1
|
Lyons DE, Kumar P, Roan NR, Defechereux PA, Feschotte C, Lange UC, Murthy N, Sameshima P, Verdin E, Ake JA, Parsons MS, Nath A, Gianella S, Smith DM, Kallas EG, Villa TJ, Strange R, Mwesigwa B, Furler O’Brien RL, Nixon DF, Ndhlovu LC, Valente ST, Ott M. HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing. Viruses 2023; 15:2171. [PMID: 38005849 PMCID: PMC10674359 DOI: 10.3390/v15112171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.
Collapse
Affiliation(s)
- Danielle E. Lyons
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Nadia R. Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Patricia A. Defechereux
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - Pauline Sameshima
- Faculty of Education, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
| | - Matthew S. Parsons
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20824, USA;
| | - Sara Gianella
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo 04023-900, Brazil
| | - Thomas J. Villa
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
- National HIV & Aging Advocacy Network, Washington, DC 20004, USA
| | - Richard Strange
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
| | - Betty Mwesigwa
- Research Department, Makerere University Walter Reed Project, Kampala P.O Box 7062, Uganda
| | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, Zhao J, Huang Z, Deng K. Ponatinib Represses Latent HIV-1 by Inhibiting AKT-mTOR. Antimicrob Agents Chemother 2023; 67:e0006723. [PMID: 37212670 PMCID: PMC10269114 DOI: 10.1128/aac.00067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Although antiretroviral therapy (ART) is effective in suppressing viral replication, it does not cure HIV-1 infection due to the presence of the viral latent reservoir. Rather than reactivating the latent viruses, the "block and lock" strategy aims to shift the viral reservoir to a deeper state of transcriptional silencing, thus preventing viral rebound after ART interruption. Although some latency-promoting agents (LPAs) have been reported, none of them have been approved for clinical application due to cytotoxicity and limited efficacy; therefore, it is important to search for novel and effective LPAs. Here, we report an FDA-approved drug, ponatinib, that can broadly repress latent HIV-1 reactivation in different cell models of HIV-1 latency and in primary CD4+ T cells from ART-suppressed individuals ex vivo. Ponatinib does not change the expression of activation or exhaustion markers on primary CD4+ T cells and does not induce severe cytotoxicity and cell dysfunction. Mechanistically, ponatinib suppresses proviral HIV-1 transcription by inhibiting the activation of the AKT-mTOR pathway, which subsequently blocks the interaction between key transcriptional factors and the HIV-1 long terminal repeat (LTR). In summary, we discovered a novel latency-promoting agent, ponatinib, which could have promising significance for future applications of HIV-1 functional cure.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jinfeng Cai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haitao Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ziqi Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhanlian Huang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Salimi-Jeda A, Esghaei M, Hossein Keyvani, Bokharaei-Salim F, Teimoori A, Abdoli A. Inhibition of HIV-1 replication using the CRISPR/cas9-no NLS system as a prophylactic strategy. Heliyon 2022; 8:e10483. [PMID: 36158108 PMCID: PMC9489754 DOI: 10.1016/j.heliyon.2022.e10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, it is estimated that 43 million people are living with human immunodeficiency virus type 1 (HIV-1), and there are more than 600,000 acquired immunodeficiency syndrome (AIDS)-related deaths in 2020. The only way to increase the life expectancy of these patients right now is to use combination antiretroviral therapy (cART) for the lifetime. Due to the integration of the HIV-1 DNA in lymphocytes, the replication of the virus can only be reduced by using antiretroviral drugs. If the drug is stopped, the virus will replicate and reduce the number of lymphocytes. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9-mediated genome editing system has been considered, preventing HIV-1 replication by causing DNA double-stranded breaks (DSBs) or disrupting the integrated virus replication by targeting the provirus. In this study, we utilized the CRISPR/Cas9 without the nuclear localization signal sequence (w/o NLS) system to inhibit the VSV-G-pseudotyped HIV-1 replication by targeting the HIV-1 DNA as a prophylactic method. To this end, we designed a multiplex gRNA (guide RNA) cassette to target the pol, env, and nef/long terminal repeat (nef/LTR) regions of the HIV-1 genome and then cloned it in plasmid expressing no-NLS-Cas9 protein as an all-in-one CRISPR/Cas9 vector. Using HIV-1 pseudovirus transduction into HEK-293T cell lines, our results showed that the CRISPR/Cas9-no NLS system disrupts the pseudotyped HIV-1 DNA and significantly (P-value < 0.0001) decreases the p24 antigen shedding and viral RNA load in cell culture supernatants harvested 48h after virus transduction. Although these results revealed the potential of the CRISPR/Cas9-no NLS nuclease system as a prophylactic strategy against HIV-1 infections, due to inefficient impairments of HIV-1 DNA, further studies are required to enhance its effectiveness and application in clinical practice.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
5
|
A new small-molecule compound, Q308, silences latent HIV-1 provirus by suppressing Tat- and FACT-mediated transcription. Antimicrob Agents Chemother 2021; 65:e0047021. [PMID: 34491808 DOI: 10.1128/aac.00470-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eliminating the latent HIV reservoir remains a difficult problem for creating an HIV functional cure or achieving remission. The "block-and-lock" strategy aims to steadily suppress transcription of the viral reservoir and lock the HIV promoter in deep latency using latency-promoting agents (LPAs). However, to date, most of the investigated LPA candidates are not available for clinical trials, and some of them exhibit immune-related adverse reactions. The discovery and development of new, active, and safe LPA candidates for an HIV cure are necessary to eliminate residual HIV-1 viremia through the "block-and-lock" strategy. In this study, we demonstrated that a new small-molecule compound, Q308, silenced the HIV-1 provirus by inhibiting Tat-mediated gene transcription and selectively downregulating the expression levels of the facilitated chromatin transcription (FACT) complex. Strikingly, Q308 induced the preferential apoptosis in HIV-1 latently infected cells, indicating that Q308 may reduce the size of the viral reservoir and thus further prevent viral rebound. These findings highlight that Q308 is a novel and safe anti-HIV-1 inhibitor candidate for a functional cure.
Collapse
|
6
|
Darren Tan CW, Forsthuber A, Ehmoser EK. Functional proteoliposome-like structure derived from simultaneous evisceration and enucleation of T-lymphoblastoid A3R5.7 cells: A top-down story. Exp Cell Res 2021; 400:112487. [PMID: 33476652 DOI: 10.1016/j.yexcr.2021.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Structurally-reduced cells and cell-derived structures are powerful tools for membrane studies. Using this approach, we probed whether a cell, without its nucleus and cytoplasm, is still capable of undergoing CD4-mediated membrane fusion. For this, we needed a cell-derived structure, akin to a giant liposome functionalised with CD4 and chemokine receptors. We present a method for the simultaneous removal of cytoplasmic and nuclear material from cells presenting CD4, CCR5, and CXCR4, using Colcemid treatment followed by hypotonic cytolysis, and then enriched using preparative flow cytometry. We show that the resultant cell membrane remains intact, retains presentation of CD4, CCR5, and CXCR4, and is still capable of CD4-mediated membrane fusion with a target cell. Finally, we detail how this protocol was developed, as well as how such samples should be handled for storage and assays. We envision the use of such systems for host-pathogen interaction studies, and the development of targeted delivery vehicles.
Collapse
Affiliation(s)
- Cherng-Wen Darren Tan
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria.
| | - Andreas Forsthuber
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
7
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Abstract
Despite significant progress, several questions related to HIV infection remain to be addressed. Here, I provide my perspective on four key areas that need further research to inform curative and preventive measures against HIV/AIDS.
Collapse
Affiliation(s)
- Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Mavigner M, Zanoni M, Tharp GK, Habib J, Mattingly CR, Lichterfeld M, Nega MT, Vanderford TH, Bosinger SE, Chahroudi A. Pharmacological Modulation of the Wnt/β-Catenin Pathway Inhibits Proliferation and Promotes Differentiation of Long-Lived Memory CD4 + T Cells in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J Virol 2019; 94:e01094-19. [PMID: 31619550 PMCID: PMC6912121 DOI: 10.1128/jvi.01094-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
The major obstacle to human immunodeficiency type 1 virus (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and is maintained through cellular proliferation. Long-lived memory CD4+ T cells with high self-renewal capacity, such as central memory (CM) T cells and stem cell memory (SCM) T cells, are major contributors to the viral reservoir in HIV-infected individuals on ART. The Wnt/β-catenin signaling pathway regulates the balance between self-renewal and differentiation of SCM and CM T cells, and pharmacological manipulation of this pathway offers an opportunity to interfere with the proliferation of latently infected cells. Here, we evaluated in vivo a novel approach to inhibit self-renewal of SCM and CM CD4+ T cells in the rhesus macaque (RM) model of simian immunodeficiency (SIV) infection. We used an inhibitor of the Wnt/β-catenin pathway, PRI-724, that blocks the interaction between the coactivator CREB-binding protein (CBP) and β-catenin, resulting in the cell fate decision to differentiate rather than proliferate. Our study shows that PRI-724 treatment of ART-suppressed SIVmac251-infected RMs resulted in decreased proliferation of SCM and CM T cells and modified the SCM and CM CD4+ T cell transcriptome toward a profile of more differentiated memory T cells. However, short-term treatment with PRI-724 alone did not significantly reduce the size of the viral reservoir. This work demonstrates for the first time that stemness pathways of long-lived memory CD4+ T cells can be pharmacologically modulated in vivo, thus establishing a novel strategy to target HIV persistence.IMPORTANCE Long-lasting CD4+ T cell subsets, such as central memory and stem cell memory CD4+ T cells, represent critical reservoirs for human immunodeficiency virus (HIV) persistence despite suppressive antiretroviral therapy. These cells possess stem cell-like properties of enhanced self-renewal/proliferation, and proliferation of latently infected memory CD4+ T cells plays a key role in maintaining the reservoir over time. Here, we evaluated an innovative strategy targeting the proliferation of long-lived memory CD4+ T cells to reduce viral reservoir stability. Using the rhesus macaque model, we tested a pharmacological inhibitor of the Wnt/β-catenin signaling pathway that regulates T cell proliferation. Our study shows that administration of the inhibitor PRI-724 decreased the proliferation of SCM and CM CD4+ T cells and promoted a transcriptome enriched in differentiation genes. Although the viral reservoir size was not significantly reduced by PRI-724 treatment alone, we demonstrate the potential to pharmacologically modulate the proliferation of memory CD4+ T cells as a strategy to limit HIV persistence.
Collapse
Affiliation(s)
- M Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Zanoni
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - G K Tharp
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - J Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C R Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - M T Nega
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - T H Vanderford
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - S E Bosinger
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - A Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory + Children's Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Abstract
The Berlin patient, a famous example for human immunodeficiency virus (HIV) cure, had received a bone marrow transplantation with an HIV resistance mutation. The authors describe his case and others that had shown HIV control, like the Mississippi baby who was started on antiretroviral therapy very early after birth, and posttreatment controllers, like the VISCONTI cohort. Moreover, the authors outline various strategies, oftentimes informed by these individuals, that have been tried in vitro, in animal models, or in human trials, to deplete the latent reservoir, which is considered the basis of HIV persistence and the obstacle to cure.
Collapse
Affiliation(s)
- Nikolaus Jilg
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jonathan Z Li
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Kunze C, Herrmann A, Bauer A, Brack-Werner R. [Are there strategies against latent infection?]. MMW Fortschr Med 2019; 160:35-37. [PMID: 29943330 DOI: 10.1007/s15006-018-0655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Kunze
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Oberschleißheim, Deutschland
| | - Alexander Herrmann
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Oberschleißheim, Deutschland
| | - Amelie Bauer
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Oberschleißheim, Deutschland
| | - Ruth Brack-Werner
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Oberschleißheim, Deutschland.
| |
Collapse
|
12
|
Billings H, Wines BD, Dyer WB, Center RJ, Trist HM, Kent SJ, Hogarth PM. Boosting of Markers of Fcγ Receptor Function in Anti-HIV Antibodies During Structured Treatment Interruption. AIDS Res Hum Retroviruses 2019; 35:842-852. [PMID: 31288562 PMCID: PMC6735329 DOI: 10.1089/aid.2019.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anti-HIV envelope (Env) antibodies elicit important Fc receptor functions, including FcγRIIIa-mediated natural killer cell killing of opsonized infected targets. How these antibodies evolve during HIV infection and treatment remains poorly understood. We describe changes in anti-HIV Env IgG using longitudinal samples from seroconverter subjects treated soon after infection and later during periods of structured treatment interruption (STI). Our well-validated dimeric rsFcγR binding assays combine effects of opsonizing antibody subclasses, epitopes, and geometries to provide a measure of FcγR (Fcγ receptor)-mediated functionality. IgG1 anti-Env titers diminished rapidly during antiretroviral therapy (ART; t1/2 3.0 ± 0.8 months), while the dimeric rsFcγRIIIa activity persisted longer (t1/2 33 ± 11 months), suggesting that there is maintenance of functional antibody specificities within the diminished pool of anti-HIV Env Abs. The initial antibody response to infection in two subjects was characterized by approximately fivefold higher FcγRIIIa compared with FcγRIIa binding activity. Uncoupling of FcγRIIa and FcγRIIIa activities may be a distinct feature of the early antibody response that preferentially engages FcγRIIIa-mediated effector functions. Two to three STI cycles, even with low viremia, were sufficient to boost dimeric FcγR activity in these seroconverter subjects. We hypothesize that increased humoral immunity induced by STI is a desirable functional outcome potentially achievable by therapeutic immunization during ART. We conclude that controlled viral antigen exposure under the protection of suppressive ART may be effective in eliciting FcγR-dependent function in support of viral reactivation and kill strategies.
Collapse
Affiliation(s)
- Hugh Billings
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Wayne B. Dyer
- Australian Red Cross Blood Service, Alexandria, Australia
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Halina M. Trist
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Stephen J. Kent
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
14
|
Li C, Mousseau G, Valente ST. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 2019; 12:23. [PMID: 30992052 PMCID: PMC6466689 DOI: 10.1186/s13072-019-0267-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state. RESULTS Here we investigated those epigenetic changes using multiple cell line models of HIV-1 latency and active transcription. We demonstrated that dCA treatment does not alter the classic nucleosome positioning at the HIV-1 promoter, but promotes tighter nucleosome/DNA association correlating with increased deacetylated H3 occupancy at nucleosome-1. Recruitment of the SWI/SNF chromatin remodeling complex PBAF, necessary for Tat-mediated transactivation, is also inhibited, while recruitment of the repressive BAF complex is enhanced. These results were supported by loss of RNA polymerase II recruitment on the HIV genome, even during strong stimulation with latency-reversing agents. No epigenetic changes were detected in cell line models of latency with Tat-TAR incompetent proviruses confirming the specificity of dCA for Tat. CONCLUSIONS We characterized the dCA-mediated epigenetic signature on the HIV genome, which translates into potent blocking effects on HIV expression, further strengthening the potential of Tat inhibitors in "block-and-lock" functional cure approaches.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
15
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
16
|
Ma X, Yang T, Luo Y, Wu L, Jiang Y, Song Z, Pan T, Liu B, Liu G, Liu J, Yu F, He Z, Zhang W, Yang J, Liang L, Guan Y, Zhang X, Li L, Cai W, Tang X, Gao S, Deng K, Zhang H. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019; 8:42426. [PMID: 30652970 PMCID: PMC6361614 DOI: 10.7554/elife.42426] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Comprehensively elucidating the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) latency is a priority to achieve a functional cure. As current 'shock' agents failed to efficiently reactivate the latent reservoir, it is important to discover new targets for developing more efficient latency-reversing agents (LRAs). Here, we found that TRIM28 potently suppresses HIV-1 expression by utilizing both SUMO E3 ligase activity and epigenetic adaptor function. Through global site-specific SUMO-MS study and serial SUMOylation assays, we identified that P-TEFb catalytic subunit CDK9 is significantly SUMOylated by TRIM28 with SUMO4. The Lys44, Lys56 and Lys68 residues on CDK9 are SUMOylated by TRIM28, which inhibits CDK9 kinase activity or prevents P-TEFb assembly by directly blocking the interaction between CDK9 and Cyclin T1, subsequently inhibits viral transcription and contributes to HIV-1 latency. The manipulation of TRIM28 and its consequent SUMOylation pathway could be the target for developing LRAs. The human immunodeficiency virus-1, or HIV-1, infects certain human cells, including white blood cells. One reason the infection is incurable is because the virus can integrate its genetic information into its host, and essentially ‘sleep’ within the host cell, a process called latency. This helps to hide HIV-1 from the immune system and stops it getting destroyed. Latency represents a critical challenge in treating and curing HIV-1. One proposed cure for HIV-1 involves ‘shocking’ the viruses out of latency so that they can be eliminated. Applying this so-called shock and kill approach means scientists need to understand more about how latency is maintained. Previous evidence shows that latency requires proteins known as histone deacetylases and histone methyltransferases. Certain gene-silencing proteins called transcription suppressors are also involved. Ma et al. have now examined latent HIV-1 in several kinds of human cells grown in the laboratory. The cells were modified to make certain proteins at much lower levels than normal. The experiments showed that the loss of a protein called TRIM28 ‘wakes up’ latent HIV-1. TRIM28 attaches chemical marks called SUMOylations to gene regulators in the cell. These SUMOylations restrict the activity of HIV-1’s genes, which is important to maintain latency. Specifically, TRIM28 adds SUMOylations to a protein named CDK9 at three key positions. Reducing the levels of TRIM28 made it easier to shock many HIV-1 in infected cells out of latency. With further investigation, targeting TRIM28 may one day be used to treat HIV-1 infection through a shock and kill method.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yawen Jiang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jun Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fei Yu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liting Liang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Laboratory Platform for Medical Science, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation. Acta Pharmacol Sin 2019; 40:98-110. [PMID: 29789664 DOI: 10.1038/s41401-018-0027-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The persistence of latent HIV-1 reservoirs throughout combination antiretroviral therapy (cART) is a major barrier on the path to achieving a cure for AIDS. It has been shown that bromodomain and extra-terminal (BET) inhibitors could reactivate HIV-1 latency, but restrained from clinical application due to their toxicity and side effects. Thus, identifying a new type of BET inhibitor with high degrees of selectivity and safety is urgently needed. Apabetalone is a small-molecule selective BET inhibitor specific for second bromodomains, and has been evaluated in phase III clinical trials that enrolled patients with high-risk cardiovascular disorders, dyslipidemia, and low HDL cholesterol. In the current study, we examined the impact of apabetalone on HIV-1 latency. We showed that apabetalone (10-50 μmol/L) dose-dependently reactivated latent HIV-1 in 4 types of HIV-1 latency cells in vitro and in primary human CD4+ T cells ex vivo. In ACH2 cells, we further demonstrated that apabetalone activated latent HIV-1 through Tat-dependent P-TEFB pathway, i.e., dissociating bromodomain 4 (BDR4) from the HIV-1 promoter and recruiting Tat for stimulating HIV-1 elongation. Furthermore, we showed that apabetalone (10-30 μmol/L) caused dose-dependent cell cycle arrest at the G1/G0 phase in ACH2 cells, and thereby induced the preferential apoptosis of HIV-1 latent cells to promote the death of reactivated reservoir cells. Notably, cardiovascular diseases and low HDL cholesterol are known as the major side effects of cART, which should be prevented by apabetalone. In conclusion, apabetalone should be an ideal bifunctional latency-reversing agent for advancing HIV-1 eradication and reducing the side effects of BET inhibitors.
Collapse
|
18
|
Yang W, Sun Z, Hua C, Wang Q, Xu W, Deng Q, Pan Y, Lu L, Jiang S. Chidamide, a histone deacetylase inhibitor-based anticancer drug, effectively reactivates latent HIV-1 provirus. Microbes Infect 2017; 20:626-634. [PMID: 29126877 DOI: 10.1016/j.micinf.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Although combination antiretroviral therapy (cART) is highly effective in suppressing human immunodeficiency virus type 1 (HIV-1) replication, it fails to eradicate the virus from HIV-1-infected individuals because HIV-1 integrates into the resting CD4+ T cells, establishing latently infected reservoirs. Histone deacetylation is a key element in regulating HIV-1 latent infection. Chidamide, a new anticancer drug, is a novel type of selective histone deacetylase inhibitor. Here we showed that chidamide effectively reactivated HIV-1 latent provirus in different latently infected cell lines in a dose- and time-dependent manner. Chidamide had relatively low cytotoxicity to peripheral blood mononuclear cells (PBMCs) and other latent cell lines. We have demonstrated that chidamide reactivated HIV-1 latent provirus through the NF-κB signaling pathway. The replication of the newly reactivated HIV-1 could then be effectively inhibited by the anti-HIV-1 drugs Zidovudine, Nevirapine, and Indinavir. Therefore, chidamide might be used in combination with cART for functional HIV-1 cure.
Collapse
Affiliation(s)
- Wenqian Yang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Zhiwu Sun
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China
| | - Qiwen Deng
- Shenzhen Nanshan People's Hospital of Shenzhen University, Shenzhen 518052, China
| | - Yanbin Pan
- Aris Pharmaceuticals Inc., Bristol, PA19007, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd, Xuhui District, Shanghai 200032, China; Shenzhen Nanshan People's Hospital of Shenzhen University, Shenzhen 518052, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Jakobsdottir GM, Iliopoulou M, Nolan R, Alvarez L, Compton AA, Padilla-Parra S. On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol Med 2017; 23:932-944. [PMID: 28899754 DOI: 10.1016/j.molmed.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
HIV-1 disseminates to diverse tissues through different cell types and establishes long-lived reservoirs. The exact cellular compartment where fusion occurs differs depending on the cell type and mode of viral transmission. This implies that HIV-1 may modulate a number of common host cell factors in different cell types. In this review, we evaluate recent advances on the host cell factors that play an important role in HIV-1 entry and fusion. New insights from restriction factors inhibiting virus-cell fusion in vitro may contribute to the development of future therapeutic interventions. Collectively, novel findings underline the need for potent, host-directed therapies that disrupt the earliest stages of the virus life cycle and preclude the emergence of resistant viral variants.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Maro Iliopoulou
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Rory Nolan
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Luis Alvarez
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Alex A Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sergi Padilla-Parra
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK; Division of Structural Biology, University of Oxford,The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
20
|
Conrad RJ, Fozouni P, Thomas S, Sy H, Zhang Q, Zhou MM, Ott M. The Short Isoform of BRD4 Promotes HIV-1 Latency by Engaging Repressive SWI/SNF Chromatin-Remodeling Complexes. Mol Cell 2017; 67:1001-1012.e6. [PMID: 28844864 DOI: 10.1016/j.molcel.2017.07.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/24/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Abstract
BET proteins commonly activate cellular gene expression, yet inhibiting their recruitment paradoxically reactivates latent HIV-1 transcription. Here we identify the short isoform of BET family member BRD4 (BRD4S) as a corepressor of HIV-1 transcription. We found that BRD4S was enriched in chromatin fractions of latently infected T cells, and it was more rapidly displaced from chromatin upon BET inhibition than the long isoform. BET inhibition induced marked nucleosome remodeling at the latent HIV-1 promoter, which was dependent on the activity of BRG1-associated factors (BAF), an SWI/SNF chromatin-remodeling complex with known repressive functions in HIV-1 transcription. BRD4S directly bound BRG1, a catalytic subunit of BAF, via its bromodomain and extraterminal (ET) domain, and this isoform was necessary for BRG1 recruitment to latent HIV-1 chromatin. Using chromatin immunoprecipitation sequencing (ChIP-seq) combined with assay for transposase-accessible chromatin coupled to high-throughput sequencing (ATAC-seq) data, we found that the latent HIV-1 promoter phenotypically resembles endogenous long terminal repeat (LTR) sequences, pointing to a select role of BRD4S-BRG1 complexes in genomic silencing of invasive retroelements.
Collapse
Affiliation(s)
- Ryan J Conrad
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA; Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Parinaz Fozouni
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Thomas
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hendrik Sy
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiang Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melanie Ott
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA; Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|