1
|
Krishnan J, Sahib K, Nair KG, T AJ, Paul RR. Advances in the Synthetic Utility of Difluorocarbene Generated from TMSCF 3 (Ruppert-Prakash Reagent) and Its Derivatives. CHEM REC 2025; 25:e202400243. [PMID: 40072316 DOI: 10.1002/tcr.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/17/2025] [Indexed: 05/13/2025]
Abstract
Organofluorine compounds are of pivotal significance particularly, in drug and agrochemical industries and different strategies have been designed for their synthesis. The last two decades witnessed the emergence of difluorocarbene as an efficient synthetic tool, providing easy access to organofluorine compounds. This review summarises the reactions of difluorocarbene generated from Ruppert-Prakash reagent (TMSCF3) and its derivatives TMSCF2Cl and TMSCF2Br. Among the various fluorination techniques available, the difluorocarbene chemistry offers a cost effective and easy procedure, opening avenue to a large number of organofluorine compounds. This review details the developments in the utility of difluorocarbene generated from TMSCF3 and its derivatives, till date.
Collapse
Affiliation(s)
- Jagadeesh Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Kaja Sahib
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Keerthana G Nair
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Arshad Jouhar T
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College Kottayam (Autonomous), Kerala, 686001, India
| |
Collapse
|
2
|
Chen SJ, Lin JH, Wu JM, Li YH, Dong BL, Chen GS, Liu YL. Visible-light-induced difunctionalization of β-CF 2H-1,3-enynes to access CF 2H-containing all-carbon quaternary centers. Org Biomol Chem 2025; 23:4069-4073. [PMID: 40192472 DOI: 10.1039/d5ob00425j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
An efficient and regioselective method for the introduction of a highly functionalized CF2H-containing quaternary carbon center at the C-2 position of pyridines has been described. This method proceeds via [3 + 2] cycloaddition of β-CF2H-1,3-enynes with pyridinium ylides, followed by a light-induced aza-Norrish II rearrangement. The salient features of this present protocol include mild reaction conditions, operational simplicity, and excellent C2 site selectivity. Furthermore, the synthetic utility of this method is demonstrated by the downstream functionalization of the resulting products.
Collapse
Affiliation(s)
- Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jin-Hao Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jia-Ming Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - You-Hong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Bao-Le Dong
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Li Y, Liu XB, Sham V, Logvinenko I, Xue JH, Wu JY, Fu JL, Lin S, Liu Y, Li Q, Mykhailiuk PK, Wang H. Saturated F 2-Rings from Alkenes. Angew Chem Int Ed Engl 2025; 64:e202422899. [PMID: 39809698 DOI: 10.1002/anie.202422899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
A general method to convert simple exocyclic alkenes into saturated F2-rings has been developed. The reaction involves reagent C6F5I(OAc)2. The reaction efficiently works on the mg-, g-, and even multigram scale.
Collapse
Affiliation(s)
- Yin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Bin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Vadym Sham
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, 5 Akademik Kukhar Street, 02094, Kyiv, Ukraine
| | - Ivan Logvinenko
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | - Jiang-Hao Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jun-Yunzi Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jia-Luo Fu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Van Hoof M, Mayer RJ, Moran J, Lebœuf D. Triflic Acid-Catalyzed Dehydrative Amination of 2-Arylethanols with Weak N-Nucleophiles in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2025; 64:e202417089. [PMID: 39431992 DOI: 10.1002/anie.202417089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The catalytic deoxyamination of readily available 2-arylethanols offers an appealing, simple, and straightforward means of accessing β-(hetero)arylethylamines of biological interest. Yet, it currently represents a great challenge to synthetic chemistry. In most cases, the alcohol has to be either pre-activated in situ or converted into a reactive carbonyl intermediate, limiting the substrate scope for some methods. Examples of direct dehydrative amination of 2-arylethanols are thus still scarce. Here, we describe a catalytic protocol based on the synergy of triflic acid and hexafluoroisopropanol, which enables the direct and stereospecific amination of a broad array of 2-arylethanols, and does not require any pre-activation of the alcohol. This approach yields high value-added products incorporating sulfonamide, amide, urea, and aniline functionalities. In addition, this approach was applied to the sulfidation of 2-arylethanols. Mechanistic experiments and DFT computations indicate the formation of phenonium ions as key intermediates in the reaction.
Collapse
Affiliation(s)
- Max Van Hoof
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Robert J Mayer
- Technical University of Munich, School of Natural Sciences, Department Chemie, 85748, Garching, Germany
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), CNRS UMR 7042, Université de Strasbourg, Université de Haute-Alsace, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
5
|
Liu P, He Y, Jiang CH, Ren WR, Jin RX, Zhang T, Chen WX, Nie X, Wang XS. CF 2H-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines. Nat Commun 2025; 16:599. [PMID: 39799146 PMCID: PMC11724884 DOI: 10.1038/s41467-025-55912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity. Leveraging the unique fluorine effect, we design and synthesize a radical CF₂H synthon by incorporating isoindolinone into alkyl halides for asymmetric radical transformation. Here, we report an efficient strategy for the asymmetric construction of carbon stereocenters featuring a difluoromethyl group via nickel-catalyzed Negishi cross-coupling. This approach demonstrates mild reaction conditions and excellent enantioselectivity. Given that optically pure difluoromethylated amines and isoindolinones are key structural motifs in bioactive compounds, this strategy offers a practical solution for the efficient synthesis of CF₂H-containing chiral drug-like molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yan He
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Hui Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Ran Ren
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wang-Xuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Wang X, Li L, Du Z, Han X, You Y. Electrochemical Dichlorinative Cyclization of 1, n-Enynes by 4-Iodotoluene Catalysis. Org Lett 2024; 26:10583-10588. [PMID: 39606953 DOI: 10.1021/acs.orglett.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An electrochemical approach for the indirect oxidative generation of hypervalent iodoarene as a reaction catalyst has been reported. The reaction proceeds first from the generation of active Cl species by electro-oxidation, followed by oxidative transfer to generate ArICl2, which subsequently reacts with enynes to achieve cyclization. This protocol provides a simple and green method for accessing dichlorinative cyclization products in high yields with good selectivity.
Collapse
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Longji Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University and Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou 450052, China
| | - Zhongjian Du
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University and Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou 450052, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| |
Collapse
|
7
|
Manchado A, García-González Á, Nieto CT, Díez D, Garrido NM. Asymmetric Synthesis of 2-Arylethylamines: A Metal-Free Review of the New Millennium. Molecules 2024; 29:5729. [PMID: 39683888 DOI: 10.3390/molecules29235729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
2-Arylethylamines are presented in several natural bioactive compounds, as well as in nitrogen-containing drugs. Their ability to surpass the blood-brain barrier makes this family of compounds of especial interest in medicinal chemistry. Asymmetric methodologies towards the synthesis of 2-arylethylamine motives are of great interest due to the challenges they may present. Thus, a concise metal-free review presenting recent advances in the asymmetric synthesis of 2-arylethylamines is presented, covering last-millennium studies, considering different methodologies towards the aforementioned motif, including chiral induction, organocatalysis, organophotocatalysis and enzymatic catalysis.
Collapse
Affiliation(s)
- Alejandro Manchado
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain
| | - Ángel García-González
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain
| | - Carlos T Nieto
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain
| | - David Díez
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain
| | - Narciso M Garrido
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain
| |
Collapse
|
8
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 PMCID: PMC11975424 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
9
|
Song H, Wang Q, Wang X, Pan Y, Li J, Duan XH, Hu M. Synthesis of α,α-Difluoromethylene Amines from Thioamides Using Silver Fluoride. J Org Chem 2024; 89:14341-14347. [PMID: 39292538 DOI: 10.1021/acs.joc.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We developed a mild, rapid process employing AgF and thioamides to produce α,α-difluoromethylene amines efficiently. This method exhibited remarkable tolerance toward various functional groups present in N-sulfonylthioamides, thereby broadening the scope of difluoromethylene sulfonamides through a straightforward approach. Additionally, we applied this approach to synthesize various perfluoroalkyl amines, establishing practical synthetic routes for exploring these compounds in pharmaceutical chemistry and materials science.
Collapse
Affiliation(s)
- Haixia Song
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Pan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Teo WJ, Esteve Guasch J, Jiang L, Li B, Suero MG. Rh-Catalyzed Enantioselective Single-Carbon Insertion of Alkenes. J Am Chem Soc 2024; 146:21837-21846. [PMID: 39058396 PMCID: PMC11311232 DOI: 10.1021/jacs.4c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The interest in the discovery and development of skeletal editing processes that selectively insert, exchange, or delete an atom in organic molecules has significantly increased over the last few years. However, processes of this class that proceed through the creation of a chiral center with high asymmetric induction have been largely unexplored. Herein, we report an enantioselective single-carbon insertion in aryl- and alkyl-substituted alkenes mediated by a catalytically generated chiral Rh-carbynoid and phosphate nucleophiles that produce enantioenriched allylic phosphates (enantiomeric ratio (e.r.) = 89.5:10.5-99.5:0.5). The key to the process was a diastereo- and enantioselective cyclopropanation of the alkene with a chiral Rh-carbynoid and the formation of a transient cyclopropyl-I(III) intermediate. The addition of the phosphate nucleophile provided a cyclopropyl-I(III)-phosphate intermediate that undergoes disrotatory ring opening following the Woodward-Hoffmann-DePuy rules. This process led to a chiral intimate allyl cation-phosphate pair that evolved with excellent enantioretention. The evidence of an SN1-like SNi mechanism is provided by linear free-energy relationship studies, kinetic isotope effects, X-ray crystallography, and control experiments. We demonstrated the utility of the enantioenriched allylic phosphates in late-stage N-H allylations of natural products and drug molecules and in cross-coupling reactions that occurred with excellent enantiospecificity.
Collapse
Affiliation(s)
- Wei Jie Teo
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Josep Esteve Guasch
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo, 1, Tarragona 43007, Spain
| | - Liyin Jiang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Bowen Li
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Wloch M, Sun Z, Valzer E, Pouységu L, Quideau S. Total Synthesis of the Bacterial ortho-Quinol (+)-Strepantibin A through Iodyl-Type λ 5-Iodane-Promoted Asymmetric Hydroxylative Phenol Dearomatization. Org Lett 2024; 26:6086-6091. [PMID: 38990158 DOI: 10.1021/acs.orglett.4c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An enantioselective synthesis of the bacterial metabolite (+)-strepantibin A, a novel inhibitor of the hexokinase II (HK2) in cancer cells, is described. Its monomethylated resorcinolic para-terphenyl core was conveniently prepared through a Danheiser benzannulation. The elaboration of its ortho-quinolic chiral center was accomplished by relying on an iodyl-promoted regio- and enantioselective hydroxylative dearomatization. The olefinic side-chain of the resulting ortho-quinol was finally oxygenated under Wacker-type conditions to generate the propanone appendage of (+)-strepantibin A.
Collapse
Affiliation(s)
- Morgan Wloch
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Zhaozhao Sun
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Emmanuel Valzer
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Laurent Pouységu
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Stéphane Quideau
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
12
|
Dean AC, Randle EH, Lacey AJD, Marczak Giorio GA, Doobary S, Cons BD, Lennox AJJ. Alkene 1,3-Difluorination via Transient Oxonium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404666. [PMID: 38695434 DOI: 10.1002/anie.202404666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 06/21/2024]
Abstract
The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.
Collapse
Affiliation(s)
- Alice C Dean
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - E Harvey Randle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Andrew J D Lacey
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Sayad Doobary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | |
Collapse
|
13
|
Yuan GC, Gao FL, Liu KW, Li M, Lin Y, Ye KY. Batch and Continuous-Flow Electrochemical Geminal Difluorination of Indeno[1,2- c]furans. Org Lett 2024; 26:6059-6064. [PMID: 38968416 DOI: 10.1021/acs.orglett.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
An electrochemical gem-difluorination of indeno[1,2-c]furans using commercially available and easy-to-use triethylamine trihydrofluoride as both the electrolyte and fluorinating agent was developed. Remarkably, different reaction pathways of indeno[1,2-c]furans, i.e., paired electrolysis and net oxidation, are operative in a batch reactor and a continuous-flow microreactor to afford the corresponding gem-difluorinated indanones and indenones, respectively.
Collapse
Affiliation(s)
- Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fang-Ling Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kang-Wei Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minggang Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
15
|
Ruyet L, Roblick C, Häfliger J, Wang ZX, Stoffels TJ, Daniliuc CG, Gilmour R. Catalytic Ring Expanding Difluorination: An Enantioselective Platform to Access β,β-Difluorinated Carbocycles. Angew Chem Int Ed Engl 2024; 63:e202403957. [PMID: 38482736 DOI: 10.1002/anie.202403957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Cyclic β,β-difluoro-carbonyl compounds have a venerable history as drug discovery leads, but limitations in the synthesis arsenal continue to impede chemical space exploration. This challenge is particularly acute in the arena of fluorinated medium rings where installing the difluoromethylene unit subtly alters the ring conformation by expanding the internal angle (∠C-CF2-C>∠C-CH2-C): this provides a handle to modulate physicochemistry (e.g. pKa). To reconcile this disparity, a highly modular ring expansion has been devised that leverages simple α,β-unsaturated esters and amides, and processes them to one-carbon homologated rings with concomitant geminal difluorination (6 to 10 membered rings, up to 95 % yield). This process is a rare example of the formal difluorination of an internal alkene and is enabled by sequential I(III)-enabled O-activation. Validation of enantioselective catalysis in the generation of unprecedented medium ring scaffolds is reported (up to 93 : 7 e.r.) together with X-ray structural analyses and product derivatization.
Collapse
Affiliation(s)
- Louise Ruyet
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Roblick
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias Jürgen Stoffels
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
16
|
Longuet M, Vitse K, Martin-Mingot A, Michelet B, Guégan F, Thibaudeau S. Determination of the Hammett Acidity of HF/Base Reagents. J Am Chem Soc 2024; 146:12167-12173. [PMID: 38626381 DOI: 10.1021/jacs.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Harnessing the acidity of HF/base reagents is of paramount importance to improve the efficiency and selectivity of fluorination reactions. Yet, no general method has been reported to evaluate their acidic properties, and experimental designs are still relying on a trial-and-error approach. We report a new method based on 19F NMR spectroscopy which allows highly sensitive measures and short-time analyses. Advantageously, the basic properties of the indicators can be determined upstream by DFT calculations, affording a simple yet robust semiempirical approach. In particular, the indicators used in this study were rationally designed to fit on the conceptually appealing and commonly used Hammett scale. This method has been applied to commercially available and recently developed HF/base reagents.
Collapse
Affiliation(s)
- Mélissa Longuet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Kassandra Vitse
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Agnès Martin-Mingot
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Bastien Michelet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Frédéric Guégan
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Sébastien Thibaudeau
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| |
Collapse
|
17
|
Qiu W, Liao L, Xu X, Huang H, Xu Y, Zhao X. Catalytic 1,1-diazidation of alkenes. Nat Commun 2024; 15:3632. [PMID: 38684686 PMCID: PMC11058774 DOI: 10.1038/s41467-024-47854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to well-developed catalytic 1,2-diazidation of alkenes to produce vicinal diazides, the corresponding catalytic 1,1-diazidation of alkenes to yield geminal diazides has not been realized. Here we report an efficient approach for catalytic 1,1-diazidation of alkenes by redox-active selenium catalysis. Under mild conditions, electron-rich aryl alkenes with Z or E or Z/E mixed configuration can undergo migratory 1,1-diazidation to give a series of functionalized monoalkyl or dialkyl geminal diazides that are difficult to access by other methods. The method is also effective for the construction of polydiazides. The formed diazides are relatively safe by TGA-DSC analysis and impact sensitivity tests, and can be easily converted into various valuable molecules. In addition, interesting reactivity that geminal diazides give valuable molecules via the geminal diazidomethyl moiety as a formal leaving group in the presence of Lewis acid is disclosed. Mechanistic studies revealed that a selenenylation-deselenenylation followed by 1,2-aryl migration process is involved in the reactions, which provides a basis for the design of new reactions.
Collapse
Affiliation(s)
- Wangzhen Qiu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xinghua Xu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yang Xu
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
18
|
Kitamura T, Oyamada J, Higashi M, Kishikawa Y. Molecular Iodine as a Catalyst for Alkene Difluorination. J Org Chem 2024; 89:5896-5900. [PMID: 38593206 DOI: 10.1021/acs.joc.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The difluorination reaction of alkenes catalyzed by molecular iodine was revealed for the first time. This difluorination reaction affords a simple and practical experimental method and can be applied to many aliphatic and aromatic alkenes bearing synthetically useful functional groups, such as ester, amide, hydroxy, and aryl groups. Preliminary mechanistic studies of this alkene difluorination suggest the existence of two catalytic cycles: the IF-driven cycle and the catalytic cycle by the IF adduct.
Collapse
Affiliation(s)
- Tsugio Kitamura
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Juzo Oyamada
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | | | | |
Collapse
|
19
|
Zeng T, Li Y, Wang R, Zhu J. Temperature-Dependent Divergent Cyclopentadiene Synthesis through Cobalt-Catalyzed C-C Activation of Cyclopropenes. Org Lett 2024. [PMID: 38621189 DOI: 10.1021/acs.orglett.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We report a temperature-dependent divergent approach to synthesize multisubstituted cyclopentadienes through cobalt-catalyzed carbon-carbon (C-C) bond activation of cyclopropenes and ring expansion with internal alkynes. By employing different heating procedures, two cyclopentadiene substitution isomers were efficiently and selectively constructed. This reaction does not require preactivation of the metal catalyst or additional reducing reagents. Preliminary mechanistic investigations suggest that the key steps are oxidative addition of the cyclopropene to cobalt catalyst, followed by alkyne insertion and 1,5-ester shift.
Collapse
Affiliation(s)
- Tianlong Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ruobin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
20
|
Singh V, Kumar D, Mishra BK, Tiwari B. Iodobenzene-Catalyzed Synthesis of Fully Functionalized NH-Pyrazoles and Isoxazoles from α,β-Unsaturated Hydrazones and Oximes via 1,2-Aryl Shift. Org Lett 2024; 26:385-389. [PMID: 38150709 DOI: 10.1021/acs.orglett.3c04057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
An iodine(III)-catalyzed general method for the synthesis of fully functionalized NH-pyrazoles and isoxazoles from α,β-unsaturated hydrazones and oximes, respectively, via cyclization/1,2-aryl shift/aromatization/detosylation, has been developed. The reaction progresses through an anti-Baldwin 5-endo-trig cyclization. It gives direct access to an advanced intermediate for the preparation of valdecoxib and parecoxib, drugs used for COX-inhibition. In addition, a method for N-alkynylation of pyrazoles has also been developed in the presence of TIPS-EBX.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
21
|
Feng Q, Liu CX, Wang Q, Zhu J. Palladium-Based Dyotropic Rearrangement Enables A Triple Functionalization of Gem-Disubstituted Alkenes: An Unusual Fluorolactonization Reaction. Angew Chem Int Ed Engl 2024; 63:e202316393. [PMID: 37986261 DOI: 10.1002/anie.202316393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| |
Collapse
|
22
|
Zhao T, Xu H, Tian Y, Tang X, Dang Y, Ge S, Ma J, Zhang F. Copper-Catalyzed Regio- and Enantioselective Hydroboration of Difluoroalkyl-Substituted Internal Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304194. [PMID: 37880870 PMCID: PMC10724385 DOI: 10.1002/advs.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Catalytic asymmetric hydroboration of fluoroalkyl-substituted alkenes is a straightforward approach to access chiral small molecules possessing both fluorine and boron atoms. However, enantioselective hydroboration of fluoroalkyl-substituted alkenes without fluorine elimination has been a long-standing challenge in this field. Herein, a copper-catalyzed hydroboration of difluoroalkyl-substituted internal alkenes with high levels of regio- and enantioselectivities is reported. The native carbonyl directing group, copper hydride system, and bisphosphine ligand play crucial roles in suppressing the undesired fluoride elimination. This atom-economic protocol provides a practical synthetic platform to obtain a wide scope of enantioenriched secondary boronates bearing the difluoromethylene moieties under mild conditions. Synthetic applications including functionalization of biorelevant molecules, versatile functional group interconversions, and preparation of difluoroalkylated Terfenadine derivative are also demonstrated.
Collapse
Affiliation(s)
- Tao‐Qian Zhao
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Hui Xu
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yu‐Chen Tian
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Xiaodong Tang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yanfeng Dang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Jun‐An Ma
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Fa‐Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| |
Collapse
|
23
|
Wang ZX, Livingstone K, Hümpel C, Daniliuc CG, Mück-Lichtenfeld C, Gilmour R. Regioselective, catalytic 1,1-difluorination of enynes. Nat Chem 2023; 15:1515-1522. [PMID: 37845310 PMCID: PMC10624631 DOI: 10.1038/s41557-023-01344-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorinated small molecules are prevalent across the functional small-molecule spectrum, but the scarcity of naturally occurring sources creates an opportunity for creative endeavour in developing routes to access these important materials. Iodine(I)/iodine(III) catalysis has proven to be particularly well-suited to this task, enabling abundant alkene substrates to be readily intercepted by in situ-generated λ3-iodanes and processed to high-value (di)fluorinated products. These organocatalysis paradigms often emulate metal-based processes by engaging the π bond and, in the case of styrenes, facilitating fluorinative phenonium-ion rearrangements to generate difluoromethylene units. Here we demonstrate that enynes are competent proxies for styrenes, thereby mitigating the recurrent need for aryl substituents, and enabling highly versatile homopropargylic difluorides to be generated in an operationally simple manner. The scope of the method is disclosed, together with application in target synthesis (>30 examples, up to >90% yield).
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Keith Livingstone
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carla Hümpel
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Cells in Motion (CiM) Interfaculty Center, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
24
|
Zhao P, Wang W, Gulder T. Hypervalent Fluoro-iodane-Triggered Semipinacol Rearrangements: Synthesis of α-Fluoro Ketones. Org Lett 2023; 25:6560-6565. [PMID: 37615672 DOI: 10.1021/acs.orglett.3c02384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Hypervalent fluoro-λ3-iodanes have emerged as versatile reagents that provide unusual fluorination selectivities under mild reaction conditions. Here, we report on adding a semipinacol rearrangement, fluorination, and aryl migration cascade reaction of styrene derivatives. Thus, various cyclopentanones became accessible in up to 96% yield, all bearing tertiary C,F-carbon centers adjacent to the ketone group. Such fluorinated structural motifs are difficult to build with previously established methods. Preliminary experiments on enantioselective processes validated that asymmetric transformations are likewise feasible.
Collapse
Affiliation(s)
- Pengyuan Zhao
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Wanying Wang
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Tanja Gulder
- Biomimetic Catalysis, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Li Q, Liu XB, Wang H. Iodine(III)-Mediated Migratory gem-Difluorinations: Synthesis of β Transformable Functionality Substituted gem-Difluoroalkanes. CHEM REC 2023:e202300231. [PMID: 37665225 DOI: 10.1002/tcr.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the β position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.
Collapse
Affiliation(s)
- Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
26
|
Han X, Liu X, Len C, Liu L, Wang D, Zhang Y, Duan XH, Hu M. Photoredox-Catalyzed gem-Difluoromethylenation of Aliphatic Alcohols with 1,1-Difluoroalkenes to Access α,α-Difluoromethylene Ethers. J Org Chem 2023; 88:12744-12754. [PMID: 37610918 DOI: 10.1021/acs.joc.3c01428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A switchable synthesis of alcohols and ketones bearing a CF2-OR scaffold using visible-light promotion is described. The method of PDI catalysis is characterized by its ease of operation, broad substrate scopes, and the ability to switch between desired products without the need for transition metal catalysts. The addition or absence of a base plays a key role in controlling the synthesis of the major desired products.
Collapse
Affiliation(s)
- Xinxin Han
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Christophe Len
- CNRS, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Université de Technologie de Compiègne, Sorbonne Université, F-60203 Compiègne, France
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongdong Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinbin Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
27
|
Hoogesteger RH, Murdoch N, Cordes DB, Johnston CP. Cobalt-Catalyzed Wagner-Meerwein Rearrangements with Concomitant Nucleophilic Hydrofluorination. Angew Chem Int Ed Engl 2023; 62:e202308048. [PMID: 37409777 DOI: 10.1002/anie.202308048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We report a cobalt-catalyzed Wagner-Meerwein rearrangement of gem-disubstituted allylarenes that generates fluoroalkane products with isolated yields up to 84 %. Modification of the counteranion of the N-fluoropyridinium oxidant suggests the substrates undergo nucleophilic fluorination during the reaction. Subjecting the substrates to other known metal-mediated hydrofluorination procedures did not lead to observable 1,2-aryl migration. Thus, indicating the unique ability of these cobalt-catalyzed conditions to generate a sufficiently reactive electrophilic intermediate capable of promoting this Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Reece H Hoogesteger
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Nicola Murdoch
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Craig P Johnston
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
28
|
He J, Du FH, Zhang C, Du Y. Chemoselective cycloisomerization of O-alkenylbenzamides via concomitant 1,2-aryl migration/elimination mediated by hypervalent iodine reagents. Commun Chem 2023; 6:126. [PMID: 37330613 DOI: 10.1038/s42004-023-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
As an ambident nucleophile, controlling the reaction selectivities of nitrogen and oxygen atoms in amide moiety is a challenging issue in organic synthesis. Herein, we present a chemodivergent cycloisomerization approach to construct isoquinolinone and iminoisocoumarin skeletons from o-alkenylbenzamide derivatives. The chemo-controllable strategy employed an exclusive 1,2-aryl migration/elimination cascade, enabled by different hypervalent iodine species generated in situ from the reaction of iodosobenzene (PhIO) with MeOH or 2,4,6-tris-isopropylbenzene sulfonic acid. DFT studies revealed that the nitrogen and oxygen atoms of the intermediates in the two reaction systems have different nucleophilicities and thus produce the selectivity of N or O-attack modes.
Collapse
Affiliation(s)
- Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Feng-Huan Du
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
29
|
Häfliger J, Ruyet L, Stübke N, Daniliuc CG, Gilmour R. Integrating I(I)/I(III) catalysis in reaction cascade design enables the synthesis of gem-difluorinated tetralins from cyclobutanols. Nat Commun 2023; 14:3207. [PMID: 37268631 DOI: 10.1038/s41467-023-38957-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Partially saturated, fluorine-containing rings are ubiquitous across the drug discovery spectrum. This capitalises upon the biological significance of the native structure and the physicochemical advantages conferred by fluorination. Motivated by the significance of aryl tetralins in bioactive small molecules, a reaction cascade has been validated to generate novel gem-difluorinated isosteres from 1,3-diaryl cyclobutanols in a single operation. Under the Brønsted acidity of the catalysis conditions, an acid-catalysed unmasking/fluorination sequence generates a homoallylic fluoride in situ. This species serves as the substrate for an I(I)/I(III) cycle and is processed, via a phenonium ion rearrangement, to an (isolable) 1,3,3-trifluoride. A final C(sp3)-F bond activation event, enabled by HFIP, forges the difluorinated tetralin scaffold. The cascade is highly modular, enabling the intermediates to be intercepted: this provides an expansive platform for the generation of structural diversity.
Collapse
Affiliation(s)
- Joel Häfliger
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Louise Ruyet
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nico Stübke
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
30
|
Qin Y, Qi L, Zhen X, Wang X, Chai H, Ma X, Jiang X, Cai X, Zhu W. Different Performances of BF 3, BCl 3, and BBr 3 in Hypervalent Iodine-Catalyzed Halogenations. J Org Chem 2023; 88:4359-4371. [PMID: 36939669 DOI: 10.1021/acs.joc.2c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Herein, hypervalent iodine-catalyzed halogenation of aryl-activated alkenes using BX3 (X = Cl, Br) as the halogen source and activating reagents was reported. Various halogenated 1,3-oxazine/2-oxazoline derivatives were obtained in good-to-high yields. Using BF3 resulted in different substitute sites from BBr3 and BCl3 of the products, indicating different reactive intermediates and reaction pathways. The reaction underwent a "ligand coupling/oxidative addition/intermolecular nucleophilic attack/1,2-aryl migration/reductive elimination/intramolecular nucleophilic attack" cascade when BF3 was applied as the halogen source, while 1,2-aryl migration has "disappeared" when the halogen source was BBr3 or BCl3. Possible catalytic cycles were proposed, and DFT calculations were conducted to demonstrate the differences among BX3 (X = F, Cl, Br) in the hypervalent iodine-catalyzed halogenations.
Collapse
Affiliation(s)
- Yuji Qin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Qi
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiang Zhen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hongli Chai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
32
|
Fujie M, Mizufune K, Nishimoto Y, Yasuda M. 1-Fluoro-1-sulfonyloxylation of Alkenes by Sterically and Electronically Tuned Hypervalent Iodine: Regression Analysis toward 1,1-Heterodifunctionalization. Org Lett 2023; 25:766-770. [PMID: 36710445 DOI: 10.1021/acs.orglett.2c04235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the heterodifunctionalization of alkenes, 1,1-regioselectivity remains elusive in sharp contrast to 1,2-regioselectivity. Herein, the 1-fluoro-1-sulfonyloxylation of styrenes with Bu4NBF4 and sulfonic acids using a hypervalent iodine ArI(OAc)2 is reported. Regression analysis of substituents on ArI(OAc)2 suggested that their electron-withdrawing ability and steric factor influence the 1,1-heterodifunctionalization. We designed o-{2,4-(CF3)2C6H3}- and p-NO2-substituted ArI(OAc)2 by the regression analysis to achieve high selectivity.
Collapse
Affiliation(s)
- Masaki Fujie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Mizufune
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Zheng M, Huang C, Yan JZ, Xie SL, Ke SJ, Xia HD, Duan YN. In Situ Hypoiodite-Catalyzed Oxidative Rearrangement of Chalcones: Scope and Mechanistic Investigation. J Org Chem 2023; 88:1504-1514. [PMID: 36660775 DOI: 10.1021/acs.joc.2c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is highly desirable to avoid using rare or toxic metals for oxidative reactions in the synthesis of pharmaceuticals and fine chemicals. Hypervalent iodine compounds are environmentally benign alternatives, but their catalytic use has been quite limited. Herein, the protocol for in situ hypoiodite-catalyzed oxidative rearrangement of chalcones is first realized under mild and metal-free conditions, which provided a nontoxic, environmental-benign, and catalytic alternative to the thallium-based protocol. Also, the applicability and effectiveness of this catalytic protocol got well demonstrated via gram-scale synthesis and product derivatization. What is more, control and NMR tracking experiments were performed to figure out the possible catalytic species and intermediates.
Collapse
Affiliation(s)
- Meiqiong Zheng
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Shantou University, Shantou 515031, P. R. China
| | - Chao Huang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Jian-Zhong Yan
- Industry & Technology Service Center, Shantou Hi-tech Industrial Development Zone, Shantou 515031, P. R. China
| | - Shu-Li Xie
- Shantou University, Shantou 515031, P. R. China
| | - Shao-Jia Ke
- Shantou Food Inspection and Testing Center, Shantou 515031, P. R. China
| | - Hai-Dong Xia
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
34
|
Elsherbini M, Moran WJ. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species. J Org Chem 2023; 88:1424-1433. [PMID: 36689352 PMCID: PMC9903329 DOI: 10.1021/acs.joc.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A simple catalytic electrosynthetic protocol for oxidative transformations mediated by hypervalent iodine reagents has been developed. In this protocol, electricity drives the iodine(I)/iodine(III) catalytic cycle enabling catalysis with in situ generated hypervalent iodine species, thereby eliminating chemical oxidants and the inevitable chemical waste associated with their mode of action. In addition, no added electrolytic salts are needed in this process. The developed method has been validated using two different hypervalent iodine-mediated transformations: (i) the oxidative cyclization of N-allylic and N-homoallylic amides to the corresponding dihydrooxazole and dihydro-1,3-oxazine derivatives, respectively, and (ii) the α-tosyloxylation of ketones. Both reactions proceeded smoothly under the developed catalytic electrosynthetic conditions without reoptimization, featuring a wide substrate scope and excellent functional group tolerance. In addition, scale-up to gram-scale and catalyst recovery were easily achieved maintaining the high efficiency of the process.
Collapse
|
35
|
Yu Y, Schäfer M, Daniliuc CG, Gilmour R. Catalytic, Regioselective 1,4-Fluorodifunctionalization of Dienes. Angew Chem Int Ed Engl 2023; 62:e202214906. [PMID: 36345795 PMCID: PMC10107283 DOI: 10.1002/anie.202214906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 11/09/2022]
Abstract
A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.
Collapse
Affiliation(s)
- You‐Jie Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
36
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
37
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
38
|
Kraszewski K, Tomczyk I, Kalek M. Intermolecular enantioselective dearomatizing para-methoxylation of phenols using 2-iodoresorcinol/lactamide catalysts. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
40
|
Dai L, Guo J, Huang Q, Lu Y. Asymmetric multifunctionalization of alkynes via photo-irradiated organocatalysis. SCIENCE ADVANCES 2022; 8:eadd2574. [PMID: 36103531 PMCID: PMC9473573 DOI: 10.1126/sciadv.add2574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alkynes represent a family of pivotal and sustainable feedstocks for various industries such as pharmaceuticals, agrochemicals, and materials, and they are widely used as important starting materials for the production of a broad range of chemical entities. Nevertheless, efficient structural elaborations of alkynes in chemical synthesis, especially asymmetric multifunctionalization of alkynes, remain largely unexplored. It is thus imperative to develop new asymmetric synthetic approaches, making use of these richly available chemical feedstocks, and enabling their conversion to value-added chiral molecules. Here, we disclose our findings on highly enantioselective multifunctionalization of alkynes by merging photochemistry and chiral phosphoric acid catalysis. Our reported one-pot synthetic protocol is applicable to all types of alkyne substrates, incorporating all three reactants in a fully atom-economic fashion to produce optically enriched tetrasubstituted triaryl- and diarylmethanes, important structural scaffolds in medicinal chemistry and biological sciences.
Collapse
Affiliation(s)
- Lei Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiami Guo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Qingqin Huang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Corresponding author.
| |
Collapse
|
41
|
Zhao H, Leng XB, Zhang W, Shen Q. [Ph
4
P]
+
[Cu(CF
2
H)
2
]
−
: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022; 61:e202210151. [DOI: 10.1002/anie.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Xuebing B. Leng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston Massachusetts 02125 USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
42
|
A Mechanochemical, Catalyst‐Free Cascade Synthesis of 1,3‐Diols and 1,4‐Iodoalcohols Using Styrenes and Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2022; 61:e202207926. [DOI: 10.1002/anie.202207926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/07/2022]
|
43
|
Zhao H, Leng X, Zhang W, Shen Q. [Ph4P]+[Cu(CF2H)2]‐: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiwei Zhao
- SIOC: Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Xuebing Leng
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Wei Zhang
- University of Massachusetts Boston Chemistry UNITED STATES
| | - Qilong Shen
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemsitry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
44
|
Yang J, Ponra S, Li X, Peters BBC, Massaro L, Zhou T, Andersson PG. Catalytic enantioselective synthesis of fluoromethylated stereocenters by asymmetric hydrogenation. Chem Sci 2022; 13:8590-8596. [PMID: 35974749 PMCID: PMC9337738 DOI: 10.1039/d2sc02685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fluoromethyl groups possess specific steric and electronic properties and serve as a bioisostere of alcohol, thiol, nitro, and other functional groups, which are important in an assortment of molecular recognition processes. Herein we report a catalytic method for the asymmetric synthesis of a variety of enantioenriched products bearing fluoromethylated stereocenters with excellent yields and enantioselectivities. Various N,P-ligands were designed and applied in the hydrogenation of fluoromethylated olefins and vinyl fluorides.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Xingzhen Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
45
|
Sun Z, Xue S, Zhang Y, Xin S, Guo R, Shi X, Fu Y, Guo H, Liu Y, Wang L. λ 3-Iodane/Lewis Acid Mediated Intramolecular Cross-Nucleophile Coupling of β-Amino Acrylates: Chemodivergent Syntheses of Indole Alkaloidal Frameworks. Org Lett 2022; 24:5381-5385. [DOI: 10.1021/acs.orglett.2c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zenghui Sun
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Shilin Xue
- School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, P. R. China
| | - Yining Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Shiyang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Ran Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Xiaowei Shi
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Huicai Guo
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Yi Liu
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
- Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, 361 East Zhongshan Road, Shijiazhuang 050017, P. R. China
| |
Collapse
|
46
|
Pan L, Zheng L, Chen Y, Ke Z, Yeung YY. Mechanochemical and Catalyst‐Free Cascade Synthesis of 1,3‐Diols and 1,4‐Iodoalcohols Using Styrenes and Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liangkun Pan
- The Chinese University of Hong Kong Faculty of Science Department of Chemistry HONG KONG
| | - Long Zheng
- The Chinese University of Hong Kong Faculty of Science Department of Chemistry HONG KONG
| | - Ye Chen
- The Chinese University of Hong Kong Faculty of Science Department of Chemistry HONG KONG
| | - Zhihai Ke
- The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Ying-Yeung Yeung
- The Chinese University of Hong Kong Chemistry Shatin, NT, Hong Kong, China 000000 Hong Kong HONG KONG
| |
Collapse
|
47
|
Yue WJ, Day CS, Brenes Rucinski AJ, Martin R. Catalytic Hydrodifluoroalkylation of Unactivated Olefins. Org Lett 2022; 24:5109-5114. [PMID: 35815401 PMCID: PMC9490814 DOI: 10.1021/acs.orglett.2c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Craig S. Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Adrian J. Brenes Rucinski
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
48
|
Cyclopropene activation via I(I)/I(III) catalysis: Proof of principle and application in direct tetrafluorination. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Chai H, Zhen X, Wang X, Qi L, Qin Y, Xue J, Xu Z, Zhang H, Zhu W. Catalytic Synthesis of 5-Fluoro-2-oxazolines: Using BF 3·Et 2O as the Fluorine Source and Activating Reagent. ACS OMEGA 2022; 7:19988-19996. [PMID: 35721954 PMCID: PMC9202255 DOI: 10.1021/acsomega.2c01791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hypervalent iodine catalyst-catalyzed nucleophilic fluorination of unsaturated amides using BF3·Et2O as the fluorine source and activating reagent was reported. Various 5-fluoro-2-oxazoline derivatives were synthesized in good to excellent yields (up to 95% isolated yield) within 10 min. The process was efficient and metal-free under mild conditions. A mechanism involving a fluorination/1,2-aryl migration/cyclization cascade was proposed on the basis of previous work and experimental results.
Collapse
Affiliation(s)
- Hongli Chai
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Xueqing Wang
- Department
of Pharmacy, College of Life Sciences, China
Jiliang University, Hangzhou 310018, China
| | - Liang Qi
- Department
of Pharmacy, College of Life Sciences, China
Jiliang University, Hangzhou 310018, China
| | - Yuji Qin
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, China
| | - Jijun Xue
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Hongrui Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Zhu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, China
| |
Collapse
|
50
|
Uno H, Kawai K, Araki T, Shiro M, Shibata N. Enantio-, Diastereo- and Regioselective Synthesis of Chiral Cyclic and Acyclic gem-Difluoromethylenes by Palladium-Catalyzed [4+2] Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202117635. [PMID: 35344247 DOI: 10.1002/anie.202117635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/25/2022]
Abstract
gem-Difluoromethylene moieties are attractive in medicinal chemistry due to their ability to mimic other more ubiquitous functional groups. Thus, effective asymmetric methods for their construction are highly desirable, especially for the industrial production of chiral drugs. Using a Pd-catalyzed asymmetric [4+2] cycloaddition between substituted-2-alkylidenetrimethylene carbonates and gem-difluoroalkyl ketones, we were able to easily access chiral 1,3-dioxanes that contain a tetrasubstituted difluoroalkyl stereogenic center in cyclic and acyclic skeletons. A novel phosphoramidite ligand, which contains a bulky 1,1-dinaphthylmethanamino moiety, was developed to provide the products in high yield with excellent enantio-, diastereo-, and regioselectivity. Strikingly, the gem-difluoro substitution pattern promotes the reaction, and pentafluoroethylketone, an α,α-difluorinated β-ketoester, and a β-ketosulfone are suitable substrates for this method.
Collapse
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Koki Kawai
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Taichi Araki
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|