1
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
2
|
Zamorano-Abramson J, Michon M, Hernández-Lloreda MV, Aboitiz F. Multimodal imitative learning and synchrony in cetaceans: A model for speech and singing evolution. Front Psychol 2023; 14:1061381. [PMID: 37138983 PMCID: PMC10150787 DOI: 10.3389/fpsyg.2023.1061381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 05/05/2023] Open
Abstract
Multimodal imitation of actions, gestures and vocal production is a hallmark of the evolution of human communication, as both, vocal learning and visual-gestural imitation, were crucial factors that facilitated the evolution of speech and singing. Comparative evidence has revealed that humans are an odd case in this respect, as the case for multimodal imitation is barely documented in non-human animals. While there is evidence of vocal learning in birds and in mammals like bats, elephants and marine mammals, evidence in both domains, vocal and gestural, exists for two Psittacine birds (budgerigars and grey parrots) and cetaceans only. Moreover, it draws attention to the apparent absence of vocal imitation (with just a few cases reported for vocal fold control in an orangutan and a gorilla and a prolonged development of vocal plasticity in marmosets) and even for imitation of intransitive actions (not object related) in monkeys and apes in the wild. Even after training, the evidence for productive or "true imitation" (copy of a novel behavior, i.e., not pre-existent in the observer's behavioral repertoire) in both domains is scarce. Here we review the evidence of multimodal imitation in cetaceans, one of the few living mammalian species that have been reported to display multimodal imitative learning besides humans, and their role in sociality, communication and group cultures. We propose that cetacean multimodal imitation was acquired in parallel with the evolution and development of behavioral synchrony and multimodal organization of sensorimotor information, supporting volitional motor control of their vocal system and audio-echoic-visual voices, body posture and movement integration.
Collapse
Affiliation(s)
- José Zamorano-Abramson
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: José Zamorano-Abramson,
| | - Maëva Michon
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
- Maëva Michon,
| | - Ma Victoria Hernández-Lloreda
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Aboitiz
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
| |
Collapse
|
3
|
Burkart JM, Adriaense JEC, Brügger RK, Miss FM, Wierucka K, van Schaik CP. A convergent interaction engine: vocal communication among marmoset monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210098. [PMID: 35876206 PMCID: PMC9315454 DOI: 10.1098/rstb.2021.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 09/14/2023] Open
Abstract
To understand the primate origins of the human interaction engine, it is worthwhile to focus not only on great apes but also on callitrichid monkeys (marmosets and tamarins). Like humans, but unlike great apes, callitrichids are cooperative breeders, and thus habitually engage in coordinated joint actions, for instance when an infant is handed over from one group member to another. We first explore the hypothesis that these habitual cooperative interactions, the marmoset interactional ethology, are supported by the same key elements as found in the human interaction engine: mutual gaze (during joint action), turn-taking, volubility, as well as group-wide prosociality and trust. Marmosets show clear evidence of these features. We next examine the prediction that, if such an interaction engine can indeed give rise to more flexible communication, callitrichids may also possess elaborate communicative skills. A review of marmoset vocal communication confirms unusual abilities in these small primates: high volubility and large vocal repertoires, vocal learning and babbling in immatures, and voluntary usage and control. We end by discussing how the adoption of cooperative breeding during human evolution may have catalysed language evolution by adding these convergent consequences to the great ape-like cognitive system of our hominin ancestors. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- J. M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| | - J. E. C. Adriaense
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R. K. Brügger
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F. M. Miss
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Wierucka
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| |
Collapse
|
4
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
5
|
De Gregorio C, Carugati F, Estienne V, Valente D, Raimondi T, Torti V, Miaretsoa L, Ratsimbazafy J, Gamba M, Giacoma C. Born to sing! Song development in a singing primate. Curr Zool 2021; 67:585-596. [PMID: 34805535 PMCID: PMC8598991 DOI: 10.1093/cz/zoab018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
In animal vocal communication, the development of adult-like vocalization is fundamental to interact appropriately with conspecifics. However, the factors that guide ontogenetic changes in the acoustic features remain poorly understood. In contrast with a historical view of nonhuman primate vocal production as substantially innate, recent research suggests that inheritance and physiological modification can only explain some of the developmental changes in call structure during growth. A particular case of acoustic communication is the indris' singing behavior, a peculiar case among Strepsirrhine primates. Thanks to a decade of intense data collection, this work provides the first long-term quantitative analysis on song development in a singing primate. To understand the ontogeny of such a complex vocal output, we investigated juvenile and sub-adult indris' vocal behavior, and we found that young individuals started participating in the chorus years earlier than previously reported. Our results indicated that spectro-temporal song parameters underwent essential changes during growth. In particular, the age and sex of the emitter influenced the indris' vocal activity. We found that frequency parameters showed consistent changes across the sexes, but the temporal features showed different developmental trajectories for males and females. Given the low level of morphological sexual dimorphism and the marked differences in vocal behavior, we hypothesize that factors like social influences and auditory feedback may affect songs' features, resulting in high vocal flexibility in juvenile indris. This trait may be pivotal in a species that engages in choruses with rapid vocal turn-taking.
Collapse
Affiliation(s)
- Chiara De Gregorio
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Filippo Carugati
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Vittoria Estienne
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Longondraza Miaretsoa
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Jonah Ratsimbazafy
- Groupe d’Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779 – Antananarivo 101, Madagascar
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, Torino 10125, Italy
| |
Collapse
|
6
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
7
|
Desjonquères C, Maliszewski J, Rodríguez RL. Juvenile social experience and practice have a switch-like influence on adult mate preferences in an insect. Evolution 2021; 75:1106-1116. [PMID: 33491177 DOI: 10.1111/evo.14180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Social causes of variation in animal communication systems have important evolutionary consequences, including speciation. The relevance of these effects depends on how widespread they are among animals. There is evidence for such effects not only in birds and mammals, but also frogs and some insects and spiders. Here, we analyze the social ontogeny of adult mate preferences in an insect, Enchenopa treehoppers. In these communal plant-feeding insects, individuals reared in isolation or in groups differ in their mate preferences, and the group-reared phenotype can be rescued by playbacks to isolation-reared individuals. We ask about the relative role of signaling experience and signaling practice during ontogeny on the development of adult mating preferences in Enchenopa females. Taking advantage of variation in the signal experience and signaling practice of isolation-reared individuals, we find switch-like effects for experience and practice on female mate preference phenotypes, with individuals having some experience and practice as juveniles best rescuing the group-reared preference phenotype. We discuss how understanding the nature and distribution of social-ontogenetic causes of variation in mate preferences and other sexual traits will bring new insights into how within- and between-population variation influences the evolution of communication systems.
Collapse
Affiliation(s)
- Camille Desjonquères
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jak Maliszewski
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Rafael Lucas Rodríguez
- Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Desjonquères C, Speck B, Rodríguez RL. Signalling interactions during ontogeny are a cause of social plasticity in Enchenopa treehoppers (Hemiptera: Membracidae). Behav Processes 2019; 166:103887. [DOI: 10.1016/j.beproc.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
|
9
|
|
10
|
Chi T, Liu M, Tan X, Sun K, Jin L, Feng J. Syllable merging during ontogeny in Hipposideros larvatus. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1610906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tingting Chi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Muxun Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiao Tan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Desjonquères C, Maliszewski J, Lewandowski EN, Speck B, Rodríguez RL. Social ontogeny in the communication system of an insect. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Marmoset Monkey Vocal Communication: Common Developmental Trajectories With Humans and Possible Mechanisms. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2018. [DOI: 10.1002/9781119461746.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ghazanfar AA, Liao DA. Constraints and flexibility during vocal development: Insights from marmoset monkeys. Curr Opin Behav Sci 2017; 21:27-32. [PMID: 29868626 DOI: 10.1016/j.cobeha.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human vocal development is typically conceived as a sequence of two processes-an early maturation phase where vocal sounds change as a function of body growth ("constraints") followed by a period during which social experience can influence vocal sound production ("flexibility"). However, studies of other behaviors (e.g., locomotion) reveal that growth and experience are interactive throughout development. As it turns out, vocal development is not exceptional; it is also the on-going result of the interplay between an infant's growing biological system of production (the body and the nervous system) and experience with caregivers. Here, we review work on developing marmoset monkeys - a species that exhibits strikingly similar vocal developmental processes to those of prelinguistic human infants - that demonstrates how constraints and flexibility are parallel and interactive processes.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314.,Department of Psychology, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314
| | - Diana A Liao
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314
| |
Collapse
|
14
|
Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys. Curr Biol 2017; 27:1844-1852.e6. [DOI: 10.1016/j.cub.2017.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
|
15
|
Opitz JM, Pavone L, Corsello G. The power of stories in Pediatrics and Genetics. Ital J Pediatr 2016; 42:35. [PMID: 27048440 PMCID: PMC4822303 DOI: 10.1186/s13052-016-0241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022] Open
Abstract
On the occasion of the opening ceremony of the 43rd Sicilian Congress of Pediatrics, linked with Italian Society of Pediatrics SIP, SIN, SIMEUP, SIAIP and SINP, held in Catania in November 2015, the Organizing Committee dedicated a tribute to Professor John Opitz and invited him to give a Masters Lecture for the attendees at the Congress. The theme expounded was “Storytelling in Pediatrics and Genetics: Lessons from Aesop and from Mendel”. The contribution of John Opitz to the understanding of pediatric clinical disorders and genetic anomalies has been extremely relevant. The interests of Professor John Opitz are linked not only to genetic disorders but also extend to historical medicine, history of the literature and to human evolution. Due to his exceptional talent, combined with his specific interest and basal knowledge in the genetic and pediatric fields, he is widely credited to be one of the best pediatricians in the world.
Collapse
Affiliation(s)
- John M Opitz
- Pediatrics (Medical Genetics), Pediatric Pathology, Human Genetics, Obstetrics and Gynecology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lorenzo Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Università di Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care, Università di Palermo, Via Alfonso Giordano, 3, 90127, Palermo, Italy.
| |
Collapse
|