1
|
Padhy I, Dwibedy SK, Mohapatra SS. Fitness trade-off and the discovery of a novel missense mutation in the PmrB sensor kinase of a colistin-resistant Pseudomonas aeruginosa strain developed by adaptive laboratory evolution. Microb Pathog 2025; 203:107473. [PMID: 40081679 DOI: 10.1016/j.micpath.2025.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Pseudomonas aeruginosa is a prominent bacterial pathogen that causes several nosocomial infections and is notorious for its environmental resilience and rapid development of resistance to frontline antibiotics. A major cause of mortality and morbidity among cystic fibrosis patients, multidrug-resistant P. aeruginosa is often targeted with the antibiotic colistin as a last option. However, increasing reports of colistin resistance among P. aeruginosa is a significant concern. Though the molecular mechanisms responsible for the development of colistin resistance are well known, the evolutionary trajectory to colistin resistance is an important area of investigation. In this work, using the adaptive laboratory evolution (ALE) approach we have evolved a colistin-sensitive P. aeruginosa ancestral strain to a resistant one. During the process of laboratory evolution in 106 generations, colistin MIC was increased 32-fold. The evolved strain had lower fitness than the ancestral strain, as evidenced by a lower growth rate. Moreover, the evolved strain produced more biofilm and less pyocyanin pigment. Interestingly, the evolved strain showed collateral sensitivity to several antibiotics, including ampicillin, tetracycline, streptomycin, gentamycin, nalidixic acid, trimethoprim, rifampicin, and chloramphenicol. On analysing various TCS modules involved in the development of colistin resistance, a novel missense mutation (V136G) was detected in the PmrB sensor kinase. In silico analysis indicated that the V136G substitution would destabilize the PmrB kinase structure, making the mutation deleterious. However, the functionality of the PmrB mutant remains to be validated experimentally.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, 760007, Odisha, India; Department of Zoology, SBRG Women's College, Berhampur, 760001, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, 760007, Odisha, India.
| |
Collapse
|
2
|
Yu Z, Wu Z, Liu D, Liu H, Zhang Y, Zheng Y, Huang Y, Liao S, Wei Y, Huang W, Zhang Z, Liu X, Yu H, Wang D, Li L, Long F, Ma LZ. Dual-function regulator MexL as a target to control phenazines production and pathogenesis of Pseudomonas aeruginosa. Nat Commun 2025; 16:2000. [PMID: 40011517 PMCID: PMC11865548 DOI: 10.1038/s41467-025-57294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Antibiotic resistance or tolerance of pathogens has become one of the global public crises. Finding new drug targets may open up a way of infection control. Phenazine pyocyanin (PYO) is an important virulence factor produced by the pathogen Pseudomonas aeruginosa. Here we show that a multidrug efflux pump repressor, MexL, acts as a transcriptional activator to enhance phenazines production via binding with a conserved DNA motif within the promoters of phenazines biosynthesis genes. Moreover, PYO functions as a self-regulating ligand of MexL for restricting its own production and the mexL knockout attenuates the virulence and antibiotics tolerance of P. aeruginosa. Based on the structure of MexL we resolve, we find two antimicrobials that can interact with MexL to reduce the PYO production and virulence of P. aeruginosa. Our in vivo studies suggest that the antimicrobials combination by using MexL-antagonists to reduce bacterial virulence and enhance the efficacy of common antibiotics can be an effective way to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhikun Wu
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Dejian Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyu Liu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenyu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Feng Long
- Department of neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Liu J, Wu W, Hu J, Zhao S, Chang Y, Chen Q, Li Y, Tang J, Zhang Z, Wu X, Jiao S, Xiao H, Zhang Q, Du J, Zhao J, Ye K, Huang M, Xu J, Zhou H, Zheng J, Sun P. Novel benzothiazole derivatives target the Gac/Rsm two-component system as antibacterial synergists against Pseudomonas aeruginosa infections. Acta Pharm Sin B 2024; 14:4934-4961. [PMID: 39664420 PMCID: PMC11628855 DOI: 10.1016/j.apsb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 12/13/2024] Open
Abstract
The management of antibiotic-resistant, bacterial biofilm infections in skin wounds poses an increasingly challenging clinical scenario. Pseudomonas aeruginosa infection is difficult to eradicate because of biofilm formation and antibiotic resistance. In this study, we identified a new benzothiazole derivative compound, SN12 (IC50 = 43.3 nmol/L), demonstrating remarkable biofilm inhibition at nanomolar concentrations in vitro. In further activity assays and mechanistic studies, we formulated an unconventional strategy for combating P. aeruginosa-derived infections by targeting the two-component (Gac/Rsm) system. Furthermore, SN12 slowed the development of ciprofloxacin and tobramycin resistance. By using murine skin wound infection models, we observed that SN12 significantly augmented the antibacterial effects of three widely used antibiotics-tobramycin (100-fold), vancomycin (200-fold), and ciprofloxacin (1000-fold)-compared with single-dose antibiotic treatments for P. aeruginosa infection in vivo. The findings of this study suggest the potential of SN12 as a promising antibacterial synergist, highlighting the effectiveness of targeting the two-component system in treating challenging bacterial biofilm infections in humans.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenfu Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiayi Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Siyu Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yiqun Chang
- Faculty of Medicine and Health, the University of Sydney, Sydney NSW 2006, Australia
| | - Qiuxian Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yujie Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenmeng Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shumeng Jiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haichuan Xiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiarui Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- Department of Oncology, the First Affiliated Hospital of Jinan University Guangzhou, Guangzhou 510632, China
| | - Kaihe Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Meiyan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haibo Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Department of Oncology, the First Affiliated Hospital of Jinan University Guangzhou, Guangzhou 510632, China
| |
Collapse
|
4
|
Gao L, Zhang K, Wang Y, Qin C, Zhang Y, Liu Y, Liu C, Wan Y. Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas Aeruginosa from hospital water. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113035. [PMID: 39303620 DOI: 10.1016/j.jphotobiol.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hospital water systems represent critical environments for the transmission of pathogens, including multidrug-resistant strains like mucoid Pseudomonas aeruginosa (M-PA). Conventional disinfection methods often struggle to eradicate these pathogens effectively, highlighting the need for innovative approaches. OBJECTIVE This study aimed to develop an enhanced photodynamic disinfection strategy targeting M-PA from hospital water systems, using curcumin-mediated photodynamic inactivation (PDI) with specific spectral range. METHODS An M-PA strain isolated from hospital water was subjected to photodynamic treatment using curcumin as the photosensitizer. The efficacy of different wavelengths of light and varying concentrations of curcumin, with and without Tris-EDTA adjuvants, was evaluated through bacterial enumeration, ROS level measurements, transcriptome analysis, and assessment of virulence factors and biofilm formation. In vivo experiments utilizing a DSS-induced colitis mouse model assessed the protective effects of the photodynamic treatment against M-PA infection. RESULTS Our findings demonstrated that the combination of curcumin-mediated PDI with specific spectral range effectively reduced M-PA counts in water, particularly when supplemented with Tris-EDTA. Transcriptome analysis revealed significant downregulation of virulence-related genes under sublethal photodynamic conditions. Furthermore, photodynamic treatment inhibited pyocyanin production and biofilm formation in M-PA, highlighting its potential to disrupt pathogenicity mechanisms. In vivo experiments showed that PDI attenuated M-PA-induced colitis in mice, indicating its protective efficacy. CONCLUSION This study presents a promising photodynamic disinfection strategy for combating M-PA from hospital water. By optimizing curcumin-mediated PDI with specific spectral range and adjuvants, our approach demonstrates substantial efficacy in reducing bacterial counts, inhibiting virulence factors, and preventing M-PA-associated colitis.
Collapse
Affiliation(s)
- Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Kun Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yan Wang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yuejuan Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Ying Liu
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China.
| |
Collapse
|
5
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024; 16:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
6
|
Niazy AA, Lambarte RNA, Sumague TS, Vigilla MGB, Bin Shwish NM, Kamalan R, Daeab EK, Aljehani NM. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics (Basel) 2024; 13:621. [PMID: 39061303 PMCID: PMC11273553 DOI: 10.3390/antibiotics13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa, a nosocomial pathogen, has strong biofilm capabilities, representing the main source of infection in the human body. Repurposing existing drugs has been explored as an alternative strategy to combat emerging antibiotic-resistant pathogens. Fingolimod hydrochloride (FTY720), an immunomodulatory drug for multiple sclerosis, has shown promising antimicrobial effects against some ESKAPE pathogens. Therefore, the effects of FTY720 on the biofilm capabilities of Pseudomonas aeruginosa were investigated in this study. It was determined that FTY720 inhibited the growth of P. aeruginosa PAO1 at 100 µM. The significant reduction in PAO1 cell viability was observed to be dose-dependent. Additional cytotoxicity analysis on human cell lines showed that FTY720 significantly reduced viabilities at sub-inhibitory concentrations of 25-50 µM. Microtiter assays and confocal analysis confirmed reductions in biofilm mass and thickness and the cell survivability ratio in the presence of FTY720. Similarly, virulence production and biofilm-related gene expression (rhlA, rhlB, pilA, pilI, fliC, fliD and algR) were determined. The results demonstrate that pigment production was affected and quantitative real-time PCR analysis showed a variable degree of reduced gene expression in response to FTY720 at 12.5-50 µM. These findings suggest that FTY720 could be repurposed as an alternative antibiofilm agent against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Mary Grace B. Vigilla
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Najla M. Bin Shwish
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Ranan Kamalan
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eid Khulaif Daeab
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nami M. Aljehani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
7
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
8
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
9
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
10
|
Thalhammer KO, Newman DK. A phenazine-inspired framework for identifying biological functions of microbial redox-active metabolites. Curr Opin Chem Biol 2023; 75:102320. [PMID: 37201291 PMCID: PMC10524139 DOI: 10.1016/j.cbpa.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
While the list of small molecules known to be secreted by environmental microbes continues to grow, our understanding of their in situ biological functions remains minimal. The time has come to develop a framework to parse the meaning of these "secondary metabolites," which are ecologically ubiquitous and have direct applications in medicine and biotechnology. Here, we focus on a particular subset of molecules, redox active metabolites (RAMs), and review the well-studied phenazines as archetypes of this class. We argue that efforts to characterize the chemical, physical and biological makeup of the microenvironments, wherein these molecules are produced, coupled with measurements of the molecules' basic chemical properties, will enable significant progress in understanding the precise roles of novel RAMs.
Collapse
Affiliation(s)
- Korbinian O Thalhammer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Boopathi S, Priya PS, Haridevamuthu B, Nayak SPRR, Chandrasekar M, Arockiaraj J, Jia AQ. Expanding germ-organ theory: Understanding non-communicable diseases through enterobacterial translocation. Pharmacol Res 2023; 194:106856. [PMID: 37460001 DOI: 10.1016/j.phrs.2023.106856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China; Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
12
|
Guo S, Zhao Q, Hu H, Wang W, Bilal M, Fei Q, Zhang X. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37247609 DOI: 10.1021/acs.jafc.3c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) secreted by Pseudomonas chlororaphis has been commercialized and widely employed as an antifungal pesticide. However, it displays potential hazards to nontarget microorganisms and the environment. Although the PCA degradation characteristics have received extensive attention, the biodegradation efficiency is still insufficient to address the environmental risks. In this study, an engineered Pseudomonas capable of degrading PCA was constructed by introducing heterologous PCA 1,2-dioxygenase (PcaA1A2A3A4). By integrating the PCA degradation module in the chemical mutagenesis mutant P3, 7.94 g/L PCA can be degraded in 60 h, which exhibited the highest PCA degradation efficiency to date and was 35.4-fold higher than that of the PCA natural degraders. Additionally, PCA was converted to 1-methoxyphenazine through structure modification by introducing the functional enzymes PhzSPa and PhzMLa, which has good antifungal activity and environmental compatibility. This work demonstrates new possibilities for developing PCA-derived biopesticides and enables targeted control of the impact of PCA in diverse environments.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Antimicrobial and Antibiofilm Photodynamic Action of Photosensitizing Nanoassemblies Based on Sulfobutylether-β-Cyclodextrin. Molecules 2023; 28:molecules28062493. [PMID: 36985465 PMCID: PMC10051317 DOI: 10.3390/molecules28062493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Developing new broad-spectrum antimicrobial strategies, as alternatives to antibiotics and being able to efficiently inactivate pathogens without inducing resistance, is one of the main objectives in public health. Antimicrobial photodynamic therapy (aPDT), based on the light-induced production of reactive oxygen species from photosensitizers (PS), is attracting growing interest in the context of infection treatment, also including biofilm destruction. Due to the limited photostability of free PS, delivery systems are increasingly needed in order to decrease PS photodegradation, thus improving the therapeutic efficacy, as well as to reduce collateral effects on unaffected tissues. In this study, we propose a photosensitizing nanosystem based on the cationic porphyrin 5,10,15,20-tetrakis (N-methyl- 4-pyridyl)-21H,23H-porphyrin (TMPyP), complexed with the commerical sulfobutylether-beta-cyclodextrin (CAPTISOL®), at a 1:50 molar ratio (CAPTISOL®/TMPyP)50_1. Nanoassemblies based on (CAPTISOL®/TMPyP)50_1 with photodynamic features exhibited photo-antimicrobial activity against Gram-negative and Gram-positive bacteria. Moreover, results from P. aeruginosa reveal that CAPTISOL® alone inhibits pyocyanin (PYO) production, also affecting bacterial biofilm formation. Finally, we obtained a synergistic effect of inhibition and destruction of P. aeruginosa biofilm by using the combination of CAPTISOL® and TMPyP.
Collapse
|
14
|
Genome-scale model of Pseudomonas aeruginosa metabolism unveils virulence and drug potentiation. Commun Biol 2023; 6:165. [PMID: 36765199 PMCID: PMC9918512 DOI: 10.1038/s42003-023-04540-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of hospital-acquired infections. To decipher the metabolic mechanisms associated with virulence and antibiotic resistance, we have developed an updated genome-scale model (GEM) of P. aeruginosa. The model (iSD1509) is an extensively curated, three-compartment, and mass-and-charge balanced BiGG model containing 1509 genes, the largest gene content for any P. aeruginosa GEM to date. It is the most accurate with prediction accuracies as high as 92.4% (gene essentiality) and 93.5% (substrate utilization). In iSD1509, we newly added a recently discovered pathway for ubiquinone-9 biosynthesis which is required for anaerobic growth. We used a modified iSD1509 to demonstrate the role of virulence factor (phenazines) in the pathogen survival within biofilm/oxygen-limited condition. Further, the model can mechanistically explain the overproduction of a drug susceptibility biomarker in the P. aeruginosa mutants. Finally, we use iSD1509 to demonstrate the drug potentiation by metabolite supplementation, and elucidate the mechanisms behind the phenotype, which agree with experimental results.
Collapse
|
15
|
Meng Q, Kim SJ, Costa MA, Moinuddin SGA, Celoy RM, Smith CA, Cort JR, Davin LB, Lewis NG. Dirigent protein subfamily function and structure in terrestrial plant phenol metabolism. Methods Enzymol 2023; 683:101-150. [PMID: 37087184 DOI: 10.1016/bs.mie.2023.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Aquatic plant transition to land, and subsequent terrestrial plant species diversification, was accompanied by the emergence and massive elaboration of plant phenol chemo-diversity. Concomitantly, dirigent protein (DP) and dirigent-like protein subfamilies, derived from large multigene families, emerged and became extensively diversified. DP biochemical functions as gateway entry points into new and diverse plant phenol skeletal types then markedly expanded. DPs have at least eight non-uniformly distributed subfamilies, with different DP subfamily members of known biochemical/physiological function now implicated as gateway entries to lignan, lignin, aromatic diterpenoid, pterocarpan and isoflavene pathways. While some other DP subfamily members have jacalin domains, both these and indeed the majority of DPs throughout the plant kingdom await discovery of their biochemical roles. Methods and approaches were developed to discover DP biochemical function as gateway entry points to distinct plant phenol skeletal types in land plants. Various DP 3D X-ray structural determinations enabled structure-based comparative sequence analysis and modeling to understand similarities and differences among the different DP subfamilies. We consider that the core DP β-barrel fold and associated characteristics are likely common to all DPs, with several residues conserved and nearly invariant. There is also considerable variation in residue composition and topography of the putative substrate binding pockets, as well as substantial differences in several loops, such as the β1-β2 loop. All DPs likely bind and stabilize quinone methide intermediates, while guiding distinctive regio- and/or stereo-chemical entry into Nature's chemo-diverse land plant phenol metabolic classes.
Collapse
Affiliation(s)
- Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Sung-Jin Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Syed G A Moinuddin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Rhodesia M Celoy
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, United States
| | - John R Cort
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.
| |
Collapse
|
16
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
17
|
The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2022; 88:e0054322. [PMID: 35579476 PMCID: PMC9195955 DOI: 10.1128/aem.00543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 μM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.
Collapse
|
18
|
Meirelles LA, Newman DK. Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Mol Microbiol 2022; 117:1384-1404. [PMID: 35510686 DOI: 10.1111/mmi.14915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022]
Abstract
Bacterial opportunistic pathogens make diverse secondary metabolites both in the natural environment and when causing infections, yet how these molecules mediate microbial interactions and their consequences for antibiotic treatment are still poorly understood. Here, we explore the role of three redox-active secondary metabolites, pyocyanin, phenazine-1-carboxylic acid and toxoflavin, as interspecies modulators of antibiotic resilience. We find that these molecules dramatically change susceptibility levels of diverse bacteria to clinical antibiotics. Pyocyanin and phenazine-1-carboxylic acid are made by Pseudomonas aeruginosa, while toxoflavin is made by Burkholderia gladioli, organisms that infect cystic fibrosis and other immunocompromised patients. All molecules alter the susceptibility profile of pathogenic species within the "Burkholderia cepacia complex" to different antibiotics, either antagonizing or potentiating their effects, depending on the drug's class. Defense responses regulated by the redox-sensitive transcription factor SoxR potentiate the antagonistic effects these metabolites have against fluoroquinolones, and the presence of genes encoding SoxR and the efflux systems it regulates can be used to predict how these metabolites will affect antibiotic susceptibility of different bacteria. Finally, we demonstrate that inclusion of secondary metabolites in standard protocols used to assess antibiotic resistance can dramatically alter the results, motivating the development of new tests for more accurate clinical assessment.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
19
|
Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, Huang J, Hu Z, Zhang R, Rao X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol 2022; 15:1910-1921. [PMID: 35290715 PMCID: PMC9151332 DOI: 10.1111/1751-7915.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear. The sterilization effect of a portable CAP device on different P. aeruginosa strains was investigated in this study. Results revealed that CAP can directly or indirectly kill P. aeruginosa in a time‐dependent manner. Scanning electron microscopy and transmission electron microscope showed negligible surface changes between CAP‐treated and untreated P. aeruginosa cells. However, cell leakage occurred during the CAP process with increased bacterial lactate dehydrogenase release. More importantly, pigmentation of the P. aeruginosa culture was remarkably reduced after CAP treatment. Further mechanical exploration was performed by utilizing mutants with loss of functional genes involved in pyocyanin biosynthesis, including P. aeruginosa PAO1 strain‐derived phzA1::Tn, phzA2::Tn, ΔphzA1/ΔphzA2, phzM::Tn and phzS::Tn, as well as corresponding gene deletion mutants based on clinical PA1 isolate. The results indicated that pyocyanin and its intermediate 5‐methyl phenazine‐1‐carboxylic acid (5‐Me‐PCA) play important roles in P. aeruginosa resistance to CAP treatment. The unique enzymes, such as PhzM in the pyocyanin biosynthetic pathway, could be novel targets for the therapeutic strategy design to control the growing P. aeruginosa infections.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
20
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
21
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
22
|
Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2021; 118:2022012118. [PMID: 33723058 DOI: 10.1073/pnas.2022012118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that develops difficult-to-treat biofilms in immunocompromised individuals, cystic fibrosis patients, and in chronic wounds. P. aeruginosa has an arsenal of physiological attributes that enable it to evade standard antibiotic treatments, particularly in the context of biofilms where it grows slowly and becomes tolerant to many drugs. One of its survival strategies involves the production of the redox-active phenazine, pyocyanin, which promotes biofilm development. We previously identified an enzyme, PodA, that demethylated pyocyanin and disrupted P. aeruginosa biofilm development in vitro. Here, we asked if this protein could be used as a potential therapeutic for P. aeruginosa infections together with tobramycin, an antibiotic typically used in the clinic. A major roadblock to answering this question was the poor yield and stability of wild-type PodA purified from standard Escherichia coli overexpression systems. We hypothesized that the insufficient yields were due to poor packing within PodA's obligatory homotrimeric interfaces. We therefore applied the protein design algorithm, AffiLib, to optimize the symmetric core of this interface, resulting in a design that incorporated five mutations leading to a 20-fold increase in protein yield from heterologous expression and purification and a substantial increase in stability to environmental conditions. The addition of the designed PodA with tobramycin led to increased killing of P. aeruginosa cultures under oxic and hypoxic conditions in both the planktonic and biofilm states. This study highlights the potential for targeting extracellular metabolites to assist the control of P. aeruginosa biofilms that tolerate conventional antibiotic treatment.
Collapse
|
23
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
24
|
A Dual-Specificity Inhibitor Targets Polyphosphate Kinase 1 and 2 Enzymes To Attenuate Virulence of Pseudomonas aeruginosa. mBio 2021; 12:e0059221. [PMID: 34126765 PMCID: PMC8262977 DOI: 10.1128/mbio.00592-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections, which are becoming increasingly difficult to treat due to antibiotic resistance. Polyphosphate (polyP) plays a key role in P. aeruginosa virulence, stress response, and antibiotic tolerance, suggesting an attractive drug target. Here, we show that the small molecule gallein disrupts polyphosphate homeostasis by inhibiting all members of both polyphosphate kinase (PPK) families (PPK1 and PPK2) encoded by P. aeruginosa, demonstrating dual-specificity PPK inhibition for the first time. Inhibitor treatment phenocopied ppk deletion to reduce cellular polyP accumulation and attenuate biofilm formation, motility, and pyoverdine and pyocyanin production. Most importantly, gallein attenuated P. aeruginosa virulence in a Caenorhabditis elegans infection model and synergized with antibiotics while exhibiting negligible toxicity toward the nematodes or HEK293T cells, suggesting our discovery of dual-specificity PPK inhibitors as a promising starting point for the development of new antivirulence therapeutics.
Collapse
|
25
|
Li J, Wang SP, Zong G, Kim E, Tsao CY, VanArsdale E, Wang LX, Bentley WE, Payne GF. Interactive Materials for Bidirectional Redox-Based Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007758. [PMID: 33788338 DOI: 10.1002/adma.202007758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Emerging research indicates that biology routinely uses diffusible redox-active molecules to mediate communication that can span biological systems (e.g., nervous and immune) and even kingdoms (e.g., a microbiome and its plant/animal host). This redox modality also provides new opportunities to create interactive materials that can communicate with living systems. Here, it is reported that the fabrication of a redox-active hydrogel film can autonomously synthesize a H2 O2 signaling molecule for communication with a bacterial population. Specifically, a catechol-conjugated/crosslinked 4-armed thiolated poly(ethylene glycol) hydrogel film is electrochemically fabricated in which the added catechol moieties confer redox activity: the film can accept electrons from biological reductants (e.g., ascorbate) and donate electrons to O2 to generate H2 O2 . Electron-transfer from an Escherichia coli culture poises this film to generate the H2 O2 signaling molecule that can induce bacterial gene expression from a redox-responsive operon. Overall, this work demonstrates that catecholic materials can participate in redox-based interactions that elicit specific biological responses, and also suggests the possibility that natural phenolics may be a ubiquitous biological example of interactive materials.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sally P Wang
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - Eric VanArsdale
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
26
|
Xu G, Yang S. Diverse evolutionary origins of microbial [4 + 2]-cyclases in natural product biosynthesis. Int J Biol Macromol 2021; 182:154-161. [PMID: 33836196 DOI: 10.1016/j.ijbiomac.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Natural [4 + 2]-cyclases catalyze concerted cycloaddition during biosynthesis of over 400 natural products reported. Microbial [4 + 2]-cyclases are structurally diverse with a broad range of substrates. Thus far, about 52 putative microbial [4 + 2]-cyclases of 13 different types have been characterized, with over 20 crystal structures. However, how these cyclases have evolved during natural product biosynthesis remains elusive. Structural and phylogenetic analyses suggest that these different types of [4 + 2]-cyclases might have diverse evolutionary origins, such as reductases, dehydratases, methyltransferases, oxidases, etc. Divergent evolution of enzyme function might have occurred in these different families. Understanding the independent evolutionary history of these cyclases would provide new insights into their catalysis mechanisms and the biocatalyst design.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
27
|
Meirelles LA, Perry EK, Bergkessel M, Newman DK. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biol 2021; 19:e3001093. [PMID: 33690640 PMCID: PMC7946323 DOI: 10.1371/journal.pbio.3001093] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Elena K. Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Megan Bergkessel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
28
|
Kohatsu H, Kamo S, Furuta M, Tomoshige S, Kuramochi K. Synthesis and Cytotoxic Evaluation of N-Alkyl-2-halophenazin-1-ones. ACS OMEGA 2020; 5:27667-27674. [PMID: 33134730 PMCID: PMC7594318 DOI: 10.1021/acsomega.0c04253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, the synthesis of N-alkyl-2-halophenazin-1-ones has been established. Six N-alkyl-2-halophenazin-1-ones, including WS-9659 B and marinocyanins A and B, were synthesized by the direct oxidative condensation of 4-halo-1,2,3-benzenetriol with the corresponding N-alkylbenzene-1,2-diamines. One of the most significant features of the present method is that it can be successfully applied to the synthesis of N-alkyl-2-chlorophenazin-1-ones. The traditional chlorination of N-alkyl-phenazin-1-ones with N-chlorosuccinimide selectively occurs at the 4-position to afford the undesired N-alkyl-4-chlorophenazin-1-ones. Our synthetic route successfully circumvents this problem, culminating in the first chemical synthesis of WS-9659 B. The cytotoxicity of six N-alkyl-2-halophenazin-1-ones and three N-alkylphenazin-1-ones against human promyelocytic leukemia HL-60, human lung cancer A549, and normal MRC-5 cells was evaluated. Among the compounds tested in this study, 2-chloropyocyanin possesses significant selectivity toward A549 cells. The cytotoxic evaluation provides structural insights into the potency and selectivity of these compounds for cancer cells.
Collapse
|
29
|
Dar D, Thomashow LS, Weller DM, Newman DK. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife 2020; 9:59726. [PMID: 32930660 PMCID: PMC7591250 DOI: 10.7554/elife.59726] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
30
|
Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, Stemp EDA, Barton JK, Tender LM, Newman DK. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell 2020; 182:919-932.e19. [PMID: 32763156 DOI: 10.1016/j.cell.2020.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.
Collapse
Affiliation(s)
- Scott H Saunders
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Edmund C M Tse
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA, USA; Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Matthew D Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | | | - Scott A Trammell
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Eric D A Stemp
- Department of Physical Sciences, Mt. Saint Mary's University, Los Angeles, CA, USA
| | | | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA.
| |
Collapse
|
31
|
Little R, Paiva FCR, Jenkins R, Hong H, Sun Y, Demydchuk Y, Samborskyy M, Tosin M, Leeper FJ, Dias MVB, Leadlay PF. Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis. Nat Catal 2019; 2:1045-1054. [PMID: 39659772 PMCID: PMC7617221 DOI: 10.1038/s41929-019-0351-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Enzymes catalysing remarkable Diels-Alder-like [4+2] cyclisations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not anticipated to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, homologous to authentic [4+2] cyclases. Here we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin, and four of its 12 asymmetric centres, remain unformed. In vitro reconstitution showed that Tsn11 catalyses an apparent inverse-electron-demand hetero Diels-Alder-like [4+2] cyclisation of this species to an unexpected oxadecalin compound, which is then rearranged by Tsn15 to form tetronasin. To gain structural and mechanistic insight into the activity of Tsn15, a 1.7 Å crystal structure of a Tsn15-substrate complex has been solved.
Collapse
Affiliation(s)
- Rory Little
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Fernanda C. R. Paiva
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
| | - Rob Jenkins
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071 Wuhan, People’s Republic of China
| | - Yuliya Demydchuk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| |
Collapse
|
32
|
Kohatsu H, Kamo S, Tomoshige S, Kuramochi K. Total Syntheses of Pyocyanin, Lavanducyanin, and Marinocyanins A and B. Org Lett 2019; 21:7311-7314. [PMID: 31461299 DOI: 10.1021/acs.orglett.9b02601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Total syntheses of pyocyanin, lavanducyanin, and marinocyanins A and B have been accomplished. The N-substituted phenazin-1-one skeleton, a common framework of these natural products, was constructed through the oxidative condensation of pyrogallol with N-substituted benzene-1,2-diamine under an oxygen atmosphere in a single step. Regioselective bromination with N-bromosuccinimide at the C-2 position of N-alkylated phenazin-1-ones afforded brominated natural products.
Collapse
Affiliation(s)
- Haruki Kohatsu
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Shogo Kamo
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Shusuke Tomoshige
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| |
Collapse
|
33
|
A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol 2019; 12:457-467. [PMID: 29695840 PMCID: PMC6202286 DOI: 10.1038/s41385-018-0022-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Microbial metabolites are an emerging class of mediators influencing CD4+ T-cell function. To advance the understanding of direct causal microbial factors contributing to Crohn's disease, we screened 139 predicted Crohn's disease-associated microbial metabolites for their bioactivity on human CD4+ T-cell functions induced by disease-associated T helper 17 (Th17) polarizing conditions. We observed 15 metabolites with CD4+ T-cell bioactivity, 3 previously reported, and 12 unprecedented. A deeper investigation of the microbe-derived metabolite, ascorbate, revealed its selective inhibition on activated human CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. Mechanistic assessment suggested the apoptosis of activated human CD4+ T cells associated with selective inhibition of energy metabolism. These findings suggest a substantial rate of relevant T-cell bioactivity among Crohn's disease-associated microbial metabolites, and evidence for novel modes of bioactivity, including targeting of T-cell energy metabolism.
Collapse
|
34
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
35
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
36
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
37
|
Chlorate Specifically Targets Oxidant-Starved, Antibiotic-Tolerant Populations of Pseudomonas aeruginosa Biofilms. mBio 2018; 9:mBio.01400-18. [PMID: 30254119 PMCID: PMC6156191 DOI: 10.1128/mbio.01400-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The anaerobic growth and survival of bacteria are often correlated with physiological tolerance to conventional antibiotics, motivating the development of novel strategies targeting pathogens in anoxic environments. A key challenge is to identify drug targets that are specific to this metabolic state. Chlorate is a nontoxic compound that can be reduced to toxic chlorite by a widespread enzyme of anaerobic metabolism. We tested the antibacterial properties of chlorate against Pseudomonas aeruginosa, a pathogen that can inhabit hypoxic or anoxic microenvironments, including those that arise in human infection. Chlorate and the antibiotic tobramycin kill distinct metabolic populations in P. aeruginosa biofilms, where chlorate targets anaerobic cells that tolerate tobramycin. Chlorate is particularly effective against P. aeruginosalasR mutants, which are frequently isolated from human infections and more resistant to some antibiotics. This work suggests that chlorate may hold potential as an anaerobic prodrug. Nitrate respiration is a widespread mode of anaerobic energy generation used by many bacterial pathogens, and the respiratory nitrate reductase, Nar, has long been known to reduce chlorate to the toxic oxidizing agent chlorite. Here, we demonstrate the antibacterial activity of chlorate against Pseudomonas aeruginosa, a representative pathogen that can inhabit hypoxic or anoxic host microenvironments during infection. Aerobically grown P. aeruginosa cells are tobramycin sensitive but chlorate tolerant. In the absence of oxygen or an alternative electron acceptor, cells are tobramycin tolerant but chlorate sensitive via Nar-dependent reduction. The fact that chlorite, the product of chlorate reduction, is not detected in culture supernatants suggests that it may react rapidly and be retained intracellularly. Tobramycin and chlorate target distinct populations within metabolically stratified aggregate biofilms; tobramycin kills cells on the oxic periphery, whereas chlorate kills hypoxic and anoxic cells in the interior. In a matrix populated by multiple aggregates, tobramycin-mediated death of surface aggregates enables deeper oxygen penetration into the matrix, benefiting select aggregate populations by increasing survival and removing chlorate sensitivity. Finally, lasR mutants, which commonly arise in P. aeruginosa infections and are known to withstand conventional antibiotic treatment, are hypersensitive to chlorate. A lasR mutant shows a propensity to respire nitrate and reduce chlorate more rapidly than the wild type does, consistent with its heightened chlorate sensitivity. These findings illustrate chlorate’s potential to selectively target oxidant-starved pathogens, including physiological states and genotypes of P. aeruginosa that represent antibiotic-tolerant populations during infections.
Collapse
|
38
|
Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 2018; 24:1097-1103. [DOI: 10.1038/s41591-018-0145-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
|
39
|
Wang F, He Q, Yin J, Xu S, Hu W, Gu L. BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat Commun 2018; 9:2563. [PMID: 29967320 PMCID: PMC6028453 DOI: 10.1038/s41467-018-05004-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/07/2018] [Indexed: 01/10/2023] Open
Abstract
The virulence factor pyocyanin and the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP) play key roles in regulating biofilm formation and multi-drug efflux pump expression in Pseudomonas aeruginosa. However, the crosstalk between these two signaling pathways remains unclear. Here we show that BrlR (PA4878), previously identified as a c-di-GMP responsive transcriptional regulator, acts also as a receptor for pyocyanin. Crystal structures of free BrlR and c-di-GMP-bound BrlR reveal that the DNA-binding domain of BrlR contains two separate c-di-GMP binding sites, both of which are involved in promoting brlR expression. In addition, we identify a pyocyanin-binding site on the C-terminal multidrug-binding domain based on the structure of the BrlR-C domain in complex with a pyocyanin analog. Biochemical analysis indicates that pyocyanin enhances BrlR-DNA binding and brlR expression in a concentration-dependent manner. The virulence factor pyocyanin and the second messenger c-di-GMP regulate biofilm formation and antibiotic tolerance in Pseudomonas aeruginosa. Here, the authors perform structural and biochemical analyses to show that a transcriptional regulator, BrlR, acts as a receptor for both pyocyanin and c-di-GMP.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Qing He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Jia Yin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
40
|
Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 2018; 36:1316-1327. [DOI: 10.1016/j.biotechadv.2018.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
41
|
PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum. J Bacteriol 2018; 200:JB.00763-17. [PMID: 29483162 DOI: 10.1128/jb.00763-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Phenazines are a class of bacterially produced redox-active metabolites that are found in natural, industrial, and clinical environments. In Pseudomonas spp., phenazine-1-carboxylic acid (PCA)-the precursor of all phenazine metabolites-facilitates nutrient acquisition, biofilm formation, and competition with other organisms. While the removal of phenazines negatively impacts these activities, little is known about the genes or enzymes responsible for phenazine degradation by other organisms. Here, we report that the first step of PCA degradation by Mycobacterium fortuitum is catalyzed by a phenazine-degrading decarboxylase (PhdA). PhdA is related to members of the UbiD protein family that rely on a prenylated flavin mononucleotide cofactor for activity. The gene for PhdB, the enzyme responsible for cofactor synthesis, is present in a putative operon with the gene encoding PhdA in a region of the M. fortuitum genome that is essential for PCA degradation. PhdA and PhdB are present in all known PCA-degrading organisms from the ActinobacteriaM. fortuitum can also catabolize other Pseudomonas-derived phenazines such as phenazine-1-carboxamide, 1-hydroxyphenazine, and pyocyanin. On the basis of our previous work and the current characterization of PhdA, we propose that degradation converges on a common intermediate: dihydroxyphenazine. An understanding of the genes responsible for degradation will enable targeted studies of phenazine degraders in diverse environments.IMPORTANCE Bacteria from phylogenetically diverse groups secrete redox-active metabolites that provide a fitness advantage for their producers. For example, phenazines from Pseudomonas spp. benefit the producers by facilitating anoxic survival and biofilm formation and additionally inhibit competitors by serving as antimicrobials. Phenazine-producing pseudomonads act as biocontrol agents by leveraging these antibiotic properties to inhibit plant pests. Despite this importance, the fate of phenazines in the environment is poorly understood. Here, we characterize an enzyme from Mycobacterium fortuitum that catalyzes the first step of phenazine-1-carboxylic acid degradation. Knowledge of the genetic basis of phenazine degradation will facilitate the identification of environments where this activity influences the microbial community structure.
Collapse
|
42
|
Jiang J, Guiza Beltran D, Schacht A, Wright S, Zhang L, Du L. Functional and Structural Analysis of Phenazine O-Methyltransferase LaPhzM from Lysobacter antibioticus OH13 and One-Pot Enzymatic Synthesis of the Antibiotic Myxin. ACS Chem Biol 2018; 13:1003-1012. [PMID: 29510028 DOI: 10.1021/acschembio.8b00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myxin is a well-known antibiotic that had been used for decades. It belongs to the phenazine natural products that exhibit various biological activities, which are often dictated by the decorating groups on the heteroaromatic three-ring system. The three rings of myxin carry a number of decorations, including an unusual aromatic N5, N10-dioxide. We previously showed that phenazine 1,6-dicarboxylic acid (PDC) is the direct precursor of myxin, and two redox enzymes (LaPhzS and LaPhzNO1) catalyze the decarboxylative hydroxylation and aromatic N-oxidations of PDC to produce iodinin (1.6-dihydroxy- N5, N10-dioxide phenazine). In this work, we identified the LaPhzM gene from Lysobacter antibioticus OH13 and demonstrated that LaPhzM encodes a SAM-dependent O-methyltransferase converting iodinin to myxin. The results further showed that LaPhzM is responsible for both monomethoxy and dimethoxy formation in all phenazine compounds isolated from strain OH13. LaPhzM exhibits relaxed substrate selectivity, catalyzing O-methylation of phenazines with non-, mono-, or di- N-oxide. In addition, we demonstrated a one-pot biosynthesis of myxin by in vitro reconstitution of the three phenazine-ring decorating enzymes. Finally, we determined the X-ray crystal structure of LaPhzM with a bound cofactor at 1.4 Å resolution. The structure provided molecular insights into the activity and selectivity of the first characterized phenazine O-methyltransferase. These results will facilitate future exploitation of the thousands of phenazines as new antibiotics through metabolic engineering and chemoenzymatic syntheses.
Collapse
Affiliation(s)
- Jiasong Jiang
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | | | | | - Stephen Wright
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | | | - Liangcheng Du
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
43
|
Odanaka K, Iwatsuki M, Satho T, Watanabe M. Identification and characterization of a brilliant yellow pigment produced by Bordetella pertussis. Microbiol Immunol 2017; 61:490-496. [PMID: 28906022 DOI: 10.1111/1348-0421.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/27/2022]
Abstract
Culture supernatants of Bordetella pertussis are a brilliant yellow; however, the structure and biological role of the responsible pigment have not been investigated. In this study, a brilliant yellow-colored fraction was extracted from culture supernatants of B. pertussis and analyzed by HPLC. UV-visible spectral analysis and mass spectrometry identified the brilliant yellow pigment as riboflavin. Riboflavin production was high in lag and early log phases and riboflavin was found to enhance growth of B. pertussis in low-density cultures. Riboflavin production is not regulated by the BvgAS system. In addition, it was found that other Bordetella species, such as B. parapertussis, B. holmesii and B. bronchiseptica, also release riboflavin into their culture supernatants. This is the first report that B. pertussis secrets riboflavin to the extracellular space and that riboflavin may promote its growth. The mechanism may be associated with pathogenesis of B. pertussis.
Collapse
Affiliation(s)
- Keita Odanaka
- Graduate School of Infection Control Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Research Center for Tropical Diseases, Kitasato Institute for Life Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomomitsu Satho
- Faculty of Pharmaceutical Sciences, Microbiology Laboratory, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Laboratory of Medical Microbiology, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
44
|
Chong H, Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 2017; 16:137. [PMID: 28779757 PMCID: PMC5544971 DOI: 10.1186/s12934-017-0753-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 11/15/2022] Open
Abstract
Rhamnolipids are a class of biosurfactants which contain rhamnose as the sugar moiety linked to β-hydroxylated fatty acid chains. Rhamnolipids can be widely applied in many industries including petroleum, food, agriculture and bioremediation etc. Pseudomonas aeruginosa is still the most competent producer of rhamnolipids, but its pathogenicity may cause safety and health concerns during large-scale production and applications. Therefore, extensive studies have been carried out to explore safe and economical methods to produce rhamnolipids. Various metabolic engineering efforts have also been applied to either P. aeruginosa for improving its rhamnolipid production and diminishing its pathogenicity, or to other non-pathogenic strains by introducing the key genes for safe production of rhamnolipids. The three key enzymes for rhamnolipid biosynthesis, RhlA, RhlB and RhlC, are found almost exclusively in Pseudomonas sp. and Burkholderia sp., but have been successfully expressed in several non-pathogenic host bacteria to produce rhamnolipids in large scales. The composition of mono- and di-rhamnolipids can also be modified through altering the expression levels of RhlB and RhlC. In addition, cell-free rhamnolipid synthesis by using the key enzymes and precursors from non-pathogenic sources is thought to not only eliminate pathogenic effects and simplify the downstream purification processes, but also to circumvent the complexity of quorum sensing system that regulates rhamnolipid biosynthesis. The pathogenicity of P. aeruginosa can also be reduced or eliminated through in vivo or in vitro enzymatic degradation of the toxins such as pyocyanin during rhamnolipid production. The rhamnolipid production cost can also be significantly reduced if rhamnolipid purification step can be bypassed, such as utilizing the fermentation broth or the rhamnolipid-producing strains directly in the industrial applications of rhamnolipids.
Collapse
Affiliation(s)
- Huiqing Chong
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Qingxin Li
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, 627833 Singapore
| |
Collapse
|
45
|
Abstract
Descriptions of the changeable, striking colors associated with secreted natural products date back well over a century. These molecules can serve as extracellular electron shuttles (EESs) that permit microbes to access substrates at a distance. In this review, we argue that the colorful world of EESs has been too long neglected. Rather than simply serving as a diagnostic attribute of a particular microbial strain, redox-active natural products likely play fundamental, underappreciated roles in the biology of their producers, particularly those that inhabit biofilms. Here, we describe the chemical diversity and potential distribution of EES producers and users, discuss the costs associated with their biosynthesis, and critically evaluate strategies for their economical usage. We hope this review will inspire efforts to identify and explore the importance of EES cycling by a wide range of microorganisms so that their contributions to shaping microbial communities can be better assessed and exploited.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Scott H Saunders
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , , .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
46
|
A-way with biofilms. Nat Chem Biol 2017. [DOI: 10.1038/nchembio.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
VanHook AM. Paper of note in
Science
355
(6321). Sci Signal 2017. [DOI: 10.1126/scisignal.aam7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This week's article shows that a demethylase reduces the ability of the opportunistic pathogen
Pseudomonas aeruginosa
to form biofilms under anoxic conditions.
Collapse
|