also true in evolutionary theory, in which the word 'heritability' has at least two technical definitions that only partly overlap. These yield two approaches to heritability: the 'variance approach' and the 'regression approach.' In this paper, I aim to unify these two approaches. After presenting them, I argue that a general notion of heritability ought to satisfy two desiderata-'general applicability' and 'separability of the causes of resemblance.' I argue that neither the variance nor the regression approach satisfies these two desiderata concomitantly. From there, I develop a general definition of heritability that relies on the distinction between intrinsic and extrinsic properties. I show that this general definition satisfies the two desiderata. I then illustrate the potential usefulness of this general definition in the context of microbiome research.
Collapse
Affiliation(s)
- Pierrick Bourrat
- Macquarie University, Department of Philosophy, North Ryde, NSW 2109, Australia; The University of Sydney, Department of Philosophy & Charles Perkins Centre, Camperdown, NSW 2006, Australia.
| |
Collapse
|
20
|
Tracking Clostridium perfringens strains from breeding duck farm to commercial meat duck farm by multilocus sequence typing. Vet Microbiol 2022; 266:109356. [DOI: 10.1016/j.vetmic.2022.109356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
21
|
Verugina NI, Levin OS, Lyashenko EA. [The role of the gut microbiota in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:86-91. [PMID: 34870920 DOI: 10.17116/jnevro202112110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABTRACT Recently, an important role in the development of Parkinson's disease (PD) is assigned to the gastrointestinal tract and the enteral nervous system. In particular, the pathological process of PD begins in the gastrointestinal tract decades before progressing to the central nervous system. The microbiota-gut-brain axis is a two-way connecting system between the central nervous system and the gastrointestinal tract. The pathogenesis of PD can be caused or aggravated by changes in the gastrointestinal microbiota composition. It is shown that patients with PD have changes in the intestinal microbiota. A better understanding of gut-brain interactions and the role of the gut microbiota in regulation the immune response can both bring new knowledge about the pathological progression of PD, and contribute to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- N I Verugina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - E A Lyashenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
22
|
Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8008731. [PMID: 34812271 PMCID: PMC8605909 DOI: 10.1155/2021/8008731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic methods in recent years. In this paper, machine learning methods are used to analyze metagenomic sequencing data of acne, i.e., all kinds of lipids in the face skin. Firstly, lipids data of the diseased skin (DS) samples and the healthy skin (HS) samples of acne patients and the normal control (NC) samples of healthy person are, respectively, analyzed by using principal component analysis (PCA) and kernel principal component analysis (KPCA). Then, the lipids which have main influence on each kind of sample are obtained. In addition, a multiset canonical correlation analysis (MCCA) is utilized to get lipids which can differentiate the face skins of the above three samples. The experimental results show the machine learning methods can effectively analyze metagenomic sequencing data of acne. According to the results, lipids which only influence one of the three samples or the lipids which simultaneously have different degree of influence on these three samples can be used as indicators to judge skin statuses.
Collapse
|
23
|
Trinh S, Keller L, Seitz J. [The Gut Microbiome and Its Clinical Implications in Anorexia Nervosa]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:227-237. [PMID: 34668396 DOI: 10.1024/1422-4917/a000830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Gut Microbiome and Its Clinical Implications in Anorexia Nervosa Abstract. The diverse interactions of the gut microbiome with the metabolism, the immune system, and the brain of the host are increasingly becoming to the forefront of relevant research. Studies suggest a connection between an altered intestinal microbiome and somatic diseases, such as colitis ulcerosa, Crohn's disease, and diabetes, as well as mental illnesses such as anxiety and depression. Patients with anorexia nervosa (AN) also show significant changes in their gut microbiome which seem to be associated, among other things, with a different energy uptake from food, immunological and inflammatory processes, genetic predisposition, hormonal changes, and possibly increased intestinal permeability. In rats, stool transplantation from patients with AN resulted in decreased appetite and weight as well as anxious and compulsive behavior. In this review, we summarize the possible mechanisms of interaction between the microbiome and the host, and present initial findings on the microbiome in AN. Research on nutritional interventions, for example, with prebiotics and probiotics or nutritional supplements such as omega-3 fatty acids, which aim to positively influence the intestinal microbiome, could lead to additional treatment options in the therapy of patients with AN.
Collapse
Affiliation(s)
| | - Lara Keller
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik RWTH Aachen
| | - Jochen Seitz
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik RWTH Aachen
| |
Collapse
|
24
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
25
|
Soldan R, Fusi M, Cardinale M, Daffonchio D, Preston GM. The effect of plant domestication on host control of the microbiota. Commun Biol 2021; 4:936. [PMID: 34354230 PMCID: PMC8342519 DOI: 10.1038/s42003-021-02467-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Macroorganisms are colonized by microbial communities that exert important biological and ecological functions, the composition of which is subject to host control and has therefore been described as "an ecosystem on a leash". However, domesticated organisms such as crop plants are subject to both artificial selection and natural selection exerted by the agricultural ecosystem. Here, we propose a framework for understanding how host control of the microbiota is influenced by domestication, in which a double leash acts from domesticator to host and host to microbes. We discuss how this framework applies to a plant compartment that has demonstrated remarkable phenotypic changes during domestication: the seed.
Collapse
Affiliation(s)
- Riccardo Soldan
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| | - Marco Fusi
- Edinburgh Napier University, School of Applied Sciences, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| |
Collapse
|
26
|
Bubier JA, Chesler EJ, Weinstock GM. Host genetic control of gut microbiome composition. Mamm Genome 2021; 32:263-281. [PMID: 34159422 PMCID: PMC8295090 DOI: 10.1007/s00335-021-09884-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays a significant role in health and disease, and there is mounting evidence indicating that the microbial composition is regulated in part by host genetics. Heritability estimates for microbial abundance in mice and humans range from (0.05-0.45), indicating that 5-45% of inter-individual variation can be explained by genetics. Through twin studies, genetic association studies, systems genetics, and genome-wide association studies (GWAS), hundreds of specific host genetic loci have been shown to associate with the abundance of discrete gut microbes. Using genetically engineered knock-out mice, at least 30 specific genes have now been validated as having specific effects on the microbiome. The relationships among of host genetics, microbiome composition, and abundance, and disease is now beginning to be unraveled through experiments designed to test causality. The genetic control of disease and its relationship to the microbiome can manifest in multiple ways. First, a genetic variant may directly cause the disease phenotype, resulting in an altered microbiome as a consequence of the disease phenotype. Second, a genetic variant may alter gene expression in the host, which in turn alters the microbiome, producing the disease phenotype. Finally, the genetic variant may alter the microbiome directly, which can result in the disease phenotype. In order to understand the processes that underlie the onset and progression of certain diseases, future research must take into account the relationship among host genetics, microbiome, and disease phenotype, and the resources needed to study these relationships.
Collapse
Affiliation(s)
- Jason A Bubier
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | |
Collapse
|
27
|
Abstract
Autism spectrum disorder (ASD) is a remarkably complex disorder influenced by both genetic and environmental factors. Numerous microbial diversity surveys conducted over the past decade have attempted to link specific ASD biomarkers to gastrointestinal tract disturbances, but results generated across cohorts and studies remain inconsistent. This commentary discusses multidirectional interactions between the host, the microbiome, and external factors germane to autism. Recent studies posit the heritability of the gut microbiome itself, confounding attempts to discern heritable from nonheritable effectors in neurodevelopmental disorders. Elucidating the ever-evolving gut microbiome’s role in modulating the ASD phenotype will most certainly require new experimental methodologies and designs. In a recent paper published in mSystems (J. Fouquier, N. Moreno Huizar, J. Donnelly, C. Glickman, et al., mSystems e00848-20, 2021, https://doi.org/10.1128/mSystems.00848-20), the authors describe a web of interactions by collecting samples longitudinally, analyzing cross-sectional cohorts, and recording nonbinary phenotypic measurements.
Collapse
|
28
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Al-Bakri AG, Akour AA, Al-Delaimy WK. Knowledge, attitudes, ethical and social perspectives towards fecal microbiota transplantation (FMT) among Jordanian healthcare providers. BMC Med Ethics 2021; 22:19. [PMID: 33639935 PMCID: PMC7912465 DOI: 10.1186/s12910-021-00587-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fecal microbiota transplant (FMT) is a treatment modality that involves the introduction of stool from a healthy pre-screened donor into the gastrointestinal tract of a patient. It exerts its therapeutic effects by remodeling the gut microbiota and treating microbial dysbiosis-imbalance. FMT is not regulated in Jordan, and regulatory effort for FMT therapy in Jordan, an Islamic conservative country, might be faced with unique cultural, social, religious, and ethical challenges. We aimed to assess knowledge, attitudes, and perceptions of ethical and social issues of FMT use among Jordanian healthcare professionals. METHODS An observational, cross-sectional study design was used to assess knowledge, attitudes, and perceptions of ethical and social issues of FMT among 300 Jordanian healthcare professionals. RESULTS A large proportion (39 %) thought that the safety and efficacy of this technique are limited and 29.3 % thought there is no evidence to support its use. Almost all (95 %) responded that they would only perform it in certain cases, if ethically justified, and 48.3 % would use it due to treatment failure of other approaches. When reporting about reasons for not using it, 40 % reported that they would not perform it due to concerns about medical litigation, fear of infections (38 %), and lack of knowledge of long safety and efficacy (31.3 %). Interestingly, all practitioners said they would perform this procedure through the lower rather than upper gastrointestinal tract modality and the majority will protect the patient's confidentiality via double-blinding (43.3 %). For a subset of participants (n = 100), the cultural constraints that might affect the choice of performing FMT were mainly due to donor's religion, followed by dietary intake, and alcohol consumption. CONCLUSIONS Our healthcare practitioners are generally reluctant to use the FMT modality due to religious and ethical reasons but would consider it if there was a failure of other treatment and after taking into consideration many legislative, social, ethical and practice-based challenges including safety, efficacy and absence of guidelines.
Collapse
Affiliation(s)
- Amal G. Al-Bakri
- School of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The University of Jordan, Amman, 11942 Jordan
| | - Amal A. Akour
- School of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Wael K. Al-Delaimy
- Department of Family Medicine and Public Health, University of California San Diego-School of Medicine, La Jolla, USA
| |
Collapse
|
30
|
Zapién-Campos R, Sieber M, Traulsen A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput Biol 2020; 16:e1008392. [PMID: 33137114 PMCID: PMC7660904 DOI: 10.1371/journal.pcbi.1008392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/12/2020] [Accepted: 09/02/2020] [Indexed: 12/04/2022] Open
Abstract
Macroorganisms are inhabited by microbial communities that often change through the lifespan of an individual. One of the factors contributing to this change is colonization from the environment. The colonization of initially microbe-free hosts is particularly interesting, as their microbiome depends entirely on microbes of external origin. We present a mathematical model of this process with a particular emphasis on the effect of ecological drift and a finite host lifespan. Our results indicate the host lifespan becomes especially relevant for short-living organisms (e.g. Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio). In this case, alternative microbiome states (often called enterotypes), the coexistence of microbe-free and colonized hosts, and a reduced probability of colonization can be observed in our model. These results unify multiple reported observations around colonization and suggest that no selective or deterministic drivers are necessary to explain them. Microbial communities are prevalent not only in the environment but also in hosts. Although the drivers of environmental microbiomes have been studied extensively, less is known about the drivers distinguishing a host environment. Recent experimental observations have highlighted the influence of ecological drift in hosts with short lifespan, including model organisms like C. elegans, D. melanogaster and D. rerio. We have developed a theoretical model to study the effect of a finite host lifespan on relevant observables of the microbiome, including the microbial load, probability of colonization of a microbial taxon, and distribution of microbiome composition in a host population. Although we focus on a case free of any selection, our results indicate the possible coexistence of hosts with alternative microbiome composition, and to a larger extent the coexistence of colonized and microbe-free hosts. A quantitative description is provided.
Collapse
Affiliation(s)
- Román Zapién-Campos
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- * E-mail:
| |
Collapse
|
31
|
Koskella B, Bergelson J. The study of host-microbiome (co)evolution across levels of selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190604. [PMID: 32772660 PMCID: PMC7435161 DOI: 10.1098/rstb.2019.0604] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including-in the case of host-associated microbiomes-interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host-microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host-microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Suárez J, Stencel A. A part‐dependent account of biological individuality: why holobionts are individuals
and
ecosystems simultaneously. Biol Rev Camb Philos Soc 2020; 95:1308-1324. [DOI: 10.1111/brv.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Suárez
- Department of Philosophy, Logos/BIAP University of Barcelona C/Montalegre 6 Barcelona E‐08001 Spain
- Egenis – The Centre for the Study of Life Sciences University of Exeter St. German's Rd Exeter EX4 4PJ U.K
| | - Adrian Stencel
- Institute of Philosophy Jagiellonian University Kraków 31‐044 Poland
| |
Collapse
|
33
|
Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife 2020; 9:e53898. [PMID: 32254021 PMCID: PMC7138609 DOI: 10.7554/elife.53898] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rough-skinned newts (Taricha granulosa) use tetrodotoxin (TTX) to block voltage-gated sodium (Nav) channels as a chemical defense against predation. Interestingly, newts exhibit extreme population-level variation in toxicity attributed to a coevolutionary arms race with TTX-resistant predatory snakes, but the source of TTX in newts is unknown. Here, we investigated whether symbiotic bacteria isolated from toxic newts could produce TTX. We characterized the skin-associated microbiota from a toxic and non-toxic population of newts and established pure cultures of isolated bacterial symbionts from toxic newts. We then screened bacterial culture media for TTX using LC-MS/MS and identified TTX-producing bacterial strains from four genera, including Aeromonas, Pseudomonas, Shewanella, and Sphingopyxis. Additionally, we sequenced the Nav channel gene family in toxic newts and found that newts expressed Nav channels with modified TTX binding sites, conferring extreme physiological resistance to TTX. This study highlights the complex interactions among adaptive physiology, animal-bacterial symbiosis, and ecological context.
Collapse
Affiliation(s)
- Patric M Vaelli
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State UniversityDetroitUnited States
| | - Janet E Williams
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Animal and Veterinary Science, University of IdahoMoscowUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
| | | | - James A Foster
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
- Department of Biological Sciences, University of IdahoMoscowUnited States
| | - Heather L Eisthen
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
35
|
Wang Y, Kapun M, Waidele L, Kuenzel S, Bergland AO, Staubach F. Common structuring principles of the Drosophila melanogaster microbiome on a continental scale and between host and substrate. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:220-228. [PMID: 32003146 DOI: 10.1111/1758-2229.12826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/26/2023]
Abstract
The relative importance of host control, environmental effects and stochasticity in the assemblage of host-associated microbiomes is being debated. We analysed the microbiome among fly populations that were sampled across Europe by the European Drosophila Population Genomics Consortium (DrosEU). In order to better understand the structuring principles of the natural D. melanogaster microbiome, we combined environmental data on climate and food-substrate with dense genomic data on host populations and microbiome profiling. Food-substrate, temperature, and host population structure correlated with microbiome structure. Microbes, whose abundance was co-structured with host populations, also differed in abundance between flies and their substrate in an independent survey. This finding suggests common, host-related structuring principles of the microbiome on different spatial scales.
Collapse
Affiliation(s)
- Yun Wang
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Animal Ecology, Biology I, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
36
|
Angers B, Perez M, Menicucci T, Leung C. Sources of epigenetic variation and their applications in natural populations. Evol Appl 2020; 13:1262-1278. [PMID: 32684958 PMCID: PMC7359850 DOI: 10.1111/eva.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic processes manage gene expression and products in a real‐time manner, allowing a single genome to display different phenotypes. In this paper, we discussed the relevance of assessing the different sources of epigenetic variation in natural populations. For a given genotype, the epigenetic variation could be environmentally induced or occur randomly. Strategies developed by organisms to face environmental fluctuations such as phenotypic plasticity and diversified bet‐hedging rely, respectively, on these different sources. Random variation can also represent a proxy of developmental stability and can be used to assess how organisms deal with stressful environmental conditions. We then proposed the microbiome as an extension of the epigenotype of the host to assess the factors determining the establishment of the community of microorganisms. Finally, we discussed these perspectives in the applied context of conservation.
Collapse
Affiliation(s)
- Bernard Angers
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Maëva Perez
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Tatiana Menicucci
- Department of biological sciences Université de Montréal Montreal Quebec Canada
| | - Christelle Leung
- CEFE CNRS Université de Montpellier Université Paul Valéry Montpellier 3 EPHE Montpellier France
| |
Collapse
|
37
|
Capunitan DC, Johnson O, Terrill RS, Hird SM. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol Ecol 2020; 29:829-847. [PMID: 31943484 DOI: 10.1111/mec.15354] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
How the microbiome interacts with hosts across evolutionary time is poorly understood. Data sets including many host species are required to conduct comparative analyses. Here, we analyzed 142 intestinal microbiome samples from 92 birds belonging to 74 species from Equatorial Guinea, using the 16S rRNA gene. Using four definitions for microbial taxonomic units (97%OTU, 99%OTU, 99%OTU with singletons removed, ASV), we conducted alpha and beta diversity analyses. We found that raw abundances and diversity varied between the data sets but relative patterns were largely consistent across data sets. Host taxonomy, diet and locality were significantly associated with microbiomes, at generally similar levels using three distance metrics. Phylogenetic comparative methods assessed the evolutionary relationship between the microbiome as a trait of a host species and the underlying bird phylogeny. Using multiple ways of defining "microbiome traits", we found that a neutral Brownian motion model did not explain variation in microbiomes. Instead, we found a White Noise model (indicating little phylogenetic signal), was most likely. There was some support for the Ornstein-Uhlenbeck model (that invokes selection), but the level of support was similar to that of a White Noise simulation, further supporting the White Noise model as the best explanation for the evolution of the microbiome as a trait of avian hosts. Our study demonstrated that both environment and evolution play a role in the gut microbiome and the relationship does not follow a neutral model; these biological results are qualitatively robust to analytical choices.
Collapse
Affiliation(s)
- Darien C Capunitan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Oscar Johnson
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Ryan S Terrill
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
38
|
Liu Y, Weyrich LS, Llamas B. More Arrows in the Ancient DNA Quiver: Use of Paleoepigenomes and Paleomicrobiomes to Investigate Animal Adaptation to Environment. Mol Biol Evol 2020; 37:307-319. [PMID: 31638147 DOI: 10.1093/molbev/msz231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Whether and how epigenetic mechanisms and the microbiome play a role in mammalian adaptation raised considerable attention and controversy, mainly because they have the potential to add new insights into the Modern Synthesis. Recent attempts to reconcile neo-Darwinism and neo-Lamarckism in a unified theory of molecular evolution give epigenetic mechanisms and microbiome a prominent role. However, supporting empirical data are still largely missing. Because experimental studies using extant animals can hardly be done over evolutionary timescales, we propose that advances in ancient DNA techniques provide a valid alternative. In this piece, we evaluate 1) the possible roles of epigenomes and microbiomes in animal adaptation, 2) advances in the retrieval of paleoepigenome and paleomicrobiome data using ancient DNA techniques, and 3) the plasticity of either and interactions between the epigenome and the microbiome, while emphasizing that it is essential to take both into account, as well as the underlying genetic factors that may confound the findings. We propose that advanced ancient DNA techniques should be applied to a wide range of past animals, so novel dynamics in animal evolution and adaption can be revealed.
Collapse
Affiliation(s)
- Yichen Liu
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Jackrel SL, Schmidt KC, Cardinale BJ, Denef VJ. Microbiomes Reduce Their Host's Sensitivity to Interspecific Interactions. mBio 2020; 11:e02657-19. [PMID: 31964727 PMCID: PMC6974562 DOI: 10.1128/mbio.02657-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023] Open
Abstract
Bacteria associated with eukaryotic hosts can affect host fitness and trophic interactions between eukaryotes, but the extent to which bacteria influence the eukaryotic species interactions within trophic levels that modulate biodiversity and species coexistence is mostly unknown. Here, we used phytoplankton, which are a classic model for evaluating interactions between species, grown with and without associated bacteria to test whether the bacteria alter the strength and type of species interactions within a trophic level. We demonstrate that host-associated bacteria alter host growth rates and carrying capacity. This did not change the type but frequently changed the strength of host interspecific interactions by facilitating host growth in the presence of an established species. These findings indicate that microbiomes can regulate their host species' interspecific interactions. As between-species interaction strength impacts their ability to coexist, our findings show that microbiomes have the potential to modulate eukaryotic species diversity and community composition.IMPORTANCE Description of the Earth's microbiota has recently undergone a phenomenal expansion that has challenged basic assumptions in many areas of biology, including hominid evolution, human gastrointestinal and neurodevelopmental disorders, and plant adaptation to climate change. By using the classic model system of freshwater phytoplankton that has been drawn upon for numerous foundational theories in ecology, we show that microbiomes, by facilitating their host population, can also influence between-species interactions among their eukaryotic hosts. Between-species interactions, including competition for resources, has been a central tenet in the field of ecology because of its implications for the diversity and composition of communities and how this in turn shapes ecosystem functioning.
Collapse
Affiliation(s)
- Sara L Jackrel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley J Cardinale
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Papale F, Saget J, Bapteste É. Networks Consolidate the Core Concepts of Evolution by Natural Selection. Trends Microbiol 2019; 28:254-265. [PMID: 31866140 DOI: 10.1016/j.tim.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Microbiology has unraveled rich evidence of ongoing reticulate evolutionary processes and complex interactions both within and between cells. These phenomena feature real biological networks, which can logically be analyzed using network-based tools. It is thus not surprising that network sciences, a field independent from evolutionary biology and microbiology, have recently pervasively infused their methods into both fields. Importantly, network tools bring forward observations enhancing the understanding of three core evolutionary concepts: variation, fitness, and heredity. Consequently, our work shows how network sciences can enhance evolutionary theory by explaining the evolution by natural selection of a broad diversity of units of selection, while updating the popular figure of Darwin's tree of life with a comprehensive sketch of the networks of evolution.
Collapse
Affiliation(s)
- François Papale
- Departement of Philosophy, University of Montreal, Montréal, QC, H3C 3J7, Canada; Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France
| | - Jordane Saget
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France
| | - Éric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 75005 Paris, France.
| |
Collapse
|
41
|
Korenblum E, Aharoni A. Phytobiome metabolism: beneficial soil microbes steer crop plants' secondary metabolism. PEST MANAGEMENT SCIENCE 2019; 75:2378-2384. [PMID: 30973666 DOI: 10.1002/ps.5440] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 05/24/2023]
Abstract
Crops are negatively affected by abiotic and biotic stresses, however, plant-microbe cooperation allows prompt buffering of these environmental changes. Microorganisms exhibit an extensive metabolic capability to assist plants in reducing these burdens. Interestingly, beneficial microbes may also trigger, at the host side, a sequence of events from signal perception to metabolic responses leading to stress tolerance or protection against biotic threats. Although plants are well known for their vast chemical diversity, plant-microbial interactions often stimulate the production of a rich and different repertoire of metabolites in plants. The targeted microbial-plant interactions reprogramming plant metabolism represent potential means to foster various pest managements. However, the molecular mechanisms of microbial modulation of plant metabolic plasticity are still poorly understood. Here, we review an increasing amount of reports providing evidence for alterations to plant metabolism caused by beneficial microbial colonization. In addition, we highlight the vital importance of these metabolic reprograms for plants under stress erratic conditions. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Korenblum
- Plant and Environmental Science Department, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, Israel
| | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, Israel
| |
Collapse
|
42
|
Huitzil S, Sandoval-Motta S, Frank A, Aldana M. Modeling the Role of the Microbiome in Evolution. Front Physiol 2018; 9:1836. [PMID: 30618841 PMCID: PMC6307544 DOI: 10.3389/fphys.2018.01836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
There is undeniable evidence showing that bacteria have strongly influenced the evolution and biological functions of multicellular organisms. It has been hypothesized that many host-microbial interactions have emerged so as to increase the adaptive fitness of the holobiont (the host plus its microbiota). Although this association has been corroborated for many specific cases, general mechanisms explaining the role of the microbiota in the evolution of the host are yet to be understood. Here we present an evolutionary model in which a network representing the host adapts in order to perform a predefined function. During its adaptation, the host network (HN) can interact with other networks representing its microbiota. We show that this interaction greatly accelerates and improves the adaptability of the HN without decreasing the adaptation of the microbial networks. Furthermore, the adaptation of the HN to perform several functions is possible only when it interacts with many different bacterial networks in a specialized way (each bacterial network participating in the adaptation of one function). Disrupting these interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none of the networks the holobiont consists of can perform their respective functions. By considering the holobiont as a unit of selection and focusing on the adaptation of the host to predefined but arbitrary functions, our model predicts the need for specialized diversity in the microbiota. This structural and dynamical complexity in the holobiont facilitates its adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or even detrimental to the holobiont's evolution. To our knowledge, this is the first model in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem emerge as a result of coevolution. It also helps us understand the emergence of complex organisms, as they adapt more easily to perform multiple tasks than non-complex ones.
Collapse
Affiliation(s)
- Saúl Huitzil
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Sandoval-Motta
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Cátedras CONACyT, Mexico City, Mexico
| | - Alejandro Frank
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Member of El Colegio Nacional, Mexico City, Mexico
| | - Maximino Aldana
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Guo M, Chen J, Li Q, Fu Y, Fan G, Ma J, Peng L, Zeng L, Chen J, Wang Y, Lee SMY. Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life. Front Microbiol 2018; 9:3138. [PMID: 30619206 PMCID: PMC6305432 DOI: 10.3389/fmicb.2018.03138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Adult giant pandas (Ailuropoda melanoleuca) express transitional characteristics in that they consume bamboos, despite their carnivore-like digestive tracts. Their genome contains no cellulolytic enzymes; therefore, understanding the development of the giant panda gut microbiome, especially in early life, is important for decoding the rules underlying gut microbial formation, inheritance and dietary transitions. With deep metagenomic sequencing, we investigated the gut microbiomes of two newborn giant panda brothers and their parents living in Macao, China, from 2016 to 2017. Both giant panda cubs exhibited progressive increases in gut microbial richness during growth, particularly from the 6th month after birth. Enterobacteriaceae dominated the gut microbial compositions in both adult giant pandas and cubs. A total of 583 co-abundance genes (CAGs) and about 79 metagenomic species (MGS) from bacteria or viruses displayed significant changes with age. Seven genera (Shewanella, Oblitimonas, Helicobacter, Haemophilus, Aeromonas, Listeria, and Fusobacterium) showed great importance with respect to gut microbial structural determination in the nursing stage of giant panda cubs. Furthermore, 10 orthologous gene functions and 44 pathways showed significant changes with age. Of the significant pathways, 16 from Escherichia, Klebsiella, Propionibacterium, Lactobacillus, and Lactococcus displayed marked differences between parents and their cubs at birth, while 29 pathways from Escherichia, Campylobacter and Lactobacillus exhibited significant increase in cubs from 6 to 9 months of age. In addition, oxidoreductases, transferases, and hydrolases dominated the significantly changed gut microbial enzymes during the growth of giant panda cubs, while few of them were involved in cellulose degradation. The findings indicated diet-stimulated gut microbiome transitions and the important role of Enterobacteriaceae in the guts of giant panda in early life.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | | | | | - Ying Fu
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | - Liyun Zeng
- Realbio Genomics Institute, Shanghai, China
| | - Jing Chen
- Realbio Genomics Institute, Shanghai, China
| | | | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
44
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
45
|
Garcia J, Kao-Kniffin J. Microbial Group Dynamics in Plant Rhizospheres and Their Implications on Nutrient Cycling. Front Microbiol 2018; 9:1516. [PMID: 30050510 PMCID: PMC6050453 DOI: 10.3389/fmicb.2018.01516] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Plant rhizospheres encompass a dynamic zone of interactions between microorganisms and their respective plant hosts. For decades, researchers have worked to understand how these complex interactions influence different aspects of plant growth, development, and evolution. Studies of plant-microbial interactions in the root zone have typically focused on the effect of single microbial species or strains on a plant host. These studies, however, provide only a snapshot of the complex interactions that occur in the rhizosphere, leaving researchers with a limited understanding of how the complex microbiome influences the biology of the plant host. To better understand how rhizosphere interactions influence plant growth and development, novel frameworks and research methodologies could be implemented. In this perspective, we propose applying concepts in evolutionary biology to microbiome experiments for improved understanding of group-to-group and community-level microbial interactions influencing soil nutrient cycling. We also put forth simple experimental designs utilizing -omics techniques that can reveal important changes in the rhizosphere impacting the plant host. A greater focus on the components of complexity of the microbiome and how these impact plant host biology could yield more insight into previously unexplored aspects of host-microbe biology relevant to crop production and protection.
Collapse
Affiliation(s)
| | - Jenny Kao-Kniffin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R. The Effects of Captivity on the Mammalian Gut Microbiome. Integr Comp Biol 2018; 57:690-704. [PMID: 28985326 PMCID: PMC5978021 DOI: 10.1093/icb/icx090] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.
Collapse
Affiliation(s)
- Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
| | - Se Jin Song
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA.,Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, France
| | - Tiffany L Prest
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
| | - Angela M Oliverio
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
| | - Timothy M Korpita
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
| | - Alexandra Alexiev
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, CO, USA
| | | | | | - Martin Kowalewski
- National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
| | - Nico L Avenant
- Department of Mammalogy, National Museum, Bloemfontein, South Africa.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Andres Link
- Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogotá, Colombia
| | | | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark.,National High-Throughput DNA Sequencing Center, University of Copenhagen, Denmark
| | - Claudia Feh
- Association pour le cheval de Przewalski: TAKH, Station Biologique de la Tour du Valat, Arles 13200, France
| | - Ludovic Orlando
- National Scientific and Technical Research Council (CONICET), Estacion Biologica Corrientes, Argentina
| | - Joseph R Mendelson
- Zoo Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, GA, USA
| | - Jon Sanders
- Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA.,Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics and Computer Science & Engineering, University of California at San Diego, CA, USA.,Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM, Stevenson JS. Invited review: Learning from the future-A vision for dairy farms and cows in 2067. J Dairy Sci 2018; 101:3722-3741. [PMID: 29501340 DOI: 10.3168/jds.2017-14025] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
Abstract
The world's population will reach 10.4 billion in 2067, with 81% residing in Africa or Asia. Arable land available for food production will decrease to 0.15 ha per person. Temperature will increase in tropical and temperate zones, especially in the Northern Hemisphere, and this will push growing seasons and dairy farming away from arid areas and into more northern latitudes. Dairy consumption will increase because it provides essential nutrients more efficiently than many other agricultural systems. Dairy farming will become modernized in developing countries and milk production per cow will increase, doubling in countries with advanced dairying systems. Profitability of dairy farms will be the key to their sustainability. Genetic improvements will include emphasis on the coding genome and associated noncoding epigenome of cattle, and on microbiomes of dairy cattle and farmsteads. Farm sizes will increase and there will be greater lateral integration of housing and management of dairy cattle of different ages and production stages. Integrated sensors, robotics, and automation will replace much of the manual labor on farms. Managing the epigenome and microbiome will become part of routine herd management. Innovations in dairy facilities will improve the health of cows and permit expression of natural behaviors. Herds will be viewed as superorganisms, and studies of herds as observational units will lead to improvements in productivity, health, and well-being of dairy cattle, and improve the agroecology and sustainability of dairy farms. Dairy farmers in 2067 will meet the world's needs for essential nutrients by adopting technologies and practices that provide improved cow health and longevity, profitable dairy farms, and sustainable agriculture.
Collapse
Affiliation(s)
- J H Britt
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621.
| | - R A Cushman
- USDA Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE 68933
| | - C D Dechow
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - H Dobson
- School of Veterinary Science, University of Liverpool, Neston, United Kingdom CH64 7TE
| | - P Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - M F Hutjens
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - G A Jones
- Central Sands Dairy, De Pere, WI 54115-9603
| | - P S Ruegg
- Department of Animal Science, Michigan State University, East Lansing 48824-1225
| | - I M Sheldon
- Swansea University Medical School, Swansea, Wales, United Kingdom SA2 8PP
| | - J S Stevenson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-0201
| |
Collapse
|
48
|
Liew WPP, Mohd-Redzwan S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front Cell Infect Microbiol 2018; 8:60. [PMID: 29535978 PMCID: PMC5834427 DOI: 10.3389/fcimb.2018.00060] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
Collapse
Affiliation(s)
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
49
|
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME JOURNAL 2018; 12:1375-1388. [PMID: 29445132 DOI: 10.1038/s41396-018-0067-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
50
|
Ram Y, Liberman U, Feldman MW. Evolution of vertical and oblique transmission under fluctuating selection. Proc Natl Acad Sci U S A 2018; 115:E1174-E1183. [PMID: 29363602 PMCID: PMC5819448 DOI: 10.1073/pnas.1719171115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The evolution and maintenance of social learning, in competition with individual learning, under fluctuating selection have been well-studied in the theory of cultural evolution. Here, we study competition between vertical and oblique cultural transmission of a dichotomous phenotype under constant, periodically cycling, and randomly fluctuating selection. Conditions are derived for the existence of a stable polymorphism in a periodically cycling selection regime. Under such a selection regime, the fate of a genetic modifier of the rate of vertical transmission depends on the length of the cycle and the strength of selection. In general, the evolutionarily stable rate of vertical transmission differs markedly from the rate that maximizes the geometric mean fitness of the population. The evolution of rules of transmission has dramatically different dynamics from the more frequently studied modifiers of recombination, mutation, or migration.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Biology, Stanford University, Stanford, CA 94305-5020
| | - Uri Liberman
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA 94305-5020;
| |
Collapse
|