1
|
Wu W, Yang J, Tao H, Lei M. Environmental Regulation of Skin Pigmentation and Hair Regeneration. Stem Cells Dev 2022; 31:91-96. [PMID: 35285756 DOI: 10.1089/scd.2022.29011.wwu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wang Wu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Department of Bioengineering, College of Bioengineering, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Cosmetic and Plastic Center and Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jing Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Hongjun Tao
- Cosmetic and Plastic Center and Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, Department of Bioengineering, College of Bioengineering, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
van der Velden LM, Maas P, van Amersfoort M, Timmermans-Sprang EPM, Mensinga A, van der Vaart E, Malergue F, Viëtor H, Derksen PWB, Klumperman J, van Agthoven A, Egan DA, Mol JA, Strous GJ. Small molecules to regulate the GH/IGF1 axis by inhibiting the growth hormone receptor synthesis. Front Endocrinol (Lausanne) 2022; 13:926210. [PMID: 35966052 PMCID: PMC9365994 DOI: 10.3389/fendo.2022.926210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.
Collapse
Affiliation(s)
- Lieke M. van der Velden
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Peter Maas
- Specs Compound Handling, Zoetermeer, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| | | | | | - Anneloes Mensinga
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Elisabeth van der Vaart
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Fabrice Malergue
- Department of Research and Development, Beckman Coulter Life Science, Immunotech Marseille, Marseille, France
| | - Henk Viëtor
- Drug Discovery Factory (DDF) Ventures, Breukelen, Netherlands
| | - Patrick W B. Derksen
- Department of Pathology, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Andreas van Agthoven
- Department of Research and Development, Beckman Coulter Life Science, Immunotech Marseille, Marseille, France
| | - David A. Egan
- Cell Screening Core, Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| | - Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| |
Collapse
|
3
|
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:157. [PMID: 34274018 PMCID: PMC8285809 DOI: 10.1186/s13068-021-02008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/05/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. RESULTS In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. CONCLUSIONS The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Maria Alvarez
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
- Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain
| | - Gilad Alfassi
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergio Garcia-Echauri
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - José L Avalos
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Liu ZH, Hao N, Wang YY, Dou C, Lin F, Shen R, Bura R, Hodge DB, Dale BE, Ragauskas AJ, Yang B, Yuan JS. Transforming biorefinery designs with 'Plug-In Processes of Lignin' to enable economic waste valorization. Nat Commun 2021; 12:3912. [PMID: 34162838 PMCID: PMC8222318 DOI: 10.1038/s41467-021-23920-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Naijia Hao
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yun-Yan Wang
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Chang Dou
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Rongchun Shen
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Renata Bura
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - David B Hodge
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Bruce E Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun 2019; 10:4135. [PMID: 31515535 PMCID: PMC6742659 DOI: 10.1038/s41467-019-11974-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Perennial grasses are promising feedstocks for biofuel production, with potential for leveraging their native microbiomes to increase their productivity and resilience to environmental stress. Here, we characterize the 16S rRNA gene diversity and seasonal assembly of bacterial and archaeal microbiomes of two perennial cellulosic feedstocks, switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus). We sample leaves and soil every three weeks from pre-emergence through senescence for two consecutive switchgrass growing seasons and one miscanthus season, and identify core leaf taxa based on occupancy. Virtually all leaf taxa are also detected in soil; source-sink modeling shows non-random, ecological filtering by the leaf, suggesting that soil is an important reservoir of phyllosphere diversity. Core leaf taxa include early, mid, and late season groups that were consistent across years and crops. This consistency in leaf microbiome dynamics and core members is promising for microbiome manipulation or management to support crop production. Microbial communities of plant leaf surfaces are ecologically important, but how they assemble and vary in time is unclear. Here, the authors identify core leaf microbiomes and seasonal patterns for two biofuel crops and show with source-sink models that soil is a reservoir of phyllosphere diversity.
Collapse
Affiliation(s)
- Keara L Grady
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Jackson W Sorensen
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Nejc Stopnisek
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - John Guittar
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Dr, Hickory Corners, MI, 49060, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA. .,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA. .,The Plant Resilience Institute, Michigan State University, East Lansing, MI, 48840, USA. .,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
VanHook AM. Papers of note in
Science
356
(6335). Sci Signal 2017. [DOI: 10.1126/scisignal.aan4938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This week’s articles highlight a peptide that controls myoblast fusion; a metabolic adaptation that enables naked mole-rats to resist the detrimental effects of anoxia; a transcription factor that coordinates signaling in the mammary epithelial stem cell niche; and transgenerational epigenetic inheritance of the response to an environmental stimulus.
Collapse
|