1
|
Zhong X, Duan R, Hou S, Chen M, Tan X, Hess WR, Shi T. Transcriptome remodeling drives acclimation to iron availability in the marine N 2-fixing cyanobacterium Trichodesmium erythraeum IMS101. mSystems 2025; 10:e0149924. [PMID: 40243322 PMCID: PMC12090762 DOI: 10.1128/msystems.01499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
While enhanced phytoplankton growth as a result of iron (Fe) fertilization has been extensively characterized, our understanding of the underlying mechanisms remains incomplete. Here, we show in a laboratory setup mimicking Fe fertilization in the field that transcriptome remodeling is a primary driver of acclimation to Fe availability in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. Fe supplementation promoted cell growth, photosynthesis and N2 fixation, and concomitant expression of the photosynthesis and N2 fixation genes. The expression of genes encoding major Fe-binding metalloproteins is tightly linked to cellular carbon and nitrogen metabolism and appears to be controlled by the ferric uptake regulator FurA, which is involved in regulating Fe uptake and homeostasis. This feedback loop is reinforced by substitutive expression of functionally equivalent or competitive genes depending on Fe availability, as well as co-expression of multiple Fe stress inducible isiA genes, an adaptive strategy evolved to elicit the Fe-responsive cascade. The study provides a genome-wide perspective on the acclimation of a prominent marine diazotroph to Fe availability, reveals an upgraded portfolio of indicator genes that can be used to better assess Fe status in the environment, and predicts scenarios of how marine diazotrophs may be affected in the future ocean.IMPORTANCEThe scarcity of trace metal iron (Fe) in global oceans has a great impact on phytoplankton growth. While enhanced primary productivity as a result of Fe fertilization has been extensively characterized, the underlying molecular mechanisms remain poorly understood. By subjecting the model marine diazotroph Trichodesmium erythraeum IMS101 to increasing concentrations of supplemented Fe, we demonstrate in it a comprehensively remodeled transcriptome that drives the mobilization of cellular Fe for coordinated carbon and nitrogen metabolism and reallocation of energy and resources. Our data provide broad genomic insight into marine diazotrophs acclimation to Fe availability, enabling the versatility and flexibility in choice of indicator genes for monitoring Fe status in the environment and having implications on how marine diazotrophs persist into the future ocean.
Collapse
Affiliation(s)
- Xin Zhong
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Ran Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Freiburg, Germany
| | - Meng Chen
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Freiburg, Germany
| | - Tuo Shi
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Dai R, Wen Z, Hong H, Browning TJ, Hu X, Chen Z, Liu X, Dai M, Morel FMM, Shi D. Eukaryotic phytoplankton drive a decrease in primary production in response to elevated CO 2 in the tropical and subtropical oceans. Proc Natl Acad Sci U S A 2025; 122:e2423680122. [PMID: 40063804 PMCID: PMC11929437 DOI: 10.1073/pnas.2423680122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 03/25/2025] Open
Abstract
Ocean acidification caused by increasing anthropogenic CO2 is expected to impact marine phytoplankton productivity, yet the extent and even direction of these changes are not well constrained. Here, we investigate the responses of phytoplankton community composition and productivity to acidification across the western North Pacific. Consistent reductions in primary production were observed under acidified conditions in the North Pacific Subtropical Gyre and the northern South China Sea, whereas no significant changes were found at the northern boundary of the subtropical gyre. While prokaryotic phytoplankton showed little or positive responses to high CO2, small (<20 µm) eukaryotic phytoplankton which are primarily limited by low ambient nitrogen drove the observed decrease in community primary production. Extrapolating these results to global tropical and subtropical oceans predicts a potential decrease of about 5 Pg C y-1 in primary production in low Chl-a oligotrophic regions, which are anticipated to experience both acidification and stratification in the future.
Collapse
Affiliation(s)
- Rongbo Dai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Zuozhu Wen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Thomas J. Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Xiaohua Hu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Ze Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Xin Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| | | | - Dalin Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian361102, People’s Republic of China
| |
Collapse
|
3
|
Ribeiro MO, Oliveira M, Nogueira V, Costa V, Teixeira V. N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Commun Signal 2025; 23:10. [PMID: 39773523 PMCID: PMC11706183 DOI: 10.1186/s12964-024-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions. METHODS Quantitative untargeted mass spectrometric proteomic and lipidomic analyses were conducted to examine changes in protein and lipid abundance in wild-type (WT) versus N88S seipin-expressing mutant cells. Differentially expressed proteins were categorized into functional networks to highlight altered protein functions and signaling pathways. Statistical comparisons were made using unpaired Student's t-tests or two-way ANOVA followed by Tukey´s / Šídák's multiple comparisons tests. P-values < 0.05 are considered significant. RESULTS In a well-established yeast model of N88S seipinopathy, misfolded N88S seipin forms IBs and exhibits higher levels of ER stress, leading to decreased cell viability due to increased reactive oxygen species (ROS), oxidative damage, lipid peroxidation, and reduced antioxidant activity. Proteomic and lipidomic analyses revealed alterations in phosphatidic acid (PA) levels, associated with disrupted inositol metabolism and decreased flux towards phospholipid biosynthesis. Importantly, deregulation of lipid metabolism contributed to ER stress beyond N88S seipin misfolding and IB formation. Additionally, the model exhibited deregulated iron (Fe) homeostasis during lifespan. N88S seipin-expressing cells showed impaired ability to cope with iron deficiency. This was linked to changes in the expression of Aft1p-controlled iron regulon genes, including the mRNA-binding protein CTH2 and the high-affinity iron transport system member FET3, in a p38/Hog1p- and Msn2p/Msn4p-dependent manner. Importantly, we unraveled a novel link between inositol metabolism and activation of the iron regulon in cells expressing the N88S seipin mutation. Despite iron accumulation, this was not associated with oxidative stress. CONCLUSIONS The study highlights that the effects of N88S seipin mutation extend beyond protein misfolding, with significant disruptions in lipid metabolism and iron homeostasis. This research marks a substantial advance in understanding and defining the roles of proteins and signaling pathways that contribute to human seipinopathy. Altered cellular processes, as well as potential therapeutic targets and biomarkers, were identified and can be explored in translational studies using human cell models.
Collapse
Affiliation(s)
- Mariana O Ribeiro
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Mafalda Oliveira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Verónica Nogueira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Vítor Costa
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
- Department of Molecular Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, Universidade Do Porto, Porto, Portugal
| | - Vitor Teixeira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
5
|
Shi Z, Zhao M, Wang K, Ma S, Luo H, Han Q, Shi Y. Acidification alleviates the inhibition of hyposaline stress on physiological performance of tropical seagrass Thalassia hemprichii. MARINE POLLUTION BULLETIN 2024; 205:116642. [PMID: 38941803 DOI: 10.1016/j.marpolbul.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Since the Industrial Revolution, increasing atmospheric CO2 concentrations have had a substantial negative impact influence on coastal ecosystems because of direct effects including ocean acidification and indirect effects such as extreme rainfall events. Using a two-factor crossover indoor simulation experiment, this study examined the combined effects of acidification and hyposaline stress on Thalassia hemprichii. Seawater acidification increased the photosynthetic pigment content of T. hemprichii leaves and promoted seagrass growth rate. Hyposaline stress slowed down seagrass growth and had an impact on the osmotic potential and osmoregulatory substance content of seagrass leaves. Acidification and salinity reduction had significant interaction effects on the photosynthesis rate, photosynthetic pigment content, chlorophyll fluorescence parameters, and osmotic potential of T. hemprichii, but not on the growth rate. Overall, these findings have shown that the hyposaline stress inhibitory effect on the T. hemprichii physiological performance and growth may be reduced by acidification.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Muqiu Zhao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; Modern Marine Ranching Engineering Research Center of Hainan, Sanya 572022, China; Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Sanya 572022, China
| | - Kang Wang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Siyang Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Huijue Luo
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qiuying Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; Modern Marine Ranching Engineering Research Center of Hainan, Sanya 572022, China; Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Sanya 572022, China
| | - Yunfeng Shi
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; Modern Marine Ranching Engineering Research Center of Hainan, Sanya 572022, China; Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Sanya 572022, China.
| |
Collapse
|
6
|
Kang W, Mu L, Hu X. Marine Colloids Boost Nitrogen Fixation in Trichodesmium erythraeum by Photoelectrophy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9236-9249. [PMID: 38748855 DOI: 10.1021/acs.est.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitrogen fixation by the diazotrophic cyanobacterium Trichodesmium contributes up to 50% of the bioavailable nitrogen in the ocean. N2 fixation by Trichodesmium is limited by the availability of nutrients, such as iron (Fe) and phosphorus (P). Although colloids are ubiquitous in the ocean, the effects of Fe limitation on nitrogen fixation by marine colloids (MC) and the related mechanisms are largely unexplored. In this study, we found that MC exhibit photoelectrochemical properties that boost nitrogen fixation by photoelectrophy in Trichodesmium erythraeum. MC efficiently promote photosynthesis in T. erythraeum, thus enhancing its growth. Photoexcited electrons from MC are directly transferred to the photosynthetic electron transport chain and contribute to nitrogen fixation and ammonia assimilation. Transcriptomic analysis revealed that MC significantly upregulates genes related to the electron transport chain, photosystem, and photosynthesis, which is consistent with elevated photosynthetic capacities (e.g., Fv/Fm and carboxysomes). As a result, MC increase the N2 fixation rate by 67.5-89.3%. Our findings highlight a proof-of-concept electron transfer pathway by which MC boost nitrogen fixation, broadening our knowledge on the role of ubiquitous colloids in marine nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Li X, Qi M, Li Q, Wu B, Fu Y, Liang X, Yin G, Zheng Y, Dong H, Liu M, Hou L. Acidification Offset Warming-Induced Increase in N 2O Production in Estuarine and Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4989-5002. [PMID: 38442002 DOI: 10.1021/acs.est.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Boshuang Wu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuxuan Fu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Feng Y, Xiong Y, Hall-Spencer JM, Liu K, Beardall J, Gao K, Ge J, Xu J, Gao G. Shift in algal blooms from micro- to macroalgae around China with increasing eutrophication and climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17018. [PMID: 37937464 DOI: 10.1111/gcb.17018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Blooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by Ulva and Sargassum) have caused widespread problems around China in recent years, but there is uncertainty around what triggers these blooms and how they interact. Here, we use 30 years of monitoring data to help answer these questions, focusing on the four main species of microalgae Prorocentrum donghaiense, Karenia mikimotoi, Noctiluca scintillans, and Skeletonema costatum) associated with red tides in the region. The frequency of red tides increased from 1991 to 2003 and then decreased until 2020, with S. costatum red tides exhibiting the highest rate of decrease. Green tides started to occur around China in 1999 and the frequency of green tides has since been on the increase. Golden tides were first reported to occur around China in 2012. The frequency of macroalgal blooms has a negative linear relationship with the frequency and coverage of red tides around China, and a positive correlation with total nitrogen and phosphorus loads as well as with atmospheric CO2 and sea surface temperature (SST). Increased outbreaks of macroalgal blooms are very likely due to worsening levels of eutrophication, combined with rising CO2 and SST, which contribute to the reduced frequency of red tides. The increasing grazing rate of microzooplankton also results in the decline in areas affected by red tides. This study shows a clear shift of algal blooms from microalgae to macroalgae around China over the past 30 years driven by the combination of eutrophication, climate change, and grazing stress, indicating a fundamental change in coastal systems in the region.
Collapse
Affiliation(s)
- Yuan Feng
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yonglong Xiong
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jason M Hall-Spencer
- Marine Institute, University of Plymouth, Plymouth, UK
- Shimoda Marine Research Center, Tsukuba University, Tsukuba, Japan
| | - Kailin Liu
- College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jingke Ge
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Juntian Xu
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Sun X, Sanchez A. Synthesizing microbial biodiversity. Curr Opin Microbiol 2023; 75:102348. [PMID: 37352679 DOI: 10.1016/j.mib.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The diversity of microbial ecosystems is linked to crucial ecological processes and functions. Despite its significance, the ecological mechanisms responsible for the initiation and maintenance of microbiome diversity are still not fully understood. The primary challenge lies in the difficulty of isolating, monitoring, and manipulating the complex and interrelated ecological processes that modulate the diversity of microbial communities in their natural habitats. Synthetic ecology experiments provide a suitable alternative for investigating the mechanisms behind microbial biodiversity in controlled laboratory settings, as the environment can be systematically and modularly manipulated by adding and removing components. This enables the testing of hypotheses and the advancement of predictive theories. In this review, we present an overview of recent progress toward achieving this goal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Alvaro Sanchez
- Department of Microbial Biotechnology, National Center for Biotechnology CNB-CSIC, Madrid, Spain.
| |
Collapse
|
10
|
Luo W, Luo YW. Diurnally dynamic iron allocation promotes N 2 fixation in marine dominant diazotroph Trichodesmium. Comput Struct Biotechnol J 2023; 21:3503-3512. [PMID: 37484493 PMCID: PMC10362294 DOI: 10.1016/j.csbj.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Trichodesmium is the dominant photoautotrophic dinitrogen (N2) fixer (diazotroph) in the ocean. Iron is an important factor limiting growth of marine diazotrophs including Trichodesmium mainly because of high iron content of its N2-fixing enzyme, nitrogenase. However, it still lacks a quantitative understanding of how dynamic iron allocation among physiological processes acts to regulate growth and N2 fixation in Trichodesmium. Here, we constructed a model of Trichodesmium trichome in which intracellular iron could be dynamically re-allocated in photosystems and nitrogenase during the daytime. The results demonstrate that the dynamic iron allocation enhances modeled N2 fixation and growth rates of Trichodesmium, especially in iron-limited conditions, albeit having a marginal impact under high iron concentrations. Although the reuse of iron during a day is an apparent cause that dynamic iron allocation can benefit Trichodesmium under iron limitation, our model reveals two important mechanisms. First, the release of iron from photosystems downregulates the intracellular oxygen (O2) production and reduces the demand of respiratory protection, a process that Trichodesmium wastefully respires carbohydrates to create a lower O2 window for N2 fixation. Hence, more carbohydrates can be used in growth. Second, lower allocation of iron to nitrogenase during early daytime, a period when photosynthesis is active and intracellular O2 is high, reduces the amount of iron that is trapped in the inactivated nitrogenase induced by O2. This mechanism further increases the iron use efficiency in Trichodesmium. Overall, our study provides mechanistic and quantitative insight into the diurnal iron allocation that can alleviate iron limitation to Trichodesmium.
Collapse
|
11
|
Zhou J, Zheng Y, Hou L, An Z, Chen F, Liu B, Wu L, Qi L, Dong H, Han P, Yin G, Liang X, Yang Y, Li X, Gao D, Li Y, Liu Z, Bellerby R, Liu M. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters. Nat Commun 2023; 14:1380. [PMID: 36914644 PMCID: PMC10011576 DOI: 10.1038/s41467-023-37104-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
In the context of an increasing atmospheric carbon dioxide (CO2) level, acidification of estuarine and coastal waters is greatly exacerbated by land-derived nutrient inputs, coastal upwelling, and complex biogeochemical processes. A deeper understanding of how nitrifiers respond to intensifying acidification is thus crucial to predict the response of estuarine and coastal ecosystems and their contribution to global climate change. Here, we show that acidification can significantly decrease nitrification rate but stimulate generation of byproduct nitrous oxide (N2O) in estuarine and coastal waters. By varying CO2 concentration and pH independently, an expected beneficial effect of elevated CO2 on activity of nitrifiers ("CO2-fertilization" effect) is excluded under acidification. Metatranscriptome data further demonstrate that nitrifiers could significantly up-regulate gene expressions associated with intracellular pH homeostasis to cope with acidification stress. This study highlights the molecular underpinnings of acidification effects on nitrification and associated greenhouse gas N2O emission, and helps predict the response and evolution of estuarine and coastal ecosystems under climate change and human activities.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China. .,School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China.
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Zhanfei Liu
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Richard Bellerby
- Norwegian Institute for Water Research, Thormøhlensgt 53D, 5006, Bergen, Norway
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
12
|
Li H, Gao K. Deoxygenation enhances photosynthetic performance and increases N 2 fixation in the marine cyanobacterium Trichodesmium under elevated pCO 2. Front Microbiol 2023; 14:1102909. [PMID: 36876059 PMCID: PMC9975739 DOI: 10.3389/fmicb.2023.1102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Effects of changed levels of dissolved O2 and CO2 on marine primary producers are of general concern with respect to ecological effects of ongoing ocean deoxygenation and acidification as well as upwelled seawaters. We investigated the response of the diazotroph Trichodesmium erythraeum IMS 101 after it had acclimated to lowered pO2 (~60 μM O2) and/or elevated pCO2 levels (HC, ~32 μM CO2) for about 20 generations. Our results showed that reduced O2 levels decreased dark respiration significantly, and increased the net photosynthetic rate by 66 and 89% under the ambient (AC, ~13 μM CO2) and the HC, respectively. The reduced pO2 enhanced the N2 fixation rate by ~139% under AC and only by 44% under HC, respectively. The N2 fixation quotient, the ratio of N2 fixed per O2 evolved, increased by 143% when pO2 decreased by 75% under the elevated pCO2. Meanwhile, particulate organic carbon and nitrogen quota increased simultaneously under reduced O2 levels, regardless of the pCO2 treatments. Nevertheless, changed levels of O2 and CO2 did not bring about significant changes in the specific growth rate of the diazotroph. Such inconsistency was attributed to the daytime positive and nighttime negative effects of both lowered pO2 and elevated pCO2 on the energy supply for growth. Our results suggest that Trichodesmium decrease its dark respiration by 5% and increase its N2-fixation by 49% and N2-fixation quotient by 30% under future ocean deoxygenation and acidification with 16% decline of pO2 and 138% rise of pCO2 by the end of this century.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
13
|
Wei Y, Ding D, Gu T, Jiang T, Qu K, Sun J, Cui Z. Different responses of phytoplankton and zooplankton communities to current changing coastal environments. ENVIRONMENTAL RESEARCH 2022; 215:114426. [PMID: 36162471 DOI: 10.1016/j.envres.2022.114426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Marine plankton are faced with novel challenges associated with environmental changes such as ocean acidification, warming, and eutrophication. However, data on the effects of simultaneous environmental changes on complex natural communities in coastal ecosystems are relatively limited. Here we made a systematic analysis of biological and environmental parameters in the Bohai Sea over the past three years to suggest that plankton communities responded differently to current changing coastal environments, with the increase of phytoplankton and the decrease of zooplankton. These different changes of phyto- and zooplankton potentially resulted from the fact that both the effect of acidification as a result of pH decline and the effect of warming as a consequence of increasing temperature favored phytoplankton over zooplankton at present. Furthermore, water eutrophication and salinity as well as heavy metals Hg, Zn, and As had more or less diverse consequences for the dynamics of phytoplankton and zooplankton. Differently, with ongoing climate change, we also revealed that both phytoplankton and zooplankton would decrease in the future under the influence of interactions between acidification and warming.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Ting Gu
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
14
|
Yan Q, Xiao P, Li J, He Y, Shao J. Physiological Responses of a Diazotrophic Cyanobacterium to Acidification of Paddy Floodwater: N 2 Fixation, Photosynthesis, and Oxidative-Antioxidative Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15070. [PMID: 36429787 PMCID: PMC9690652 DOI: 10.3390/ijerph192215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Long-term of excessive fertilization using nitrogen (N) chemical fertilizer caused the acidification of paddy soils. Presently, the impacts of soil acidification on physiological characteristics of diazotrophic cyanobacteria remain unknown. In order to elucidate this issue, the effects of paddy floodwater acidification on activities of respiration, photosynthetic oxygen evolution, and N2 fixation of a paddy diazotrophic cyanobacterium Aliinostoc sp. YYLX235 were investigated in this study. In addition, the origination and quenching of intracellular reactive oxygen species (ROS) were analyzed. The acidification of paddy floodwater decreased intracellular pH and interfered in energy flux from light-harvesting chlorophyll antenna to the reaction center of photosystem II (PS II). Activities of respiration, photosynthetic oxygen evolution, and N2 fixation were decreased by the acidification of paddy floodwater. Accompanied with an increase in ROS, the level of antioxidative system increased. Superoxide dismutase (SOD) and catalase (CAT) were the main enzymatic ROS scavengers in the cells of YYLX235; reduced glutathione (GSH) was the main non-enzymatic antioxidant. Antioxidants and oxidants in the cells of YYLX235 lost balance when the pH of paddy floodwater fell to 5.0 and 4.0, and lipid oxidative damage happened. The results presented in this study suggest that the acidification of paddy soil severely interfered in the photosynthesis of diazotrophic cyanobacteria and induced the production of ROS, which in turn resulted in oxidative damage on diazotrophic cyanobacteria and a decrease in cell vitality.
Collapse
Affiliation(s)
- Qiong Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jun Li
- National Engineering Research Center for Agrochemicals/Hunan Provincial Key Laboratory of Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014, China
| | - Yaxian He
- Zhuzhou Ecology and Environment Monitoring Center, Zhuzhou 412000, China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium. Nat Commun 2022; 13:6730. [PMID: 36344528 PMCID: PMC9640675 DOI: 10.1038/s41467-022-34586-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.
Collapse
|
16
|
Song ZQ, Wang L, Liang F, Zhou Q, Pei D, Jiang H, Li WJ. nifH gene expression and diversity in geothermal springs of Tengchong, China. Front Microbiol 2022; 13:980924. [PMID: 36160261 PMCID: PMC9493357 DOI: 10.3389/fmicb.2022.980924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Terrestrial hot springs have been suggested to harbor diverse diazotrophic lineages by using DNA-based nifH gene phylogenetic analysis. However, only a small amount of diazotrophs were ever confirmed to perform nitrogen fixation. In order to explore the compositions of active diazotrophic populations in hot springs, the in situ expression and diversity of nifH and 16S rRNA genes were investigated in the sediments of hot springs (pH 4.3-9.1; temperature 34-84°C) in Tengchong, China, by using high-throughput sequencing. The results showed that active diazotrophs were diverse in the studied Tengchong hot springs. The main active diazotrophs in high-temperature hot springs were affiliated with Aquificae, while those in low-temperature hot springs belonged to Cyanobacteria and Nitrospirae. Such dominance of Aquificae and Nitrospirae of diazotrophs has not been reported in other ecosystems. This suggests that hot springs may harbor unique active diazotrophs in comparison with other type of ecosystems. Furthermore, there were significant differences in the phylogenetic lineages of diazotrophs between hot springs of Tengchong and other regions, indicating that diazotrophs have geographical distribution patterns. Statistical analysis suggests that the expression and distribution of nifH gene were influenced by temperature and concentrations of ammonia and sulfur seem in Tengchong hot springs. These findings avail us to understand element cycling mediated by diazotrophs in hot spring ecosystems.
Collapse
Affiliation(s)
- Zhao-Qi Song
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Li Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Feng Liang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Stukel MR, Gerard T, Kelly TB, Knapp AN, Laiz-Carrión R, Lamkin JT, Landry MR, Malca E, Selph KE, Shiroza A, Shropshire TA, Swalethorp R. Plankton food webs in the oligotrophic Gulf of Mexico spawning grounds of Atlantic bluefin tuna. JOURNAL OF PLANKTON RESEARCH 2022; 44:763-781. [PMID: 36045950 PMCID: PMC9424712 DOI: 10.1093/plankt/fbab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 06/15/2023]
Abstract
We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.
Collapse
Affiliation(s)
- Michael R Stukel
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
- Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
| | - Trika Gerard
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Miami, FL 33149, USA
| | - Thomas B Kelly
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Angela N Knapp
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Raúl Laiz-Carrión
- Centro Oceanográfico De Malaga, Instituto Español Del Oceanografía, Fuengirola, Spain
| | - John T Lamkin
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Miami, FL 33149, USA
| | - Michael R Landry
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0227, USA
| | - Estrella Malca
- Cooperative Institute For Marine and Atmospheric Studies, University Of Miami, Miami, FL 33149, USA
| | - Karen E Selph
- Department of Oceanography, University of Hawaii At Manoa, Honolulu, HI 96822, USA
| | - Akihiro Shiroza
- Cooperative Institute For Marine and Atmospheric Studies, University Of Miami, Miami, FL 33149, USA
| | - Taylor A Shropshire
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
- Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
| | - Rasmus Swalethorp
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0227, USA
| |
Collapse
|
18
|
Abstract
The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.
Collapse
|
19
|
Zhang Q, Luo YW. A Competitive Advantage of Middle-Sized Diatoms From Increasing Seawater CO 2. Front Microbiol 2022; 13:838629. [PMID: 35663890 PMCID: PMC9158336 DOI: 10.3389/fmicb.2022.838629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Diatoms, one of the most important phytoplankton groups, fulfill their carbon demand from seawater mainly by obtaining passively diffused carbon dioxide (CO2) and/or actively consuming intracellular energy to acquire bicarbonate (HCO3–). An anthropogenically induced increase in seawater CO2 reduces the HCO3– requirement of diatoms, potentially saving intracellular energy and benefitting their growth. This effect is commonly speculated to be most remarkable in larger diatoms that are subject to a stronger limitation of CO2 supply because of their smaller surface-to-volume ratios. However, we constructed a theoretical model for diatoms and revealed a unimodal relationship between the simulated growth rate response (GRR, the ratio of growth rates under elevated and ambient CO2) and cell size, with the GRR peaking at a cell diameter of ∼7 μm. The simulated GRR of the smallest diatoms was low because the CO2 supply was nearly sufficient at the ambient level, while the decline of GRR from a cell diameter of 7 μm was simulated because the contribution of seawater CO2 to the total carbon demand greatly decreased and diatoms became less sensitive to CO2 increase. A collection of historical data in CO2 enrichment experiments of diatoms also showed a roughly unimodal relationship between maximal GRR and cell size. Our model further revealed that the “optimal” cell size corresponding to peak GRR enlarged with the magnitude of CO2 increase but diminished with elevating cellular carbon demand, leading to projection of the smallest optimal cell size in the equatorial Pacific upwelling zone. Last, we need to emphasize that the size-dependent effects of increasing CO2 on diatoms are multifaceted, while our model only considers the inorganic carbon supply from seawater and optimal allocation of intracellular energy. Our study proposes a competitive advantage of middle-sized diatoms and can be useful in projecting changes in the diatom community in the future acidified high-CO2 ocean.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Marine Nitrogen Fixation and Phytoplankton Ecology. WATER 2022. [DOI: 10.3390/w14101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Many oceans are currently undergoing rapid changes in environmental conditions such as warming temperature, acidic water condition, coastal hypoxia, etc [...]
Collapse
|
21
|
Wu L, An Z, Zhou J, Chen F, Liu B, Qi L, Yin G, Dong H, Liu M, Hou L, Zheng Y. Effects of Aquatic Acidification on Microbially Mediated Nitrogen Removal in Estuarine and Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5939-5949. [PMID: 35465670 DOI: 10.1021/acs.est.2c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acidification of estuarine and coastal waters is anticipated to influence nitrogen (N) removal processes, which are critical pathways for eliminating excess N from these ecosystems. We found that denitrification rates decreased significantly under acidified conditions (P < 0.05), which reduced by 41-53% in estuarine and coastal sediments under an approximately 0.3 pH reduction of the overlying water. However, the N removal rates through the anaerobic ammonium oxidation (anammox) process were concomitantly promoted under the same acidification conditions (increased by 47-109%, P < 0.05), whereas the total rates of N loss were significantly inhibited by aquatic acidification (P < 0.05), as denitrification remained the dominant N removal pathway. More importantly, the emission of nitrous oxide (N2O) from estuarine and coastal sediments was greatly stimulated by aquatic acidification (P < 0.05). Molecular analyses further demonstrated that aquatic acidification also altered the functional microbial communities in estuarine and coastal sediments; and the abundance of denitrifiers was significantly reduced (P < 0.05), while the abundance of anammox bacteria remained relatively stable. Collectively, this study reveals the effects of acidification on N removal processes and the underlying mechanisms and suggests that the intensifying acidification in estuarine and coastal waters might reduce the N removal function of these ecosystems, exacerbate eutrophication, and accelerate global climate change.
Collapse
Affiliation(s)
- Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Hu T, Chen A, Jiang Y, Sun C, Luo S, Shao J. Application of a newly recorded diazotrophic cyanobacterium in acidified and Cd contaminated paddy soil: Promotes rice yield and decreases Cd accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152630. [PMID: 34963599 DOI: 10.1016/j.scitotenv.2021.152630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Acidification caused by excessive fertilization and heavy metals contamination are two prominent problems of agricultural soils. Diazotrophic cyanobacteria play important role in nitrogen (N) input in agricultural ecosystem. However, the effects of diazotrophic cyanobacteria on the growth of rice and heavy metal uptake by rice grain in acidified and heavy metal contaminated paddy soil remain unknown. In this study, a newly recorded diazotrophic cyanobacterium Aliinostoc sp. YYLX235 was isolated from acidified paddy soil. The results of pot experiment and in situ field plot experiment demonstrated that Aliinostoc sp. YYLX235 could promote rice grain yield and decrease cadmium (Cd) accumulation in rice grain. Nitrogen input by N2-fixation and increase of bio-available phosphorus (P) by promotion of activity of soil phosphatase may be the main mechanisms for growth-promoting effects of Aliinostoc sp. YYLX235 on rice. Binding and immobilization of Cd through hydroxyl, carboxyl, and amino groups may be the reason for decrease of Cd accumulation in rice grain by Aliinostoc sp. YYLX235 inoculation. The results presented in this study suggest that diazotrophic cyanobacteria have great potential in safe cropping in acidified and Cd contaminated paddy soils.
Collapse
Affiliation(s)
- Ting Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuexi Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Chenmin Sun
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
23
|
Jabbur ML, Johnson CH. Spectres of Clock Evolution: Past, Present, and Yet to Come. Front Physiol 2022; 12:815847. [PMID: 35222066 PMCID: PMC8874327 DOI: 10.3389/fphys.2021.815847] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian clocks are phylogenetically widespread biological oscillators that allow organisms to entrain to environmental cycles and use their steady-state phase relationship to anticipate predictable daily phenomena – such as the light-dark transitions of a day – and prepare accordingly. Present from cyanobacteria to mammals, circadian clocks are evolutionarily ancient and are thought to increase the fitness of the organisms that possess them by allowing for better resource usage and/or proper internal temporal order. Here, we review literature with respect to the ecology and evolution of circadian clocks, with a special focus on cyanobacteria as model organisms. We first discuss what can be inferred about future clock evolution in response to climate change, based on data from latitudinal clines and domestication. We then address our current understanding of the role that circadian clocks might be contributing to the adaptive fitness of cyanobacteria at the present time. Lastly, we discuss what is currently known about the oldest known circadian clock, and the early Earth conditions that could have led to its evolution.
Collapse
|
24
|
Wang P, Laws E, Wang Y, Chen J, Song X, Huang R, Wang T, Yi X, Sun J, Guo X, Liu X, Gao K, Huang B. Elevated pCO 2 changes community structure and function by affecting phytoplankton group-specific mortality. MARINE POLLUTION BULLETIN 2022; 175:113362. [PMID: 35092931 DOI: 10.1016/j.marpolbul.2022.113362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The rise of atmospheric pCO2 has created a number of problems for marine ecosystem. In this study, we initially quantified the effects of elevated pCO2 on the group-specific mortality of phytoplankton in a natural community based on the results of mesocosm experiments. Diatoms dominated the phytoplankton community, and the concentration of chlorophyll a was significantly higher in the high-pCO2 treatment than the low-pCO2 treatment. Phytoplankton mortality (percentage of dead cells) decreased during the exponential growth phase. Although the mortality of dinoflagellates did not differ significantly between the two pCO2 treatments, that of diatoms was lower in the high-pCO2 treatment. Small diatoms dominated the diatom community. Although the mortality of large diatoms did not differ significantly between the two treatments, that of small diatoms was lower in the high-pCO2 treatment. These results suggested that elevated pCO2 might enhance dominance by small diatoms and thereby change the community structure of coastal ecosystems.
Collapse
Affiliation(s)
- Peixuan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Edward Laws
- Department of Environmental Sciences, School of the Coast & Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yongzhi Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jixin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xue Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Ruiping Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiazhen Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianghui Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China..
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Bangqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
25
|
Abstract
A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean.
Collapse
Affiliation(s)
- David A Hutchins
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
| | - Sergio A Sañudo-Wilhelmy
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
26
|
Yang F, Zhao YJ, Chen SJ, Li YR, Yang PY, Qi JY, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Disrupting Cannabinoid Receptor Interacting Protein 1 Rescues Cognitive Flexibility in Long-Term Estrogen-Deprived Female Mice. Brain Res Bull 2022; 181:77-86. [DOI: 10.1016/j.brainresbull.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
|
27
|
Xie S, Lin F, Zhao X, Gao G. Enhanced lipid productivity coupled with carbon and nitrogen removal of the diatom Skeletonema costatum cultured in the high CO2 level. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
28
|
Zhang J, Yang Q, Liu Q, Liu S, Zhu Y, Yao J, Wang H, Guan W. The responses of harmful dinoflagellate Karenia mikimotoi to simulated ocean acidification at the transcriptional level. HARMFUL ALGAE 2022; 111:102167. [PMID: 35016771 DOI: 10.1016/j.hal.2021.102167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The HAB-forming, toxic dinoflagellate Karenia mikimotoi, previously found to benefit from ocean acidification (OA), was cultivated to investigate its transcriptional response to simulated OA for 30 generations. Batch cultures were grown under two CO2 concentrations, 450 (control) and 1100 (simulated OA) μatm, and physiological parameters [growth, pigments, catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD) activity], as well as transcriptomes (obtained via RNA-seq), were compared. Chlorophyll a (Chl a) and carotenoid (Caro) contents, as well as CAT and GR activities, were significantly increased under OA conditions. Transcriptomic analysis revealed 2,490 differentially expressed unigenes in response to OA, which comprised 1.54% of all unigenes. A total of 1,121 unigenes were upregulated, and 1,369 unigenes were downregulated in OA compared to control conditions. The downregulated expression of bicarbonate transporter and carbonic anhydrase genes was a landmark of OA acclimation. Key genes involved in energy metabolism, e.g., photosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, and nitrogen metabolism, were highly upregulated under OA, contributing to increases in the Chl a (55.05%) and Caro (28.37%). The enhanced antioxidant enzyme activities (i.e. CAT, GR) and upregulated genes (i.e. glutathione peroxidase, ascorbate peroxidase, heat shock protein, 20S proteasome, aldehyde dehydrogenase, and apolipoprotein) benefit cells against the potential lower pH stress condition under OA. In addition, the downregulation of four genes associated with motility suggested that the preserved energy could further boost growth. In conclusion, the present study suggests that K. mikimotoi exhibits efficient gene expression regulation for the utilization of energy and resistance to OA-induced stress. Taken together, K. mikimotoi appeared as a tolerant species in response to OA. Thus, more extensive algal blooms that threaten marine organisms are likely in the future. These findings expand current knowledge on the gene expression of HAB-forming species in response to future OA.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianlou Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuqi Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Zhu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiang Yao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Wang
- Department of Medical Laboratory Technology, Xinyang Vocational and Technical College, Xinyang, Henan 464000, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
29
|
Alvarenga DO, Rousk K. Indirect effects of climate change inhibit N 2 fixation associated with the feathermoss Hylocomium splendens in subarctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148676. [PMID: 34247067 DOI: 10.1016/j.scitotenv.2021.148676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Mosses can be responsible for up to 100% of net primary production in arctic and subarctic tundra, and their associations with diazotrophic cyanobacteria have an important role in increasing nitrogen (N) availability in these pristine ecosystems. Predictions about the consequences of climate change in subarctic environments point to increased N mineralization in soil and higher litter deposition due to warming. It is not clear yet how these indirect climate change effects impact moss-cyanobacteria associations and N2 fixation. This work aimed to evaluate the effects of increased N and litter input on biological N2 fixation rates associated with the feathermoss Hylocomium splendens from a tundra heath. H. splendens samples were collected near Abisko, northern Sweden, from a field experiment with annual additions of ammonium chloride and dried birch litter and the combination of both for three years. Samples were analyzed for N2 fixation, cyanobacterial colonization, C and N content and pH. Despite the high N additions, no significant differences in moss N content were found. However, differences between treatments were observed in N2 fixation rates, cyanobacterial colonization and pH, with the combined ammonium+litter treatment causing a significant reduction in the number of branch-colonizing cyanobacteria and N2 fixation, and ammonium additions significantly lowering moss pH. A significant, positive relationship was found between N2 fixation rates, moss colonization by cyanobacteria and pH levels, showing a clear drop in N2 fixation rates at lower pH levels even if larger cyanobacterial populations were present. These results suggest that increased N availability and litter deposition resulting from climate change not only interferes with N2 fixation directly, but also acidifies moss microhabitats and reduces the abundance of associated cyanobacteria, which could eventually impact the N cycle in the Subarctic.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| |
Collapse
|
30
|
Xie E, Xu K, Li Z, Li W, Yi X, Li H, Han Y, Zhang H, Zhang Y. Disentangling the Effects of Ocean Carbonation and Acidification on Elemental Contents and Macromolecules of the Coccolithophore Emiliania huxleyi. Front Microbiol 2021; 12:737454. [PMID: 34745039 PMCID: PMC8564145 DOI: 10.3389/fmicb.2021.737454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a major calcifying phytoplankton group, to changing carbonate chemistry, caused by the dissolution of anthropogenically derived CO2 into the surface ocean. However, the effects of changing carbonate chemistry on biomacromolecules, such as protein and carbohydrate of coccolithophores, are less documented. Here, we disentangled the effects of elevated dissolved inorganic carbon (DIC) concentration (900 to 4,930μmolkg−1) and reduced pH value (8.04 to 7.70) on physiological rates, elemental contents, and macromolecules of the coccolithophore Emiliania huxleyi. Compared to present DIC concentration and pH value, combinations of high DIC concentration and low pH value (ocean acidification) significantly increased pigments content, particulate organic carbon (POC), and carbohydrate content and had less impact on growth rate, maximal relative electron transport rate (rETRmax), particulate organic nitrogen (PON), and protein content. In high pH treatments, elevated DIC concentration significantly increased growth rate, pigments content, rETRmax, POC, particulate inorganic carbon (PIC), protein, and carbohydrate contents. In low pH treatments, the extents of the increase in growth rate, pigments and carbohydrate content were reduced. Compared to high pH value, under low DIC concentration, low pH value significantly increased POC and PON contents and showed less impact on protein and carbohydrate contents; however, under high DIC concentration, low pH value significantly reduced POC, PON, protein, and carbohydrate contents. These results showed that reduced pH counteracted the positive effects of elevated DIC concentration on growth rate, rETRmax, POC, PON, carbohydrate, and protein contents. Elevated DIC concentration and reduced pH acted synergistically to increase the contribution of carbohydrate–carbon to POC, and antagonistically to affect the contribution of protein–nitrogen to PON, which further shifted the carbon/nitrogen ratio of E. huxleyi.
Collapse
Affiliation(s)
- Emei Xie
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongzhou Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yonghe Han
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Hong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| |
Collapse
|
31
|
Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, Li P, Jin P, Xia J. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145167. [PMID: 33736151 DOI: 10.1016/j.scitotenv.2021.145167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification and warming are recognized as two major anthropogenic perturbations of the modern ocean. However, little is known about the adaptive response of phytoplankton to them. Here we examine the adaptation of a marine diatom Thalassiosira weissflogii to ocean acidification in combination with ocean warming. Our results show that ocean warming have a greater effect than acidification on the growth of T. weissflogii over the long-term selection experiment (~380 generations), as well as many temperature response traits (e.g., optimum temperatures for photosynthesis, maximal net photosynthetic oxygen evolution rates, activation energy) in thermal reaction norm. These results suggest that ocean warming is the main driver for the evolution of the marine diatom T. weissflogii, rather than oceanacidification. However, the evolution resulting from warming can be constrained by ocean acidification, where ocean warming did not impose any effects at high CO2 level. Furthermore, adaptations to ocean warming alone or to the combination of ocean acidification and warming come with trade-offs by inhibiting photochemical performances. The constrains and trade-offs associated with the adaptation to ocean acidification and warming demonstrated in this study, should be considered for parameterizing evolutionary responses in eco-evolutionary models of phytoplankton dynamics in a future ocean.
Collapse
Affiliation(s)
- Jiahui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingyan Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhe Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Quanting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hua Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinmei Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Peiyuan Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
32
|
Wu S, Mi T, Zhen Y, Yu K, Wang F, Yu Z. A Rise in ROS and EPS Production: New Insights into the Trichodesmium erythraeum Response to Ocean Acidification. JOURNAL OF PHYCOLOGY 2021; 57:172-182. [PMID: 32975309 DOI: 10.1111/jpy.13075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.
Collapse
Affiliation(s)
- Shijie Wu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kaiqiang Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fuwen Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
33
|
Xie Y, Chen L, Sun T, Jiang J, Tian L, Cui J, Zhang W. A transporter Slr1512 involved in bicarbonate and pH-dependent acclimation mechanism to high light stress in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148336. [PMID: 33181099 DOI: 10.1016/j.bbabio.2020.148336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
High light (HL) exposure leads to photoinhibition and excess accumulation of toxic reactive oxygen species (ROS) in photosynthetic organisms, negatively impacting the global primary production. In this study, by screening a mutant library, a gene related with bicarbonate transport, slr1512, was found involved in HL acclimation in model cyanobacterium Synechocystis sp. PCC 6803. Comparative growth analysis showed that the slr1512 knockout mutant dramatically enhanced the tolerance of Synechocystis towards long-term HL stress (200 μmol photons m-2 s-1) than the wild type, achieving an enhanced growth by ~1.95-folds after 10 d. The phenotype differences between Δslr1512 and the wild type were analyzed via absorption spectrum and chlorophyll a content measurement. In addition, the accessible bicarbonate controlled by slr1512 and decreased PSII activity were demonstrated, and they were found to be the key factors affecting the tolerance of Synechocystis against HL stress. Further analysis confirmed that intracellular bicarbonate can significantly affect the activity of photosystem II, leading to the altered accumulation of toxic ROS under HL. Finally, a comparative transcriptomics was applied to determine the differential responses to HL between Δslr1512 and the wild type. This work provides useful insights to long-term acclimation mechanisms towards HL and valuable information to guide the future tolerance engineering of cyanobacteria against HL.
Collapse
Affiliation(s)
- Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
34
|
Freeman EC, Creed IF, Jones B, Bergström AK. Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes. GLOBAL CHANGE BIOLOGY 2020; 26:4966-4987. [PMID: 32445590 DOI: 10.1111/gcb.15189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these global changes are complex, if not contradictory. We hypothesized that absolute and relative biovolumes of cyanobacteria (both total and specific genera) are increasing in Swedish nutrient-poor lakes and that these increases are associated with global changes. We tested these hypotheses using data from 28 nutrient-poor Swedish lakes over 16 years (1998-2013). Increases in cyanobacteria relative biovolume were identified in 21% of the study sites, primarily in the southeastern region of Sweden, and were composed mostly of increases from three specific genera: Merismopedia, Chroococcus and Dolichospermum. Taxon-specific changes were related to different environmental stressors; that is, increased surface water temperature favoured higher Merismopedia relative biovolume in low pH lakes with high nitrogen to phosphorus ratios, whereas acidification recovery was statistically related to increased relative biovolumes of Chroococcus and Dolichospermum. In addition, enhanced dissolved organic matter loads were identified as potential determinants of Chroococcus suppression and Dolichospermum promotion. Our findings highlight that specific genera of cyanobacteria benefit from different environmental changes. Our ability to predict the risk of cyanobacteria prevalence requires consideration of the environmental condition of a lake and the sensitivities of the cyanobacteria genera within the lake. Regional patterns may emerge due to spatial autocorrelations within and among lake history, rates and direction of environmental change and the niche space occupied by specific cyanobacteria.
Collapse
Affiliation(s)
- Erika C Freeman
- Department of Geography, Western University, London, ON, Canada
| | - Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Blake Jones
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | | |
Collapse
|
35
|
Lin W, Ren Z, Mu C, Ye Y, Wang C. Effects of Elevated pCO 2 on the Survival and Growth of Portunus trituberculatus. Front Physiol 2020; 11:750. [PMID: 32754046 PMCID: PMC7367060 DOI: 10.3389/fphys.2020.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Identifying the response of Portunus trituberculatus to ocean acidification (OA) is critical to understanding the future development of this commercially important Chinese crab species. Recent studies have reported negative effects of OA on crustaceans. Here, we subjected swimming crabs to projected oceanic CO2 levels (current: 380 μatm; 2100: 750 μatm; 2200: 1500 μatm) for 4 weeks and analyzed the effects on survival, growth, digestion, antioxidant capacity, immune function, tissue metabolites, and gut bacteria of the crabs and on seawater bacteria. We integrated these findings to construct a structural equation model to evaluate the contribution of these variables to the survival and growth of swimming crabs. Reduced crab growth shown under OA is significantly correlated with changes in gut, muscle, and hepatopancreas metabolites whereas enhanced crab survival is significantly associated with changes in the carbonate system, seawater and gut bacteria, and activities of antioxidative and digestive enzymes. In addition, seawater bacteria appear to play a central role in the digestion, stress response, immune response, and metabolism of swimming crabs and their gut bacteria. We predict that if anthropogenic CO2 emissions continue to rise, future OA could lead to severe alterations in antioxidative, immune, and metabolic functions and gut bacterial community composition in the swimming crabs through direct oxidative stress and/or indirect seawater bacterial roles. These effects appear to mediate improved survival, but at the cost of growth of the swimming crabs.
Collapse
Affiliation(s)
- Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| |
Collapse
|
36
|
Abstract
Nitrogen fixation, the reduction of atmospheric dinitrogen gas (N2) to ammonia, is critical for biological productivity but is difficult to study in the vast expanse of the global ocean. Decades of field studies and the infusion of molecular biological, genomic, isotopic, and geochemical modeling approaches have led to new paradigms and questions. The discovery of previously unknown N2-fixing (diazotrophic) microorganisms and unusual physiological adaptations, combined with diagnostic distributions of nutrients and their isotopes as well as measured and modeled biogeographic patterns, have revolutionized our understanding of marine N2 fixation and its role in the global nitrogen cycle. Anthropogenic upper-ocean warming, increased dissolved carbon dioxide, and acidification will affect the distribution and relative importance of specific subgroups of N2 fixers in the sea; these changes have implications for foodwebs and biogeochemical cycles.
Collapse
Affiliation(s)
- Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95003, USA
| | - Douglas G. Capone
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Van de Waal DB, Litchman E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190706. [PMID: 32200734 PMCID: PMC7133525 DOI: 10.1098/rstb.2019.0706] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Predicting the effects of multiple global change stressors on microbial communities remains a challenge because of the complex interactions among those factors. Here, we explore the combined effects of major global change stressors on nutrient acquisition traits in marine phytoplankton. Nutrient limitation constrains phytoplankton production in large parts of the present-day oceans, and is expected to increase owing to climate change, potentially favouring small phytoplankton that are better adapted to oligotrophic conditions. However, other stressors, such as elevated pCO2, rising temperatures and higher light levels, may reduce general metabolic and photosynthetic costs, allowing the reallocation of energy to the acquisition of increasingly limiting nutrients. We propose that this energy reallocation in response to major global change stressors may be more effective in large-celled phytoplankton species and, thus, could indirectly benefit large-more than small-celled phytoplankton, offsetting, at least partially, competitive disadvantages of large cells in a future ocean. Thus, considering the size-dependent responses to multiple stressors may provide a more nuanced understanding of how different microbial groups would fare in the future climate and what effects that would have on ecosystem functioning. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Dedmer B. Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6871 CM, The Netherlands
| | - Elena Litchman
- W. K. Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Drive, Hickory Corners, MI 49060, USA
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Zhang W, Tang X, Yang Y, Zhang X, Zhang X. Elevated pCO 2 Level Affects the Extracellular Polymer Metabolism of Phaeodactylum tricornutum. Front Microbiol 2020; 11:339. [PMID: 32194534 PMCID: PMC7064563 DOI: 10.3389/fmicb.2020.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular polymeric substances (EPS) play an important role in diatom physiology and carbon biogeochemical cycling in marine ecosystems. Both the composition and yield of EPS in diatom cells can vary with environmental changes. However, information on intracellular pathways and controls of both biochemical and genetic of EPS is limited. Further, how such changes would affect their critical ecological roles in marine systems is also unclear. Here, we evaluated the physiological characteristics, EPS yields, EPS compositions, and gene expression levels of Phaeodactylum tricornutum under elevated pCO2 levels. Genes and pathways related to EPS metabolism in P. tricornutum were identified. Carbohydrate yields in different EPS fractions increased with elevated pCO2 exposure. Although the proportions of monosaccharide sugars among total sugars did not change, higher abundances of uronic acid were observed under high pCO2 conditions, suggesting the alterations of EPS composition. Elevated pCO2 increased PSII light energy conversion efficiency and carbon sequestration efficiency. The up-regulation of most genes involved in carbon fixation pathways led to increased growth and EPS release. RNA-Seq analysis revealed a number of genes and divergent alleles related to EPS production that were up-regulated by elevated pCO2 levels. Nucleotide diphosphate (NDP)-sugar activation and accelerated glycosylation could be responsible for more EPS responding to environmental signals. Further, NDP-sugar transporters exhibited increased expression levels, suggesting roles in EPS over-production. Overall, these results provide critical data for understanding the mechanisms of EPS production in diatoms and evaluating the metabolic plasticity of these organisms in response to environmental changes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory of Oceanology for Marine Science and Technology, Qingdao, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory of Oceanology for Marine Science and Technology, Qingdao, China
| |
Collapse
|
39
|
Li T, Lin X, Yu L, Lin S, Rodriguez IB, Ho TY. RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135767. [PMID: 31972930 DOI: 10.1016/j.scitotenv.2019.135767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
A healthy symbiotic relationship between corals and Symbiodiniaceae relies on suitable temperature and adequate nutrients including trace metals. Besides global warming, trace metal deficiency has been shown to cause coral bleaching, a phenomenon responsible for extensive coral reef degradation around the world. How trace metal deficiency impacts Symbiodiniaceae and coral symbiosis is poorly understood, however. In this study, we applied RNA-seq to investigate how Fugacium kawagutii responds to the deficiency of five trace metals (Fe2+, Zn2+, Cu2+, Mn2+, Ni2+). We identified 685 to 2805 differentially expressed genes (DEGs) from these trace metal deficiency conditions, among which 372 were commonly regulated by all the five trace metals and were significantly enriched in energy metabolism (e.g. fatty acid synthesis). Furthermore, genes associated with extracellular matrix (ECM), cell surface structure and cell adhesion were impacted, suggesting that the ability of recognition and adhesion of F. kawagutii may be altered by trace metal deficiencies. In addition, among the five metals, Fe2+ deficiency exhibited the strongest influence, with Fe-rich redox elements and many antioxidant synthesis genes being markedly down-regulated, indicative of adaptive reduction of Fe demand but a compromised ability to combat oxidative stress. Overall, deficiency of trace metals (especially Fe) seems to repress growth and ability of ROS scavenging, elevate energy metabolism and innate immunity, and alter cell adhesion capability, with implications in symbiosis disruption and coral bleaching.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Uddin S, Bebhehani M, Al-Musallam L, Kumar VV, Sajid S. Po uptake in microalgae at different seawater pH: An experimental study simulating ocean acidification. MARINE POLLUTION BULLETIN 2020; 151:110844. [PMID: 32056632 DOI: 10.1016/j.marpolbul.2019.110844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Climate change effects such as ocean acidification (OA) are known to affect the trace metal distribution. This experimental study provides the first data on 209Po uptake rates and 210Po concentration in five microalgae species under different pH scenarios. The experiment was conducted in replicates at three pH conditions 8.2, 8.0, and 7.5, representing the current and future climate change scenario as per IPCC RCP8.5. The 209Po uptake in the phytoplankton was highest in Thalassiosira weissflogi, i.e. 83% of the 209Po tracer was taken up at 8.2 pH whereas the lowest uptake was observed in Dunaliella salina equivalent to 20% at 7.5 pH. Similar behavior was observed in 210Po concentrations in these microalgae, where 210Po ranged between 3.16 ± 0.03 and 11.6 ± 0.04 Bq kg-1 wet weight (ww), with the highest in the Thalassioria weissflogi at 8.2 pH, and the lowest in Dunaliella salina at 7.5 pH. The difference in 209Po uptake and 210Po concentration was statistically significant (p < 0.001) both among species and the pH treatments in the order: Thalassiosira weissflogi > Tetraselmis suecica > Chaetoceros muelleri > Isochrysis galbana > Dunaliella salina and 8.2 > 8.0 > 7.5. A higher concentration of 209Po in seawater was measured at low pH condition in all the experimental tanks. Though the data clearly show the difference in concentration and uptake of polonium at different pH conditions, it is not known if lower pH is affecting the adsorbed or absorbed fraction. A detailed investigation will be required to understand the process as it can have a significant effect on biomagnification and marine food chain transfer under changing climatic scenarios.
Collapse
Affiliation(s)
- S Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - M Bebhehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - L Al-Musallam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - V V Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - S Sajid
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
41
|
Hennon GMM, Dyhrman ST. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. HARMFUL ALGAE 2020; 91:101587. [PMID: 32057337 DOI: 10.1016/j.hal.2019.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have transformed that data landscape of many fields including the study of HABs. Advances in technology have facilitated the creation of many publicly available omics datasets that are complementary and shed new light on the mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. With the ever-increasing omics databases, leveraging these data for understanding climate-driven HAB dynamics will be increasingly powerful.
Collapse
Affiliation(s)
- Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
42
|
Zhang F, Hong H, Kranz SA, Shen R, Lin W, Shi D. Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions. PHOTOSYNTHESIS RESEARCH 2019; 142:17-34. [PMID: 31077001 DOI: 10.1007/s11120-019-00643-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/30/2019] [Indexed: 05/19/2023]
Abstract
Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.
Collapse
Affiliation(s)
- Futing Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Sven A Kranz
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Rong Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wenfang Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China.
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
43
|
Li D, Liu J, Zhang R, Chen M, Yang W, Li J, Fang Z, Wang B, Qiu Y, Zheng M. N 2 fixation impacted by carbon fixation via dissolved organic carbon in the changing Daya Bay, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:592-602. [PMID: 31022548 DOI: 10.1016/j.scitotenv.2019.04.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We present the first concurrent measurements of N2 fixation rates (15N2 uptake), primary production (14C uptake), dissolved organic carbon (DOC) concentrations, and diazotrophic community composition derived from nitrogenase (nifH) abundance in the subtropical Daya Bay (DB) of the coastal northern South China Sea (NSCS) from 2015 to 2017. N2 fixation rates ranged from n.d. - 4.51 nmol N L-1 h-1. Such values were generally higher than those reported in the neighbouring NSCS open waters and several well-studied oligotrophic waters, thereby suggesting that N-replete conditions do not prevent N2 fixation in coastal waters. N2 fixation rates were positively and significantly correlated with the primary production and the concentration of DOC in DB in the spring and summer. Combined with other lines of evidence, we suggest that N2 fixation may be facilitated by non-diazotrophic phytoplankton via a probable regulation of the quantity and quality (bioavailability) of DOC in DB. Since DB represents a suitable site that has experienced dramatic human-induced changes in environmental conditions, our results likely provide insights in understanding how N2 fixation and relevant biogeochemical processes may respond to intensified global anthropogenic forcing in similar coastal settings.
Collapse
Affiliation(s)
- Danyang Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China
| | - Run Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Min Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weifeng Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Junjie Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ziming Fang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yusheng Qiu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minfang Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
44
|
Shi D, Hong H, Su X, Liao L, Chang S, Lin W. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO 2 and pH. JOURNAL OF PHYCOLOGY 2019; 55:521-533. [PMID: 30849184 DOI: 10.1111/jpy.12855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/26/2019] [Indexed: 05/19/2023]
Abstract
Although increasing the pCO2 for diatoms will presumably down-regulate the CO2 -concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down-regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2 , than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross-membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.
Collapse
Affiliation(s)
- Dalin Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| | - Xi Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| | - Lirong Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| | - Siwei Chang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| | - Wenfang Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361012, China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361012, China
| |
Collapse
|
45
|
Luo YW, Shi D, Kranz SA, Hopkinson BM, Hong H, Shen R, Zhang F. Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification. Nat Commun 2019; 10:1521. [PMID: 30944323 PMCID: PMC6447586 DOI: 10.1038/s41467-019-09554-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
The response of the prominent marine dinitrogen (N2)-fixing cyanobacteria Trichodesmium to ocean acidification (OA) is critical to understanding future oceanic biogeochemical cycles. Recent studies have reported conflicting findings on the effect of OA on growth and N2 fixation of Trichodesmium. Here, we quantitatively analyzed experimental data on how Trichodesmium reallocated intracellular iron and energy among key cellular processes in response to OA, and integrated the findings to construct an optimality-based cellular model. The model results indicate that Trichodesmium growth rate decreases under OA primarily due to reduced nitrogenase efficiency. The downregulation of the carbon dioxide (CO2)-concentrating mechanism under OA has little impact on Trichodesmium, and the energy demand of anti-stress responses to OA has a moderate negative effect. We predict that if anthropogenic CO2 emissions continue to rise, OA could reduce global N2 fixation potential of Trichodesmium by 27% in this century, with the largest decrease in iron-limiting regions.
Collapse
Affiliation(s)
- Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Sven A Kranz
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Rong Shen
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Futing Zhang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| |
Collapse
|
46
|
Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. GLOBAL CHANGE BIOLOGY 2018; 24:5031-5043. [PMID: 30120863 DOI: 10.1111/gcb.14424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Ocean acidification (OA), arising from the influx of anthropogenically generated carbon, poses a massive threat to the ocean ecosystems. Our knowledge of the effects of elevated anthropogenic CO2 in marine waters and its effect on the performance of single species, trophic interactions, and ecosystems is increasing rapidly. However, our understanding of the biogeochemical cycling of nutrients such as nitrogen is less advanced and lacks a comprehensive overview of how these processes may change under OA. We conducted a systematic review and meta-analysis of eight major nitrogen transformation processes incorporating 49 publications to synthesize current scientific understanding of the effect of OA on nitrogen cycling in the future ocean by 2100. The following points were identified by our meta-analysis: (a) Diazotrophic nitrogen fixation is likely enhanced by 29% ± 4% under OA; (b) species- and strain-specific responses of nitrogen fixers to OA were detectable, which may result in alterations in microbial community composition in the future ocean; (c) nitrification processes were reduced by a factor of 29% ± 10%; (d) declines in nitrification rates were not reflected by nitrifier abundance; and (e) contrasting results in unispecific culture experiments versus natural communities were apparent for nitrogen fixation and denitrification. The net effect of the nitrogen cycle process responses also suggests there may be a shift in the relative nitrogen pools, with excess ammonium originating from CO2 -fertilized diazotrophs. This regenerated inorganic nitrogen may recycle in the upper water column increasing the relative importance of the ammonium-fueled regenerated production. However, several feedback mechanisms with other chemical cycles, such as oxygen, and interaction with other climate change stressors may counteract these findings. Finally, our review highlights the shortcomings and gaps in current understanding of the potential changes in nitrogen cycling under future climate and emphasizes the need for further ecosystem studies.
Collapse
Affiliation(s)
- Nicola Wannicke
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Greifswald, Germany
| | - Claudia Frey
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey
- Department of Environmental Sciences, University of Basel, Aquatic and Stable Isotope Biogeochemistry, Basel, Switzerland
| | - Cliff S Law
- National Institute of Water and Atmospheric Research (NIWA), Kilbirnie, Wellington, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Maren Voss
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
47
|
Boatman TG, Mangan NM, Lawson T, Geider RJ. Inorganic carbon and pH dependency of photosynthetic rates in Trichodesmium. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3651-3660. [PMID: 29659983 PMCID: PMC6022602 DOI: 10.1093/jxb/ery141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 05/12/2023]
Abstract
Increasing atmospheric CO2 concentrations are leading to increases in dissolved CO2 and HCO3- concentrations and decreases in pH and CO32- in the world's oceans. There remain many uncertainties as to the magnitude of biological responses of key organisms to these chemical changes. In this study, we established the relationship between photosynthetic carbon fixation rates and pH, CO2, and HCO3- concentrations in the diazotroph, Trichodesmium erythraeum IMS101. Inorganic 14C-assimilation was measured in TRIS-buffered artificial seawater medium where the absolute and relative concentrations of CO2, pH, and HCO3- were manipulated. First, we varied the total dissolved inorganic carbon concentration (TIC) (<0 to ~5 mM) at constant pH, so that ratios of CO2 and HCO3- remained relatively constant. Second, we varied pH (~8.54 to 7.52) at constant TIC, so that CO2 increased whilst HCO3- declined. We found that 14C-assimilation could be described by the same function of CO2 for both approaches, but it showed different dependencies on HCO3- when pH was varied at constant TIC than when TIC was varied at constant pH. A numerical model of the carbon-concentrating mechanism (CCM) of Trichodesmium showed that carboxylation rates are modulated by HCO3- and pH. The decrease in assimilation of inorganic carbon (Ci) at low CO2, when TIC was varied, was due to HCO3- uptake limitation of the carboxylation rate. Conversely, when pH was varied, Ci assimilation declined due to a high-pH mediated increase in HCO3- and CO2 leakage rates, potentially coupled to other processes (uncharacterised within the CCM model) that restrict Ci assimilation rates under high-pH conditions.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, USA
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| |
Collapse
|
48
|
Boatman TG, Oxborough K, Gledhill M, Lawson T, Geider RJ. An Integrated Response of Trichodesmium erythraeum IMS101 Growth and Photo-Physiology to Iron, CO 2, and Light Intensity. Front Microbiol 2018; 9:624. [PMID: 29755417 PMCID: PMC5932364 DOI: 10.3389/fmicb.2018.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
We have assessed how varying CO2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m-2 s-1) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rPm and lowered the iron half saturation constants for growth (Km). We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures) over the coming decades.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Kevin Oxborough
- Chelsea Technologies Group Ltd, West Molesey, United Kingdom
| | - Martha Gledhill
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom.,GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
49
|
Liu J, Zhou L, Ke Z, Li G, Shi R, Tan Y. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea. MARINE POLLUTION BULLETIN 2018; 129:142-150. [PMID: 29680532 DOI: 10.1016/j.marpolbul.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation.
Collapse
Affiliation(s)
- Jiaxing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linbin Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Gang Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rongjun Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
50
|
Polyviou D, Baylay AJ, Hitchcock A, Robidart J, Moore CM, Bibby TS. Desert Dust as a Source of Iron to the Globally Important Diazotroph Trichodesmium. Front Microbiol 2018; 8:2683. [PMID: 29387046 PMCID: PMC5776111 DOI: 10.3389/fmicb.2017.02683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
The marine cyanobacterium Trichodesmium sp. accounts for approximately half of the annual ‘new’ nitrogen introduced to the global ocean but its biogeography and activity is often limited by the availability of iron (Fe). A major source of Fe to the open ocean is Aeolian dust deposition in which Fe is largely comprised of particles with reduced bioavailability over soluble forms of Fe. We report that Trichodesmium erythraeum IMS101 has improved growth rate and photosynthetic physiology and down-regulates Fe-stress biomarker genes when cells are grown in the direct vicinity of, rather than physically separated from, Saharan dust particles as the sole source of Fe. These findings suggest that availability of non-soluble forms of dust-associated Fe may depend on cell contact. Transcriptomic analysis further reveals unique profiles of gene expression in all tested conditions, implying that Trichodesmium has distinct molecular signatures related to acquisition of Fe from different sources. Trichodesmium thus appears to be capable of employing specific mechanisms to access Fe from complex sources in oceanic systems, helping to explain its role as a key microbe in global biogeochemical cycles.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Alison J Baylay
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre, Southampton, United Kingdom
| | - C M Moore
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|