1
|
Liebl K, Voth GA. A Hybrid Bottom-Up and Data-Driven Machine Learning Approach for Accurate Coarse-Graining of Large Molecular Complexes. J Chem Theory Comput 2025; 21:4846-4854. [PMID: 40241350 DOI: 10.1021/acs.jctc.5c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Bottom-up coarse-graining refers to the development of low-resolution simulation models that are thermodynamically consistent with certain distributions from fully atomistic simulations. Force-matching and relative entropy minimization represent two major, frequently applied methods that allow to develop such bottom-up models. Nevertheless, atomistic simulations can often provide only limited sampling of the phase space. For bottom-up coarse-graining, these limitations may result in overfitting of the atomistic reference data, especially for large molecular complexes, where the learning may be agnostic of the actual affinities between binding partners. As a solution to this problem, we devise a data-driven machine learning hybrid coarse-graining concept that represents a regularized version of the relative entropy minimization approach. We demonstrate that this new approach allows one to develop coarse-grained models for molecular complexes that reproduce the targeted binding affinity but also describe the underlying complex structure accurately. The trained models therefore show diverse behavior as they can undergo frequent unbinding and binding events and are also transferable for simulating entire protein lattices, e.g., for a virus capsid.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Chen L, Hikichi Y, Rey JS, Akil C, Zhu Y, Veler H, Shen Y, Perilla JR, Freed EO, Zhang P. Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity. SCIENCE ADVANCES 2025; 11:eadv4356. [PMID: 40344051 PMCID: PMC12063641 DOI: 10.1126/sciadv.adv4356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
During HIV-1 maturation, the matrix (MA) lattice underlying the viral membrane undergoes a structural rearrangement, and the newly released capsid (CA) protein forms a mature CA. While it is well established that CA formation is essential for particle infectivity, the functional role of MA structural maturation remains unclear. Here, we examine maturation of an MA triple mutant, L20K/E73K/A82T, which, despite replicating similarly to wild-type (WT) in some cell lines, exhibits distinct biochemical behaviors that suggest altered MA-MA interactions. Cryo-electron tomography with subtomogram averaging reveals that, although the MA lattice in immature L20K/E73K/A82T virions closely resembles that of the WT, mature L20K/E73K/A82T virions lack a detectable MA lattice. All-atom molecular dynamics simulations suggest that this absence results from destabilized inter-trimer MA interactions in mature L20K/E73K/A82T mutant virions. These findings suggest that an ordered, membrane-associated mature MA lattice is not essential for HIV-1 infectivity, providing insights into the structural requirements for HIV-1 particle maturation and generation of infectious particles.
Collapse
Affiliation(s)
- Long Chen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Caner Akil
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hana Veler
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
3
|
Stacey JCV, Hrebík D, Nand E, Shetty SD, Qu K, Boicu M, Anders-Össwein M, Uchil PD, Dick RA, Mothes W, Kräusslich HG, Müller B, Briggs JAG. The conserved HIV-1 spacer peptide 2 triggers matrix lattice maturation. Nature 2025; 640:258-264. [PMID: 40011770 PMCID: PMC11964938 DOI: 10.1038/s41586-025-08624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The virus particles of human immunodeficiency virus type 1 (HIV-1) are released in an immature, non-infectious form. Proteolytic cleavage of the main structural polyprotein Gag into functional domains induces rearrangement into mature, infectious virions. In immature virus particles, the Gag membrane-binding domain, MA, forms a hexameric protein lattice that undergoes structural transition, following cleavage, into a distinct, mature MA lattice1. The mechanism of MA lattice maturation is unknown. Here we show that released spacer peptide 2 (SP2), a conserved peptide of unknown function situated about 300 residues downstream of MA, binds MA to induce structural maturation. By high-resolution in-virus structure determination of MA, we show that MA does not bind lipid into a side pocket as previously thought1, but instead binds SP2 as an integral part of the protein-protein interfaces that stabilize the mature lattice. Analysis of Gag cleavage site mutants showed that SP2 release is required for MA maturation, and we demonstrate that SP2 is sufficient to induce maturation of purified MA on lipid monolayers in vitro. SP2-triggered MA maturation correlated with faster fusion of virus with target cells. Our results reveal a new, unexpected interaction between two HIV-1 components, provide a high-resolution structure of mature MA, establish the trigger of MA structural maturation and assign function to the SP2 peptide.
Collapse
Affiliation(s)
- James C V Stacey
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dominik Hrebík
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elizabeth Nand
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marius Boicu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Preece B, Peppel W, Gallegos R, Ysassi G, Clinger G, Bohn N, Adhikary B, Mendonça L, Belnap D, Vershinin M, Saffarian S. High-Yield and Quantitative Purification Method for HIV Which Minimizes Forces Applied to Virions Utilized to Investigate Maturation of HIV-1 via Cryo-Electron Tomography. Viruses 2025; 17:364. [PMID: 40143292 PMCID: PMC11945327 DOI: 10.3390/v17030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
HIV is a lentivirus characterized by its cone shaped mature core. Visualization and structural examination of HIV requires the purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for the purification of HIV virions which minimizes the forces applied to virions while maximizing the efficiency of collection. This method, which relies on virion sedimentation simulations, allows us to capture between 1000 and 5000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D185A&D186A) with an inactive reverse transcriptase, NL4.3(IN: V165A&R166A) with a type-II integrase mutation, and NL4.3(Ψ: Δ(105-278)&Δ(301-332)) featuring an edited Ψ packaging signal. Notably, virions from NL4.3(Ψ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V165A&R166A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D185A&D186A) displayed mature cores containing detectable RNP density. We suggest that the sedimentation simulations developed in this study can facilitate the characterization of enveloped viruses.
Collapse
Affiliation(s)
- Benjamin Preece
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Gillian Ysassi
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel Clinger
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole Bohn
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Broti Adhikary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Vershinin
- Department of Chemistry and Physical Sciences, Nicholls State University, Thibodaux, LA 70301, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Costa-Filho JI, Theveny L, de Sautu M, Kirchhausen T. CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data. J Struct Biol 2025; 217:108163. [PMID: 39710216 PMCID: PMC11908917 DOI: 10.1016/j.jsb.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier Shell Correlation (FSC) analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.
Collapse
Affiliation(s)
- Jose Inacio Costa-Filho
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Liam Theveny
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA
| | - Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
6
|
McFadden WM, Faerch M, Kirby KA, Dick RA, Torbett BE, Sarafianos SG. Considerations for capsid-targeting antiretrovirals in pre-exposure prophylaxis. Trends Mol Med 2025:S1471-4914(25)00013-9. [PMID: 40021388 DOI: 10.1016/j.molmed.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Antiretroviral therapy (ART) impairs viral replication in people living with HIV (PLWH) by suppressing infection or spread. However, not all treatment strategies apply to preventive applications like pre-exposure prophylaxis (PrEP) for uninfected individuals. To prevent the establishment of HIV infection, PrEP must block viral replication either before, or at the stage of integration into the host genome. A promising PrEP approach under investigation utilizes lenacapavir (LEN), which targets the HIV-1 capsid protein (CA) potently before integration. LEN, a first-in-class antiretroviral, has shown high protective efficacy in the ongoing PURPOSE trials thus far. Here, we discuss clinical investigations of LEN, theoretical suitability of preclinical CA-binding antivirals in PrEP, and other key considerations for preventing HIV-1 infection by targeting the capsid.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mia Faerch
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Robert A Dick
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98101, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98101, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Zhu Y, Kleinpeter AB, Rey JS, Shen J, Shen Y, Xu J, Hardenbrook N, Chen L, Lucic A, Perilla JR, Freed EO, Zhang P. Structural basis for HIV-1 capsid adaption to rescue IP6-packaging deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637297. [PMID: 39975075 PMCID: PMC11839029 DOI: 10.1101/2025.02.09.637297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inositol hexakisphosphate (IP6) promotes HIV-1 assembly via its interaction with the immature Gag lattice, effectively enriching IP6 within virions. During particle maturation, the HIV-1 protease cleaves the Gag polyproteins comprising the immature Gag lattice, releasing IP6 from its original binding site and liberating the capsid (CA) domain of Gag. IP6 then promotes the assembly of mature CA protein into the capsid shell of the viral core, which is required for infection of new target cells. Recently, we reported HIV-1 Gag mutants that assemble virions independently of IP6. However, these mutants are non-infectious and unable to assemble stable capsids. Here, we identified a mutation in the C-terminus of CA - G225R - that restores capsid formation and infectivity to these IP6-packaging-deficient mutants. Furthermore, we show that G225R facilitates the in vitro assembly of purified CA into capsid-like particles (CLPs) at IP6 concentrations well below those required for WT CLP assembly. Using single-particle cryoEM, we solved structures of CA hexamer and hexameric lattice of mature CLPs harbouring the G225R mutation assembled in low-IP6 conditions. The high-resolution (2.7 Å) cryoEM structure combined with molecular dynamics simulations of the G225R capsid revealed that the otherwise flexible and disordered C-terminus of CA becomes structured, extending to the pseudo two-fold hexamer-hexamer interface, thereby stabilizing the mature capsid. This work uncovers a structural mechanism by which HIV-1 adapts to a deficiency in IP6 packaging. Furthermore, the ability of G225R to promote mature capsid assembly in low-IP6 conditions provides a valuable tool for capsid-related studies and may indicate a heretofore unknown role for the unstructured C-terminus in HIV-1 capsid assembly.
Collapse
Affiliation(s)
- Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Long Chen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anka Lucic
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
Zhao Y, Schmid MF, Chiu W. Cost-benefit analysis of cryogenic electron tomography subtomogram averaging of chaperonin MmCpn at near atomic resolution. Structure 2025; 33:372-380.e2. [PMID: 39644888 PMCID: PMC11805670 DOI: 10.1016/j.str.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
Cryogenic electron microscopy single particle analysis (cryoEM-SPA) has evolved into a routine approach for determining macromolecule structures to near-atomic resolution. Cryogenic electron tomography subtomogram averaging (cryoET-STA) toward a similar resolution, in contrast, is still under active development. Here, we use the archeal chaperonin MmCpn as a model macromolecule to quantitatively investigate the resolution limiting factors of cryoET-STA in terms of cumulative electron dose, ice thickness, subtomogram numbers, and tilt angle ranges. By delineating the feasibility and experimental factors of attaining near atomic resolution structure with cryoET-STA, especially the effect of electron damage through the tilt series and inelastic scattering at various ice thickness, we encourage a customized tilt series collection strategy for efficient throughput. This study provides a biophysical basis for the application of cryoET-STA (for highly symmetric molecules like MmCpn) toward high resolution and the rationales in using cryoET-STA to achieve an efficient outcome at the desired resolution.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Bioengineering, James Clark Center, Stanford University, Stanford, CA 94305, USA.
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Wah Chiu
- Department of Bioengineering, James Clark Center, Stanford University, Stanford, CA 94305, USA; Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
9
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice. Nat Struct Mol Biol 2025; 32:268-276. [PMID: 39242978 PMCID: PMC11832423 DOI: 10.1038/s41594-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Material and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
10
|
Yan X, Li S, Huang W, Wang H, Zhao T, Huang M, Zhou N, Shen Y, Li X. MPicker: visualizing and picking membrane proteins for cryo-electron tomography. Nat Commun 2025; 16:472. [PMID: 39774981 PMCID: PMC11707294 DOI: 10.1038/s41467-024-55767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ. Here, we report a membrane-flattening method and the corresponding software, MPicker, designed for the visualization, localization, and orientation determination of membrane proteins in cryoET tomograms. This method improves the visualization of proteins on and around membranes by generating a flattened tomogram that eliminates membrane curvature and reduces the spatial complexity of membrane protein analysis. In MPicker, we integrated approaches for automated particle picking and coarse alignment of membrane proteins for sub-tomogram averaging. MPicker was tested on tomograms of various cells to evaluate the method for visualizing, picking, and analyzing membrane proteins.
Collapse
Affiliation(s)
- Xiaofeng Yan
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shudong Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Weilin Huang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Hao Wang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianfang Zhao
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Mingtao Huang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Niyun Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Shen
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Ngo W, Peukes J, Baldwin A, Xue ZW, Hwang S, Stickels RR, Lin Z, Satpathy AT, Wells JA, Schekman R, Nogales E, Doudna JA. Mechanism-guided engineering of a minimal biological particle for genome editing. Proc Natl Acad Sci U S A 2025; 122:e2413519121. [PMID: 39793042 PMCID: PMC11725915 DOI: 10.1073/pnas.2413519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization. Here, we show that Cas9 RNP nuclear delivery is independent of the native lentiviral capsid structure. Instead, EDV-mediated genome editing activity corresponds directly to the number of nuclear localization sequences on the Cas9 enzyme. EDV structural analysis using cryo-electron tomography and small molecule inhibitors guided the removal of ~80% of viral residues, creating a minimal EDV (miniEDV) that retains full RNP delivery capability. MiniEDVs are 25% smaller yet package equivalent amounts of Cas9 RNPs relative to the original EDVs and demonstrated increased editing in cell lines and therapeutically relevant primary human T cells. These results show that virally derived particles can be streamlined to create efficacious genome editing delivery vehicles with simpler production and manufacturing.
Collapse
Affiliation(s)
- Wayne Ngo
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
| | - Julia Peukes
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
| | - Alisha Baldwin
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
| | - Zhiwei Wayne Xue
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Sidney Hwang
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - Robert R. Stickels
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA94304
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- Parker Institute for Cancer Immunotherapy, San Francisco, CA94129
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Jennifer A. Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA94158
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Gladstone-University of California, San Francisco Institute of Genomic Immunology, San Francisco, CA94158
- HHMI, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
12
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
13
|
Liu YT, Fan H, Hu JJ, Zhou ZH. Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning. Nat Methods 2025; 22:113-123. [PMID: 39558095 DOI: 10.1038/s41592-024-02505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's ability to generate near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred-orientation problem.
Collapse
Affiliation(s)
- Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hongcheng Fan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jason J Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Chen L, Hikichi Y, Rey JS, Akil C, Zhu Y, Veler H, Shen Y, Perilla JR, Freed EO, Zhang P. Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629981. [PMID: 39763880 PMCID: PMC11703145 DOI: 10.1101/2024.12.22.629981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome. While it is well established that formation of the mature capsid is essential to particle infectivity, the functional role of MA structural maturation remains unclear. Here, we examine MA maturation of an MA triple mutant, L20K/E73K/A82T, which exhibits distinct biochemical behaviours. The L20K/E73K/A82T mutant is a revertant derived by propagating the L20K mutant, which exhibits reduced infectivity and increased association of the Gag polyprotein with membranes. L20K/E73K/A82T replicates similarly to wild type but retains the increased Gag membrane binding properties of L20K. L20K/E73K/A82T MA also sediments to high-density fractions in sucrose gradients after detergent treatment under conditions that fully solubilize WT MA, suggesting enhanced MA-MA interactions. Cryo-electron tomography with subtomogram averaging reveals that the immature MA lattice of L20K/E73K/A82T closely resembles the wild type. However, mature virions of the triple mutant lack a detectable MA lattice, in stark contrast to both the wild type and L20K mutant. All-atom molecular dynamics simulations suggest that this absence results from destabilized inter-trimer interactions in the mature L20K/E73K/A82T MA. Furthermore, introducing additional mutations designed to disrupt the mature MA lattice does not impair particle infectivity. These findings suggest that an ordered, membrane-associated mature MA lattice is not essential for HIV-1 infectivity, providing new insights into the structural plasticity of the matrix during maturation and its functional role in the viral lifecycle.
Collapse
|
15
|
Kudryashev M. The big chill: Growth of in situ structural biology with cryo-electron tomography. QRB DISCOVERY 2024; 5:e10. [PMID: 39687233 PMCID: PMC11649376 DOI: 10.1017/qrd.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 12/18/2024] Open
Abstract
In situ structural biology with cryo-electron tomography (cryo-ET) and subtomogram averaging (StA) is evolving as a major method to understand the structure, function, and interactions of biological molecules in cells in a single experiment. Since its inception, the method has matured with some stellar highlights and with further opportunities to broaden its applications. In this short review, I want to provide a personal perspective on the developments in cryo-ET as I have seen it for the last ~20 years and outline the major steps that led to its success. This perspective highlights cryo-ET with my eyes as a junior researcher and my view on the present and past developments in hardware and software for in situ structural biology with cryo-ET.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Medical Physics and Biophysics, Charite–Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt Universitat zu Berlin, Institute for Medical Physics and Biophysics, Berlin, Germany
| |
Collapse
|
16
|
Preece B, Peppel W, Gallegos R, Yassasi G, Clinger G, Bohn N, Adhikary B, Mendonça L, Belnap D, Vershinin M, Saffarian S. Enhanced Yield and Gentle Purification of HIV for Cryo-Electron Tomography Analysis of Virion Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628087. [PMID: 39713316 PMCID: PMC11661225 DOI: 10.1101/2024.12.12.628087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for purification of HIV virions which minimizes forces applied to virions while maximizing the efficiency of collection. This method allows us to capture between 1,000 and 5,000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone, a 10 fold advantage over other methods. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D 185 A&D 186 A) with an inactive reverse transcriptase, NL4.3(IN: V 165 A&R 166 A) with a type-II integrase mutation, and NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) featuring an edited Ѱ packaging signal. Notably, virions from NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V 165 A&R 166 A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D 185 A&D 186 A) displayed mature cores containing detectable RNP density. We suggest that the purification methods developed in this study can significantly facilitate the characterization of enveloped viruses.
Collapse
|
17
|
Khavnekar S, Erdmann PS, Wan W. TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing. J Appl Crystallogr 2024; 57:2010-2016. [PMID: 39628881 PMCID: PMC11611285 DOI: 10.1107/s1600576724010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are becoming the preferred methodologies for investigating subcellular and macromolecular structures in native or near-native environments. Although cryo-ET is amenable to a wide range of biological problems, these problems often have data-processing requirements that need to be individually optimized, precluding the notion of a one-size-fits-all processing pipeline. Cryo-ET data processing is also becoming progressively more complex due to the increasing number of packages for each processing step. Though each package has its strengths and weaknesses, independent development and different data formats make them difficult to interface with one another. TOMOMAN (TOMOgram MANager) is an extensible package for streamlining the interoperability of packages, enabling users to develop project-specific processing workflows. TOMOMAN does this by maintaining an internal metadata format and wrapping external packages to manage and perform preprocessing, from raw tilt-series data to reconstructed tomograms. TOMOMAN can also export these metadata between various STA packages. TOMOMAN includes tools for archiving projects to data repositories, allowing subsequent users to download TOMOMAN projects and directly resume processing. By tracking essential metadata, TOMOMAN streamlines data sharing, which improves the reproducibility of published results, reduces computational costs by minimizing reprocessing, and enables the distribution of cryo-ET projects between multiple groups and institutions. TOMOMAN provides a way for users to test different software packages in order to develop processing workflows that meet the specific needs of their biological questions and to distribute their results to the broader scientific community.
Collapse
Affiliation(s)
| | | | - William Wan
- Department of Biochemistry, Center for Structural BiologyVanderbilt University School of MedicineNashvilleTN37232USA
| |
Collapse
|
18
|
Stacey JCV, Hrebík D, Nand E, Shetty SD, Qu K, Boicu M, Anders-Össwein M, Dick RA, Mothes W, Kräusslich HG, Müller B, Briggs JAG. The conserved HIV-1 spacer peptide 2 triggers matrix lattice maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622200. [PMID: 39574591 PMCID: PMC11580929 DOI: 10.1101/2024.11.06.622200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
HIV-1 particles are released in an immature, non-infectious form. Proteolytic cleavage of the main structural polyprotein Gag into functional domains induces rearrangement into mature, infectious virions. In immature virus particles, the Gag membrane binding domain, MA, forms a hexameric protein lattice that undergoes structural transition upon cleavage into a distinct, mature MA lattice. The mechanism of MA lattice maturation is unknown. Here we show that released spacer peptide 2 (SP2), a conserved peptide of unknown function situated ~300 residues downstream of MA, binds MA to induce structural maturation. By high-resolution in-virus structure determination of MA, we show that MA does not bind lipid into a side pocket as previously thought, but instead binds SP2 as an integral part of the protein-protein interfaces that stabilise the mature lattice. Analysis of Gag cleavage site mutants showed that SP2 release is required for MA maturation, and we demonstrate that SP2 is sufficient to induce maturation of purified MA on lipid layers in vitro. SP2-triggered MA maturation correlated with faster fusion of virus with target cells. Our results reveal a new, unexpected interaction between two HIV-1 components, provide a high-resolution structure of mature MA, establish the trigger of MA structural maturation, and assign function to the SP2 peptide.
Collapse
Affiliation(s)
- James C V Stacey
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QU, United Kingdom
| | - Dominik Hrebík
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Elizabeth Nand
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Snehith Dyavari Shetty
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Marius Boicu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
19
|
Burt A, Toader B, Warshamanage R, von Kügelgen A, Pyle E, Zivanov J, Kimanius D, Bharat TAM, Scheres SHW. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 2024; 14:1788-1804. [PMID: 39147729 PMCID: PMC11532982 DOI: 10.1002/2211-5463.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Collapse
Affiliation(s)
- Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Department of Structural BiologyGenentechSouth San FranciscoCAUSA
| | - Bogdan Toader
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Rangana Warshamanage
- CCP‐EM, Scientific Computing DepartmentUKRI Science and Technology Facilities Council, Harwell CampusDidcotUK
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | | | - Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUK
- The Francis Crick InstituteLondonUK
- Present address:
European Molecular Biology LaboratoryHeidelbergGermany
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Present address:
CZ Imaging InstituteRedwood CityCAUSA
| | | | | |
Collapse
|
20
|
Wu C, Meuser ME, Rey JS, Meshkin H, Yang R, Devarkar SC, Freniere C, Shi J, Aiken C, Perilla JR, Xiong Y. Structural insights into inhibitor mechanisms on immature HIV-1 Gag lattice revealed by high-resolution in situ single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617473. [PMID: 39416065 PMCID: PMC11483028 DOI: 10.1101/2024.10.09.617473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
HIV-1 inhibitors, such as Bevirimat (BVM) and Lenacapavir (LEN), block the production and maturation of infectious virions. However, their mechanisms remain unclear due to the absence of high-resolution structures for BVM complexes and LEN's structural data being limited to the mature capsid. Utilizing perforated virus-like particles (VLPs) produced from mammalian cells, we developed an approach to determine in situ cryo-electron microscopy (cryo-EM) structures of HIV-1 with inhibitors. This allowed for the first structural determination of the native immature HIV-1 particle with BVM and LEN bound inside the VLPs at high resolutions. Our findings offer a more accurate model of BVM engaging the Gag lattice and, importantly, demonstrate that LEN not only binds the mature capsid but also targets the immature lattice in a distinct manner. The binding of LEN induces a conformational change in the capsid protein (CA) region and alters the architecture of the Gag lattice, which may affect the maturation process. These insights expand our understanding of the inhibitory mechanisms of BVM and LEN on HIV-1 and provide valuable clues for the design of future inhibitors.
Collapse
Affiliation(s)
- Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Megan E. Meuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Hamed Meshkin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Rachel Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Coray R, Navarro P, Scaramuzza S, Stahlberg H, Castaño-Díez D. Automated fiducial-based alignment of cryo-electron tomography tilt series in Dynamo. Structure 2024; 32:1808-1819.e4. [PMID: 39079528 DOI: 10.1016/j.str.2024.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 10/06/2024]
Abstract
With the advent of modern technologies for cryo-electron tomography (cryo-ET), high-quality tilt series are more rapidly acquired than processed and analyzed. Thus, a robust and fast-automated alignment for batch processing in cryo-ET is needed. While different software packages have made available several approaches for automated marker-based alignment of tilt series, manual user intervention remains necessary for many datasets, thus preventing high-throughput tomography. We have developed a MATLAB-based framework integrated into the Dynamo software package for automatic detection of fiducial markers that generates a robust alignment model with minimal input parameters. This approach allows high-throughput, unsupervised volume reconstruction. This new module extends Dynamo with a large repertory of tools for tomographic alignment and reconstruction, as well as specific visualization browsers to rapidly assess the biological relevance of the dataset. Our approach has been successfully tested on a broad range of datasets that include diverse biological samples and cryo-ET modalities.
Collapse
Affiliation(s)
- Raffaele Coray
- Instituto Biofisika (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco), University of Basque Country, 48940 Leioa, Spain
| | - Paula Navarro
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stefano Scaramuzza
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland; Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Daniel Castaño-Díez
- Instituto Biofisika (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco), University of Basque Country, 48940 Leioa, Spain; Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
22
|
Lyu CA, Shen Y, Zhang P. Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods. Viruses 2024; 16:1504. [PMID: 39339980 PMCID: PMC11437419 DOI: 10.3390/v16091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats.
Collapse
Affiliation(s)
- Cheng-An Lyu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
23
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
24
|
Wang Z, Bharat TAM. Serial lift-out for in situ structural biology of multicellular specimens. Nat Methods 2024; 21:1587-1588. [PMID: 39271807 DOI: 10.1038/s41592-024-02317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Affiliation(s)
- Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
25
|
Zeiger M, Pires M, Didier P, Vauchelles R, Mély Y, Boutant E, Real E. HIV-1 Gag Compact form Stabilized by Intramolecular Interactions is Crucial for Infectious Particle Production. J Mol Biol 2024; 436:168639. [PMID: 38838849 DOI: 10.1016/j.jmb.2024.168639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
HIV-1 Gag polyprotein plays a pivotal role in assembly and budding of new particles, by specifically packaging two copies of viral gRNA in the host cell cytoplasm and selecting the cell plasma membrane for budding. Both gRNA and membrane selections are thought to be mediated by the compact form of Gag. This compact form binds to gRNA through both its matrix (MA) and nucleocapsid (NC) domains in the cytoplasm. At the plasma membrane, the membrane competes with gRNA for Gag binding, resulting in a transition to the extended form of Gag found in immature particles with MA bound to membrane lipids and NC to gRNA. The Gag compact form was previously evidenced in vitro. Here, we demonstrated the compact form of Gag in cells by confocal microscopy, using a bimolecular fluorescence complementation approach with a split-GFP bipartite system. Using wild-type Gag and Gag mutants, we showed that the compact form is highly dependent on the binding of MA and NC domains to RNA, as well as on interactions between MA and CA domains. In contrast, Gag multimerization appears to be less critical for the accumulation of the compact form. Finally, mutations altering the formation of Gag compact form led to a strong reduction in viral particle production and infectivity, revealing its key role in the production of infectious viral particles.
Collapse
Affiliation(s)
- Manon Zeiger
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Manuel Pires
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Romain Vauchelles
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Emmanuel Boutant
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Eléonore Real
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
26
|
Denieva Z, Kuzmin PI, Galimzyanov TR, Datta SAK, Rein A, Batishchev OV. Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Membrane Physical Properties like a Surfactant: Potential Implications for Virus Assembly. ACS Infect Dis 2024; 10:2870-2885. [PMID: 38917054 PMCID: PMC11320576 DOI: 10.1021/acsinfecdis.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Human immunodeficiency virus (HIV) assembly at an infected cell's plasma membrane requires membrane deformation to organize the near-spherical shape of an immature virus. While the cellular expression of HIV Gag is sufficient to initiate budding of virus-like particles, how Gag generates membrane curvature is not fully understood. Using highly curved lipid nanotubes, we have investigated the physicochemical basis of the membrane activity of recombinant nonmyristoylated Gag-Δp6. Gag protein, upon adsorption onto the membrane, resulted in the shape changes of both charged and uncharged nanotubes. This shape change was more pronounced in the presence of charged lipids, especially phosphatidylinositol bisphosphate (PI(4,5)P2). We found that Gag modified the interfacial tension of phospholipid bilayer membranes, as judged by comparison with the effects of amphipathic peptides and nonionic detergent. Bioinformatic analysis demonstrated that a region of the capsid and SP1 domains junction of Gag is structurally similar to the amphipathic peptide magainin-1. This region accounts for integral changes in the physical properties of the membrane upon Gag adsorption, as we showed with the synthetic CA-SP1 junction peptide. Phenomenologically, membrane-adsorbed Gag could diminish the energetic cost of increasing the membrane area in a way similar to foam formation. We propose that Gag acts as a surface-active substance at the HIV budding site that softens the membrane at the place of Gag adsorption, lowering the energy for membrane bending. Finally, our experimental data and theoretical considerations give a lipid-centric view and common mechanism by which proteins could bend membranes, despite not having intrinsic curvature in their molecular surfaces or assemblies.
Collapse
Affiliation(s)
- Zaret
G. Denieva
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Peter I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Siddhartha A. K. Datta
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Alan Rein
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Oleg V. Batishchev
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| |
Collapse
|
27
|
Gao J, Tong M, Lee C, Gaertig J, Legal T, Bui KH. DomainFit: Identification of protein domains in cryo-EM maps at intermediate resolution using AlphaFold2-predicted models. Structure 2024; 32:1248-1259.e5. [PMID: 38754431 PMCID: PMC11316655 DOI: 10.1016/j.str.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Cryoelectron microscopy (cryo-EM) has revolutionized the structural determination of macromolecular complexes. With the paradigm shift to structure determination of highly complex endogenous macromolecular complexes ex vivo and in situ structural biology, there are an increasing number of structures of native complexes. These complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because side chains cannot be visualized reliably. Here, we present DomainFit, a program for semi-automated domain-level protein identification from cryo-EM maps, particularly at resolutions lower than 4 Å. By fitting domains from AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the domains and protein candidates forming the density. Using DomainFit, we identified two microtubule inner proteins, one of which contains a CCDC81 domain and is exclusively localized in the proximal region of the doublet microtubule in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Jerry Gao
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Maxwell Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens 30602-2607, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens 30602-2607, GA, USA
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
28
|
Zhang R, Shen Y, Li X. Tilt-series-based joint CTF estimation for cryo-electron tomography. Structure 2024; 32:1239-1247.e3. [PMID: 38823380 DOI: 10.1016/j.str.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Contrast transfer function (CTF) estimation is a necessary step in the cryo-electron tomography (cryoET) workflow and essential for high-resolution in situ structural determination. However, the low signal-to-noise ratio and continuous defocus variation in micrographs of cryoET tilt series make accurate CTF estimation challenging. Here, we report a tilt-series-based joint CTF estimation method implemented in the new software CTFMeasure. The joint estimation method combines all Thon-ring signals in a tilt series to improve the estimation accuracy. By using an objective function involving the CTF parameters and geometric parameters of a cryoET tilt series, CTFMeasure can estimate the CTF parameters of each micrograph and the absolute tilt angle offset of the lamellar sample relative to the sample stage plane, which is usually the glancing angle used during focused ion beam (FIB) milling. Tests on both synthetic and experimental data, as well as subtomogram averaging, demonstrated the accurate CTF estimation of cryoET tilt series by CTFMeasure.
Collapse
Affiliation(s)
- Ranhao Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuan Shen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Khavnekar S, Erdmann PS, Wan W. TOMOMAN: a software package for large scale cryo-electron tomography data preprocessing, community data sharing, and collaborative computing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.589639. [PMID: 38746401 PMCID: PMC11092592 DOI: 10.1101/2024.05.02.589639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are becoming the preferred methodologies for investigating subcellular and macromolecular structures in native or near-native environments. While cryo-ET is amenable to a wide range of biological problems, these problems often have data processing requirements that need to be individually optimized, precluding the notion of a one-size-fits-all processing pipeline. Cryo-ET data processing is also becoming progressively more complex due to an increasing number of packages for each processing step. Though each package has its own strengths and weaknesses, independent development and different data formats makes them difficult to interface with one another. TOMOMAN (TOMOgram MANager) is an extensible package for streamlining the interoperability of packages, enabling users to develop project-specific processing workflows. TOMOMAN does this by maintaining an internal metadata format and wrapping external packages to manage and perform preprocessing, from raw tilt-series data to reconstructed tomograms. TOMOMAN can also export this metadata between various STA packages. TOMOMAN also includes tools for archiving projects to data repositories; allowing subsequent users to download TOMOMAN projects and directly resume processing where it was previously left off. By tracking essential metadata, TOMOMAN streamlines data sharing, which improves reproducibility of published results, reduces computational costs by minimizing reprocessing, and enables distributed cryo-ET projects between multiple groups and institutions. TOMOMAN provides a way for users to test different software packages to develop processing workflows that meet the specific needs of their biological questions and to distribute their results with the broader scientific community.
Collapse
|
30
|
Costa-Filho JI, Theveny L, de Sautu M, Kirchhausen T. CryoSamba: self-supervised deep volumetric denoising for cryo-electron tomography data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603117. [PMID: 39071256 PMCID: PMC11276013 DOI: 10.1101/2024.07.11.603117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier shell correlation analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.
Collapse
Affiliation(s)
- Jose Inacio Costa-Filho
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Liam Theveny
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA
| | - Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
31
|
Powell BM, Davis JH. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. Nat Methods 2024; 21:1525-1536. [PMID: 38459385 PMCID: PMC11655136 DOI: 10.1038/s41592-024-02210-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Cryo-electron tomography (cryo-ET) enables observation of macromolecular complexes in their native, spatially contextualized cellular environment. Cryo-ET processing software to visualize such complexes at nanometer resolution via iterative alignment and averaging are well developed but rely upon assumptions of structural homogeneity among the complexes of interest. Recently developed tools allow for some assessment of structural diversity but have limited capacity to represent highly heterogeneous structures, including those undergoing continuous conformational changes. Here we extend the highly expressive cryoDRGN (Deep Reconstructing Generative Networks) deep learning architecture, originally created for single-particle cryo-electron microscopy analysis, to cryo-ET. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct heterogeneous structural ensembles supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET. We additionally illustrate tomoDRGN's efficacy in analyzing diverse datasets, using it to reveal high-level organization of human immunodeficiency virus (HIV) capsid complexes assembled in virus-like particles and to resolve extensive structural heterogeneity among ribosomes imaged in situ.
Collapse
Affiliation(s)
- Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
32
|
Ngo W, Peukes JT, Baldwin A, Xue ZW, Hwang S, Stickels RR, Lin Z, Satpathy AT, Wells JA, Schekman R, Nogales E, Doudna JA. Mechanism-guided engineering of a minimal biological particle for genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604809. [PMID: 39091760 PMCID: PMC11291128 DOI: 10.1101/2024.07.23.604809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The widespread application of genome editing to treat or even cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped Delivery Vehicles (EDVs) are engineered virally-derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication components in EDVs has obscured the underlying delivery mechanism and precluded particle optimization. Here we show that Cas9 RNP nuclear delivery is independent of the native lentiviral capsid structure. Instead, EDV-mediated genome editing activity corresponds directly to the number of nuclear localization sequences on the Cas9 enzyme. EDV structural analysis using cryo-electron tomography and small molecule inhibitors guided the removal of ~80% of viral residues, creating a minimal EDV (miniEDV) that retains full RNP delivery capability. MiniEDVs are 25% smaller yet package equivalent amounts of Cas9 RNPs relative to the original EDVs, and demonstrated increased editing in cell lines and therapeutically-relevant primary human T cells. These results show that virally-derived particles can be streamlined to create efficacious genome editing delivery vehicles that could simplify production and manufacturing.
Collapse
Affiliation(s)
- Wayne Ngo
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
| | - Julia T. Peukes
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
| | - Alisha Baldwin
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
| | - Zhiwei Wayne Xue
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | - Sidney Hwang
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - Robert R. Stickels
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco; San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University; Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy; San Francisco, CA, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco; San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, CA, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
| | - Jennifer A. Doudna
- Innovative Genomics Institute; University of California, Berkeley; Berkeley CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley; Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
| |
Collapse
|
33
|
Van Blerkom P, Bezault A, Sauvanet C, Hanein D, Volkmann N. The GoldX Fiducial Eraser. Int J Mol Sci 2024; 25:7442. [PMID: 39000548 PMCID: PMC11242485 DOI: 10.3390/ijms25137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.
Collapse
Affiliation(s)
- Peter Van Blerkom
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armel Bezault
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75724 Paris, France
| | - Cécile Sauvanet
- Institut de Biologie Intégrative de la Cellule, CNRS CEA, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Niels Volkmann
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Anastasina M, Füzik T, Domanska A, Pulkkinen LIA, Šmerdová L, Formanová PP, Straková P, Nováček J, Růžek D, Plevka P, Butcher SJ. The structure of immature tick-borne encephalitis virus supports the collapse model of flavivirus maturation. SCIENCE ADVANCES 2024; 10:eadl1888. [PMID: 38959313 PMCID: PMC11221509 DOI: 10.1126/sciadv.adl1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.
Collapse
Affiliation(s)
- Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petra Pokorná Formanová
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Straková
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
36
|
Wang H, Liao S, Yu X, Zhang J, Zhou ZH. TomoNet: A streamlined cryogenic electron tomography software pipeline with automatic particle picking on flexible lattices. BIOLOGICAL IMAGING 2024; 4:e7. [PMID: 38828212 PMCID: PMC11140495 DOI: 10.1017/s2633903x24000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024]
Abstract
Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures of molecular complexes at near-atomic resolution by averaging half a million subtomograms. While abundant complexes/particles are often clustered in arrays, precisely locating and seamlessly averaging such particles across many tomograms present major challenges. Here, we developed TomoNet, a software package with a modern graphical user interface to carry out the entire pipeline of cryoET and subtomogram averaging to achieve high resolution. TomoNet features built-in automatic particle picking and three-dimensional (3D) classification functions and integrates commonly used packages to streamline high-resolution subtomogram averaging for structures in 1D, 2D, or 3D arrays. Automatic particle picking is accomplished in two complementary ways: one based on template matching and the other using deep learning. TomoNet's hierarchical file organization and visual display facilitate efficient data management as required for large cryoET datasets. Applications of TomoNet to three types of datasets demonstrate its capability of efficient and accurate particle picking on flexible and imperfect lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface layers within cellular lamellae, and membranes decorated with nuclear egress protein complexes. These results demonstrate TomoNet's potential for broad applications to various cryoET projects targeting high-resolution in situ structures.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Xinye Yu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Liu YT, Fan H, Hu JJ, Zhou ZH. Overcoming the preferred orientation problem in cryoEM with self-supervised deep-learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588921. [PMID: 38645074 PMCID: PMC11030451 DOI: 10.1101/2024.04.11.588921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
While advances in single-particle cryoEM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the so-called "preferred" orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep-learning-based software to address the preferred orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's capability of generating near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases, and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred orientation problem.
Collapse
Affiliation(s)
- Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hongcheng Fan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jason J. Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Zhao J, Yu X, Shentu X, Li D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res 2024; 396:1-18. [PMID: 38416172 DOI: 10.1007/s00441-024-03878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
39
|
Banerjee P, Monje-Galvan V, Voth GA. Cooperative Membrane Binding of HIV-1 Matrix Proteins. J Phys Chem B 2024; 128:2595-2606. [PMID: 38477117 PMCID: PMC10962350 DOI: 10.1021/acs.jpcb.3c06222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated (Myr) N-terminal matrix (MA) domain of Gag, which eventually multimerize on the membrane to form trimers and higher order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex transient dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between the MA monomers and MA-membrane remain elusive in the context of viral assembly and release. Our present study focuses on the membrane binding dynamics of a higher order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of an MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest complex protein dynamics during the formation of the immature HIV-1 lattice; while MA trimerization facilitates Myr insertion, MA trimer-trimer interactions in the immature lattice can hinder the same.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Durden H, Preece B, Gallegos R, Saha I, MacArthur B, Petersen A, Peppel W, Saffarian S. Competitive assembly resolves the stoichiometry of essential proteins in infectious HIV-1 virions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584319. [PMID: 38559103 PMCID: PMC10979864 DOI: 10.1101/2024.03.10.584319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During assembly on the plasma membrane, HIV-1 virions incorporate Gag-Pol as well as gp120/gp41 trimers. The Pol region consists of protease, reverse transcriptase and integrase precursors which are essential enzymes required for maturation, reverse transcription, and integration of the viral genome in the next host. gp120/gp41 trimers catalyze the fusion of the virion with its next host. Only a fraction of released virions are infectious. The stoichiometry of gp120/gp41 and Gag-Pol proteins in HIV virions was previously measured using cryotomography and ratiometric protein analysis, but what is the stoichiometry of these proteins in infectious virions remained to be determined. Here we developed a method based on competition between infectious HIV backbones with noninfectious mutants and measured 100 ± 10 Gag-Pol and 15 ± 3 gp120/gp41 proteins incorporated in infectious virions assembled in HEK293 cells from NL4.3 HIV-1 backbone. Our measurements are in broad agreement with cryotomography and ratiometric protein analysis and therefore stoichiometry of gp120/gp41 and Gag-Pol in infectious virions is the same as all released virions. With the development of appropriate mutants and infectivity assays, our method is applicable to other infectious viruses. Statement of significance There are 30 million people who have succumbed to the AIDS pandemic with 600,000 additional deaths per year. HIV has an accelerated rate of mutational accumulation with the virus mutating out of neutralizing antibodies within the same patient making development of vaccines challenging. Like most enveloped viruses, only a fraction of released virions are infectious and the question of what selects these virions has remained a mystery. The method developed in this article will allow stoichiometric measurements on infectious virions and therefore allows further studies of causes of infectivity.
Collapse
|
41
|
de Isidro-Gómez FP, Vilas JL, Losana P, Carazo JM, Sorzano COS. A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions. J Struct Biol 2024; 216:108056. [PMID: 38101554 DOI: 10.1016/j.jsb.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular in situ observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.
Collapse
Affiliation(s)
- F P de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; Univ. Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - P Losana
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
42
|
Mastronarde DN. Accurate, automatic determination of astigmatism and phase with Ctfplotter in IMOD. J Struct Biol 2024; 216:108057. [PMID: 38182035 PMCID: PMC10939802 DOI: 10.1016/j.jsb.2023.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Ctfplotter in the IMOD software package is a flexible program for determination of CTF parameters in tilt series images. It uses a novel approach to find astigmatism by measuring defocus in one-dimensional power spectra rotationally averaged over a series of restricted angular ranges. Comparisons with Ctffind, Gctf, and Warp show that Ctfplotter's estimated astigmatism is generally more reliable than that found by these programs that fit CTF parameters to two-dimensional power spectra, especially at higher tilt angles. In addition to that intrinsic advantage, Ctfplotter can reduce the variability in astigmatism estimates further by summing results over multiple tilt angles (typically 5), while still finding defocus for each individual image. Its fitting strategy also produces better phase estimates. The program now includes features for tuning the sampling of the power spectrum so that it is well-represented for analysis, and for determining an appropriate fitting range that can vary with tilt angle. It can thus be used automatically in a variety of situations, not just for fitting tilt series, and has been integrated into the SerialEM acquisition software for real-time determination of focus and astigmatism.
Collapse
Affiliation(s)
- David N Mastronarde
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
43
|
Banerjee P, Qu K, Briggs JAG, Voth GA. Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation. Biophys J 2024; 123:389-406. [PMID: 38196190 PMCID: PMC10870173 DOI: 10.1016/j.bpj.2024.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Planegg, Germany
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
44
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
45
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. Biophys J 2024; 123:42-56. [PMID: 37978800 PMCID: PMC10808027 DOI: 10.1016/j.bpj.2023.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
46
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Vuillemot R, Harastani M, Hamitouche I, Jonic S. MDSPACE and MDTOMO Software for Extracting Continuous Conformational Landscapes from Datasets of Single Particle Images and Subtomograms Based on Molecular Dynamics Simulations: Latest Developments in ContinuousFlex Software Package. Int J Mol Sci 2023; 25:20. [PMID: 38203192 PMCID: PMC10779004 DOI: 10.3390/ijms25010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Cryo electron microscopy (cryo-EM) instrumentation allows obtaining 3D reconstruction of the structure of biomolecular complexes in vitro (purified complexes studied by single particle analysis) and in situ (complexes studied in cells by cryo electron tomography). Standard cryo-EM approaches allow high-resolution reconstruction of only a few conformational states of a molecular complex, as they rely on data classification into a given number of classes to increase the resolution of the reconstruction from the most populated classes while discarding all other classes. Such discrete classification approaches result in a partial picture of the full conformational variability of the complex, due to continuous conformational transitions with many, uncountable intermediate states. In this article, we present the software with a user-friendly graphical interface for running two recently introduced methods, namely, MDSPACE and MDTOMO, to obtain continuous conformational landscapes of biomolecules by analyzing in vitro and in situ cryo-EM data (single particle images and subtomograms) based on molecular dynamics simulations of an available atomic model of one of the conformations. The MDSPACE and MDTOMO software is part of the open-source ContinuousFlex software package (starting from version 3.4.2 of ContinuousFlex), which can be run as a plugin of the Scipion software package (version 3.1 and later), broadly used in the cryo-EM field.
Collapse
Affiliation(s)
| | | | | | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, MNHN, 75005 Paris, France
| |
Collapse
|
48
|
Liu HF, Zhou Y, Huang Q, Piland J, Jin W, Mandel J, Du X, Martin J, Bartesaghi A. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat Methods 2023; 20:1909-1919. [PMID: 37884796 PMCID: PMC10703682 DOI: 10.1038/s41592-023-02045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles. We validate our approach using in vitro and cellular datasets, demonstrating its effectiveness at achieving high-resolution and revealing conformational heterogeneity in situ. The framework is made available through an intuitive and easy-to-use computer application, nextPYP ( http://nextpyp.app ).
Collapse
Affiliation(s)
- Hsuan-Fu Liu
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Qinwen Huang
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Jonathan Piland
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Weisheng Jin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Justin Mandel
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Xiaochen Du
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey Martin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
49
|
Gao J, Tong M, Lee C, Gaertig J, Legal T, Bui KH. DomainFit: Identification of Protein Domains in cryo-EM maps at Intermediate Resolution using AlphaFold2-predicted Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569001. [PMID: 38077012 PMCID: PMC10705406 DOI: 10.1101/2023.11.28.569001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized our understanding of macromolecular complexes, enabling high-resolution structure determination. With the paradigm shift to in situ structural biology recently driven by the ground-breaking development of cryo-focused ion beam milling and cryo-electron tomography, there are an increasing number of structures at sub-nanometer resolution of complexes solved directly within their cellular environment. These cellular complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because the side chains cannot be visualized reliably. Here, we present DomainFit, a program for automated domain-level protein identification from cryo-EM maps at resolutions lower than 4 Å. By fitting domains from artificial intelligence-predicted models such as AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the proteins forming the density. Using DomainFit, we identified two microtubule inner proteins, one of them, a CCDC81 domain-containing protein, is exclusively localized in the proximal region of the doublet microtubule from the ciliate Tetrahymena thermophila. The flexibility and capability of DomainFit makes it a valuable tool for analyzing in situ structures.
Collapse
Affiliation(s)
- Jerry Gao
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Max Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
50
|
Zhu D, Cao D, Zhang X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 2023; 31:1348-1359. [PMID: 37797619 DOI: 10.1016/j.str.2023.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|