1
|
Bhattacharya I, Hautke A, Rossi E, Stevens L, Marick A, Bera A, Das T, Ferrarini A, Sulpizi M, Ebbinghaus S, Mitra RK. Non-monotonous Concentration Dependent Solvation of ATP Could Help to Rationalize Its Anomalous Impact on Various Biophysical Processes. J Phys Chem Lett 2025; 16:4305-4314. [PMID: 40266569 DOI: 10.1021/acs.jpclett.5c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Adenosine triphosphate (ATP), one of the biologically most important molecules, offers certain anomalous behavior during folding and liquid-liquid phase separation of proteins and RNAs. ATP can act as a "biological hydrotrope", i.e., it solubilizes hydrophobic proteins or other biomolecules. However, upon exceeding the physiological concentration range (2-10 mM), aggregation of proteins and RNAs is promoted, an effect that is not understood yet. Here we present a time-domain and frequency-domain Terahertz (THz) spectroscopic investigation to understand the solvation of ATP with varying concentration in the range of 2-15 mM. Both time and frequency domain studies of the solvation of adenosine (Adn), sodium triphosphate (TPP), and ATP elucidate that both the adenosine as well as the triphosphate moiety contribute to nearly equal propensity towards the solvation structure of ATP at low concentrations. However, at higher concentrations (>10 mM), the effect of the adenosine moiety dominates, which leads to a more structured solvation shell followed by slower relaxation dynamics. This is due to the triphosphate-driven ATP aggregation with a reduced amount of water-exposed triphosphate groups, as revealed by molecular dynamics simulations. These observations could lead to an understanding of the complex role of ATP in different biological systems.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alexander Hautke
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Emma Rossi
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Laurie Stevens
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Aritra Marick
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Asesh Bera
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Tanushree Das
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alberta Ferrarini
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
| | - Marialore Sulpizi
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Simon Ebbinghaus
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| |
Collapse
|
2
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Ning Y, Li B, Chen W, Feng L, Huang X, Liu B. DNA Framework-Based Lysosome-Targeting Chimeras: Intracellular ATP-Facilitated Extracellular Protein Degradation. ACS NANO 2025; 19:15853-15862. [PMID: 40237339 DOI: 10.1021/acsnano.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Targeted protein degradation (TPD) offered a riveting therapeutic paradigm to eradicate pathogenesis-relevant proteins, especially those belonging to the once-considered undruggable proteome. Considering that adenosine triphosphate (ATP) is the primary energy source for cell activities and lysosomes are important ATP storage sites, herein, the first example of dual-function tetrahedral DNA framework-based lysosome-targeting chimeras (TDF-LYTACs) is proposed for elucidating the correlation between extracellular protein degradation via the lysosome pathway and the fluctuations in intracellular ATP levels. In our study, platelet-derived growth factor (PDGF), a driver of cancer invasion and metastasis, was chosen as the protein of interest. To achieve multifunctionality, we employed a tetrahedral DNA framework formed by an aptamer of PDGF, human apurinic/apyrimidinic endonuclease 1 (APE1)-triggered ATP probes, and a ligand of the cell-surface lysosome-shuttling receptor (IGFIIR). TDF-LYTACs efficiently and quickly shuttled PDGF proteins to lysosomes, degraded them through the lysosomal pathway, and further visualized the intracellular ATP level synchronously. Furthermore, we found a significant correlation between the degradation efficiency of PDGF and intracellular ATP levels over time; that is, a higher ATP level corresponded to higher degradation efficiency and vice versa. We anticipate that our versatile TDF-LYTACs will offer a perspective for degrading multifunctional extracellular proteins.
Collapse
Affiliation(s)
- Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Weishuai Chen
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Langxia Feng
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
Herrick J, Norris V, Kohiyama M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules 2025; 15:203. [PMID: 40001506 PMCID: PMC11853086 DOI: 10.3390/biom15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on a critical mass for initiation, Mi, as licensed by a variety of macromolecules and molecules reflecting the state of the cell. To help in the re-interpretation of this data, we focus mainly on the roles of DnaA, RNA polymerase, SeqA, and ribonucleotide reductase in the context of the "nucleotypic effect".
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| | - Masamichi Kohiyama
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France;
| |
Collapse
|
5
|
Ohno K, Murakami H, Ogo N, Asai A. Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix. Sci Rep 2024; 14:31401. [PMID: 39733149 PMCID: PMC11682119 DOI: 10.1038/s41598-024-82939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines. From these results, we found that the punctate phenotype was caused by protein insolubility in the mitochondrial matrix. Interestingly, the punctate phenotype of disulfiram was sensitive to the relative expression of LonP1, a protease in the mitochondrial matrix that regulates proteostasis, suggesting that the punctate phenotype manifests when the protein quality control capacity in the mitochondrial matrix is exceeded. Moreover, we discovered that disulfiram and its derivatives, which have all been reported to increase acetaldehyde in the blood after the in vivo intake of alcohol, induced a punctate phenotype as well. The investigated punctate phenotype not only provides a novel clue for elucidating the common mechanism of action among disulfiram derivatives but is also a novel example of chemical perturbation of proteostasis in the mitochondrial matrix.
Collapse
Affiliation(s)
- Ken Ohno
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan
- Discovery Technology Laboratories, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, 251-8555, Kanagawa, Japan
| | - Hisashi Murakami
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.
| |
Collapse
|
6
|
Li B, Chen X, Yang JY, Gao S, Bai F. Intracellular ATP concentration is a key regulator of bacterial cell fate. J Bacteriol 2024; 206:e0020824. [PMID: 39530704 PMCID: PMC11656805 DOI: 10.1128/jb.00208-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
ATP, most widely known as the primary energy source for numerous cellular processes, also exhibits the characteristics of a biological hydrotrope. The viable but nonculturable (VBNC) and persister states are two prevalent dormant phenotypes employed by bacteria to survive challenging environments, both of which are associated with low metabolic activity. Here, we investigate the intracellular ATP concentration of individual VBNC and persister cells using a sensitive ATP biosensor QUEEN-7μ and reveal that both types of cells possess a lower intracellular ATP concentration than culturable and sensitive cells, although there is a certain overlap in the intracellular ATP concentrations between antibiotic-sensitive cells and persisters. Moreover, we successfully separated VBNC cells from culturable cells using fluorescence-activated cell sorting based on the intracellular ATP concentration threshold of 12.5 µM. Using an enriched VBNC cell population, we confirm that the precipitation of proteins involved in key biological processes promotes VBNC cell formation. Notably, using green light-illuminated proteorhodopsin (PR), we demonstrate that VBNC cells can be effectively resuscitated by elevating their intracellular ATP concentration. These findings highlight the crucial role of intracellular ATP concentration in the regulation of bacterial cell fate and provide new insights into the formation of VBNC and persister cells.IMPORTANCEThe viable but nonculturable (VBNC) and persister states are two dormant phenotypes employed by bacteria to counter stressful conditions and play a crucial role in chronic and recurrent bacterial infections. However, the lack of precise detection methods poses significant threats to public health. Our study reveals lower intracellular ATP concentrations in these states and establishes an ATP threshold for distinguishing VBNC from culturable cells. Remarkably, we revive VBNC cells by elevating their intracellular ATP levels. This echoes recent eukaryotic studies where modulating metabolism impacts outcomes like osteoarthritis treatment and lifespan extension in Caenorhabditis elegans. Our findings underscore the crucial role of intracellular ATP levels in governing bacterial fate, emphasizing ATP manipulation as a potential strategy to steer bacterial behavior.
Collapse
Affiliation(s)
- Bo Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Popović I, Dončević L, Biba R, Košpić K, Barbalić M, Marinković M, Cindrić M. Advancements in Adenine Nucleotides Extraction and Quantification from a Single Drop of Human Blood. Molecules 2024; 29:5630. [PMID: 39683788 DOI: 10.3390/molecules29235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Adenine nucleotides (ANs)-adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP)-are essential for energy transfer and the supply of countless processes within cellular metabolism. Their concentrations can be expressed as adenylate energy charge (AEC), a measure of cellular metabolic energy that directly correlates with the homeostasis of the organism. AEC index has broad diagnostic potential, as reduced ATP levels are associated to various conditions, such as inflammatory diseases, metabolic disorders, and cancer. We introduce a novel methodology for rapid isolation, purification, and quantification of ANs from a single drop of capillary blood. Of all the stationary phases tested, activated carbon proved to be the most efficient for the purification of adenine nucleotides, using an automated micro-solid phase extraction (µ-SPE) platform. An optimized µ-SPE method, coupled with RP-HPLC and a run time of 30 min, provides a reliable analytical framework for adenine nucleotide analysis of diverse biological samples. AN concentrations measured in capillary blood samples were 1393.1 µM, 254.8 µM, and 76.9 µM for ATP, ADP, and AMP molecules aligning with values reported in the literature. Overall, this study presents a streamlined and precise approach for analyzing ANs from microliters of blood, offering promising applications in clinical diagnostics.
Collapse
Affiliation(s)
- Ivana Popović
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Renata Biba
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Karla Košpić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Barbalić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mija Marinković
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mario Cindrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
9
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
10
|
Greiner JV, Glonek T. The High Millimolar Concentration of ATP: A Fundamental & Foundational Feature of Eukaryotic, Archaeotic, and Prokaryotic Domains. FRONT BIOSCI-LANDMRK 2024; 29:384. [PMID: 39614451 DOI: 10.31083/j.fbl2911384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Measurement of the adenosine triphosphate (ATP) concentration among different cells, tissues and organs and even across the phylogenetic tree ordinarily yields exceedingly high concentrations at the millimolar (mM) level. This represents a conundrum in that ATP-driven cellular functions only require micromolar (μM) values. Considering that nature is ordinarily conservative in the generation of high-energy phosphatic metabolites such as ATP, a potential major role for ATP has been completely overlooked and may be of paramount importance because ATP is a hydrotrope. In all phylogenetic domains, reports have established that the excessively high mM concentration of ATP is present in studies of eukaryotic cellular and tissue homogenates, living tissues, and a living organ as well as archaeotic and prokaryotic organisms. These ATP concentrations are also present in contemporary relatives of microorganisms having progenitors existing in the Precambrian Era. This feature is fundamental to cell biology across taxonomic domains. These features are interpreted as serving a foundational molecular function for maintaining organismal homeostasis. We hypothesize that ATP prevents pathological protein aggregation and maintains protein solubility through its hydrotropic feature in cells, tissues, and organs.
Collapse
Affiliation(s)
- Jack V Greiner
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Schepens Eye Research Institute of Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
- Clinical Eye Research of Boston, Boston, MA 02114, USA
| | - Thomas Glonek
- Clinical Eye Research of Boston, Boston, MA 02114, USA
| |
Collapse
|
11
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
12
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
13
|
Greiner JV, Glonek T. ATP, the 31P Spectral Modulus, and Metabolism. Metabolites 2024; 14:456. [PMID: 39195552 DOI: 10.3390/metabo14080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Adenosine triphosphate (ATP) has a high intracellular millimolar concentration (ca. 2.4 mM) throughout the phylogenetic spectrum of eukaryotes, archaea, and prokaryotes. In addition, the function of ATP as a hydrotrope in the prevention of protein aggregation and maintenance of protein solubilization is essential to cellular, tissue, and organ homeostasis. The 31P spectral modulus (PSM) is a measure of the health status of cell, tissue, and organ systems, as well as of ATP, and it is based on in vivo 31P nuclear magnetic resonance (31P NMR) spectra. The PSM is calculated by dividing the area of the 31P NMR integral curve representing the high-energy phosphates by that of the low-energy phosphates. Unlike the difficulties encountered in measuring organophosphates such as ATP or any other phosphorylated metabolites in a conventional 31P NMR spectrum or in processed tissue samples, in vivo PSM measurements are possible with NMR surface-coil technology. The PSM does not rely on the resolution of individual metabolite signals but uses the total area derived from each of the NMR integral curves of the above-described spectral regions. Calculation is based on a simple ratio of the high- and low-energy phosphate bands, which are conveniently arranged in the high- and low-field portions of the 31P NMR spectrum. In practice, there is essentially no signal overlap between these two regions, with the dividing point being ca. -3 δ. ATP is the principal contributor to the maintenance of an elevated PSM that is typically observed in healthy systems. The purpose of this study is to demonstrate that (1) in general, the higher the metabolic activity, the higher the 31P spectral modulus, and (2) the modulus calculation does not require highly resolved 31P spectral signals and thus can even be used with reduced signal-to-noise spectra such as those detected as a result of in vivo analyses or those that may be obtained during a clinical MRI examination. With increasing metabolic stress or maturation of metabolic disease in cells, tissues, or organ systems, the PSM index declines; alternatively, with decreasing stress or resolution of disease states, the PSM increases. The PSM can serve to monitor normal homeostasis as a diagnostic tool and may be used to monitor disease processes with and without interventional treatment.
Collapse
Affiliation(s)
- Jack V Greiner
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02114, USA
- Clinical Eye Research of Boston, Boston, MA 02114, USA
- Magnetic Resonance Laboratory, Chicago College of Osteopathic Medicine, Chicago, IL 60615, USA
| | - Thomas Glonek
- Clinical Eye Research of Boston, Boston, MA 02114, USA
- Magnetic Resonance Laboratory, Chicago College of Osteopathic Medicine, Chicago, IL 60615, USA
| |
Collapse
|
14
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Li L, Li M. Modular Engineering of Aptamer-Based Nanobiotechnology for Conditional Control of ATP Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302972. [PMID: 38009471 DOI: 10.1002/adma.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Indexed: 11/29/2023]
Abstract
Dynamic changes of intracellular, extracellular, and subcellular adenosine triphosphates (ATPs) have fundamental interdependence with the physio-pathological states of cells. Spatially selective in situ imaging of such ATP dynamics offers valuable mechanistic insights into the related biological activities. Despite significant advances in the design of aptamer sensors for ATP detection, the dearth of methods that enable precise ATP imaging in specific cellular locations remains a challenge in this field. This review focuses on the modular engineering of regulatable sensing technology via the integration of aptamer probe designs with advanced functional nanomaterials, allowing conditional control of ATP sensing and imaging with high spatial precision from subcellular organelles to living animals. Highlighting the recent advances in the design of photo-triggered nanosensors for spatiotemporally controlled ATP imaging, endogenously-triggered ATP sensing in a cell-selective manner, and spatially-controlled nanodevices for ATP imaging in specific organelles and extracellular microenvironments. Emphasis will be put on elucidating the principles of how nanotechnology can be applied to regulate the spatial precision of aptamer-based ATP sensing activities. The authors envision that this perspective provides insights into the engineering of aptamer-based nanobiotechnology for opening new frontiers in precise molecular sensing and other bio-applications.
Collapse
Affiliation(s)
- Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
17
|
Yu I, Mori T, Matsuoka D, Surblys D, Sugita Y. SPANA: Spatial decomposition analysis for cellular-scale molecular dynamics simulations. J Comput Chem 2024; 45:498-505. [PMID: 37966727 DOI: 10.1002/jcc.27260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The rapid increase in computational power with the latest supercomputers has enabled atomistic molecular dynamics (MDs) simulations of biomolecules in biological membrane, cytoplasm, and other cellular environments. These environments often contain a million or more atoms to be simulated simultaneously. Therefore, their trajectory analyses involve heavy computations that can become a bottleneck in the computational studies. Spatial decomposition analysis (SPANA) is a set of analysis tools in the Generalized-Ensemble Simulation System (GENESIS) software package that can carry out MD trajectory analyses of large-scale biological simulations using multiple CPU cores in parallel. SPANA applies the spatial decomposition of a large biological system to distribute structural and dynamical analyses into individual CPU cores, which reduces the computational time and the memory size, significantly. SPANA opens new possibilities for detailed atomistic analyses of biomacromolecules as well as solvent water molecules, ions, and metabolites in MD simulation trajectories of very large biological systems containing more than millions of atoms in cellular environments.
Collapse
Affiliation(s)
- Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Bioinformatics, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Daisuke Matsuoka
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Donatas Surblys
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Greiner JV, Glonek T. Adenosine Triphosphate (ATP) and Protein Aggregation in Age-Related Vision-Threatening Ocular Diseases. Metabolites 2023; 13:1100. [PMID: 37887425 PMCID: PMC10609282 DOI: 10.3390/metabo13101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Protein aggregation is the etiopathogenesis of the three most profound vision-threatening eye diseases: age-related cataract, presbyopia, and age-related macular degeneration. This perspective organizes known information on ATP and protein aggregation with a fundamental unrecognized function of ATP. With recognition that maintenance of protein solubility is related to the high intracellular concentration of ATP in cells, tissues, and organs, we hypothesize that (1) ATP serves a critical molecular function for organismal homeostasis of proteins and (2) the hydrotropic feature of ATP prevents pathological protein aggregation while assisting in the maintenance of protein solubility and cellular, tissue, and organismal function. As such, the metabolite ATP plays an extraordinarily important role in the prevention of protein aggregation in the leading causes of vision loss or blindness worldwide.
Collapse
Affiliation(s)
- Jack V. Greiner
- Schepens Eye Research Institute of Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Clinical Eye Research of Boston, Boston, MA 01890, USA;
| | - Thomas Glonek
- Clinical Eye Research of Boston, Boston, MA 01890, USA;
| |
Collapse
|
19
|
Hautke A, Ebbinghaus S. The emerging role of ATP as a cosolute for biomolecular processes. Biol Chem 2023; 404:897-908. [PMID: 37656203 DOI: 10.1515/hsz-2023-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Hautke
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
20
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
21
|
Sheng C, Zhao J, Yu F, Li L. Enzyme Translocation-Mediated Signal Amplification for Spatially Selective Aptasensing of ATP in Inflammatory Cells. Angew Chem Int Ed Engl 2023; 62:e202217551. [PMID: 36750407 DOI: 10.1002/anie.202217551] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Amplified ATP imaging in inflammatory cells is highly desirable. However, the spatial selectivity of current amplification methods is limited, that is, signal amplification is performed systemically and not in a disease site-specific manner. Here we present a versatile strategy, termed enzymatically triggerable, aptamer-based signal amplification (ETA-SA), that enables inflammatory cell-specific imaging of ATP through spatially-resolved signal amplification. The ETA-SA leverages a translocated enzyme in inflammatory cells to activate DNA aptamer probes and further drive cascade reactions through the consumption of hairpin fuels, which, however, exerts no ATP response activity in normal cells, leading to a significantly improved sensitivity and spatial specificity for the inflammation-specific ATP imaging in vivo. Benefiting from the improved spatial selectivity, enhanced signal-to-background ratios were achieved for ATP imaging during acute hepatitis.
Collapse
Affiliation(s)
- Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Kanoh S, Noma T, Ito H, Tsureyama M, Funabara D. Myosin light chain of shark fast skeletal muscle exhibits intrinsic urea-resistibility. Sci Rep 2023; 13:4909. [PMID: 36966252 PMCID: PMC10039937 DOI: 10.1038/s41598-023-32228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/24/2023] [Indexed: 03/27/2023] Open
Abstract
Marine elasmobranch fish contain urea, a protein denaturant, in their bodies. The urea-trimethylamine N-oxide (TMAO) counteraction mechanism contributes to urea-resistibility, where TMAO compensates for protein denaturation by urea. However, previous studies revealed that shark fast skeletal muscle myosin exhibits native activity at physiological urea concentrations in the absence of TMAO, suggesting that shark myosin has urea-resistibility. In this study, we compared the urea-resistibility of myosin alkali light chains (A1-LC and A2-LC) from banded houndshark and carp by examining the α-helical content at various urea concentrations. The α-helical content of carp myosin A1-LC and A2-LC gradually decreased as urea concentrations increased to 2 M. In contrast, the α-helical content of banded houndshark A1-LC increased between 0 and 0.5 M urea, and the α-helical content of A2-LC remained constant until 0.5 M urea. We determined the full-length sequences of the banded houndshark myosin light chains (A1-LC, A2-LC and DTNB-LC). Hydrophilicity analysis revealed that the N-terminal region (residues 28-34) of A1-LC from banded houndshark is more hydrophilic than the corresponding region of A1-LC from carp. These findings support the notion that shark myosin exhibits urea-resistibility independent of the urea-TMAO counteraction mechanism.
Collapse
Affiliation(s)
- Satoshi Kanoh
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Takayuki Noma
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- Kogakkan High School, Ise, Mie, 516-8577, Japan
| | - Hirotaka Ito
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- ASGEN Pharmaceutical Co., Ltd., Mizunami, Gifu, 509-6104, Japan
| | - Masatomo Tsureyama
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- Kracie Foods, Ltd., Minato, Tokyo, 108-8080, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
23
|
Srinivas CS, Singaraju GS, Kaur V, Das S, Ghosh SK, Sagar A, Kumar A, Bhatia T, Rakshit S. Transient interactions drive the lateral clustering of cadherin-23 on membrane. Commun Biol 2023; 6:293. [PMID: 36934176 PMCID: PMC10024700 DOI: 10.1038/s42003-023-04677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Cis and trans-interactions among cadherins secure multicellularity. While the molecular structure of trans-interactions of cadherins is well understood, work to identify the molecular cues that spread the cis-interactions two-dimensionally is still ongoing. Here, we report that transient, weak, yet multivalent, and spatially distributed hydrophobic interactions that are involved in liquid-liquid phase separations of biomolecules in solution, alone can drive the lateral-clustering of cadherin-23 on a membrane. No specific cis-dimer interactions are required for the lateral clustering. In cells, the cis-clustering accelerates cell-cell adhesion and, thus, contributes to cell-adhesion kinetics along with strengthening the junction. Although the physiological connection of cis-clustering with rapid adhesion is yet to be explored, we speculate that the over-expression of cadherin-23 in M2-macrophages may facilitate faster attachments to circulatory tumor cells during metastasis.
Collapse
Affiliation(s)
- Cheerneni S Srinivas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Gayathri S Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sayan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sanat K Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Amin Sagar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Anuj Kumar
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
24
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
25
|
Zou Z, Pan M, Mo F, Jiang Q, Feng A, Zhou Y, Wang F, Liu X. High-fidelity ATP imaging via an isothermal cascade catalytic amplifier. Chem Sci 2022; 13:12198-12207. [PMID: 36349106 PMCID: PMC9601329 DOI: 10.1039/d2sc04560e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 09/19/2023] Open
Abstract
Artificial catalytic DNA circuits that can identify, transduce and amplify the biomolecule of interest have supplemented a powerful toolkit for visualizing various biomolecules in cancer cells. However, the non-specific response in normal tissues and the low abundance of analytes hamper their extensive biosensing and biomedicine applications. Herein, by combining tumor-responsive MnO2 nanoparticles with a specific stimuli-activated cascade DNA amplifier, we propose a multiply guaranteed and amplified ATP-sensing platform via the successive cancer-selective probe exposure and stimulation procedures. Initially, the GSH-degradable MnO2 nanocarrier, acting as a tumor-activating module, ensures the accurate delivery of the cascade DNA amplifier into GSH-rich cancer cells and simultaneously provides adequate Mn2+ cofactors for facilitating the DNAzyme biocatalysis. Then, the released cascade amplifier, acting as an ATP-monitoring module, fulfills the precise and sensitive analysis of low-abundance ATP in cancer cells where the catalyzed hairpin assembly (CHA) is integrated with the DNAzyme biocatalyst for higher signal gain. Additionally, the cascade catalytic amplifier achieved tumor-specific activated photodynamic therapy (PDT) after integrating an activatable photosensitizer into the system. This homogeneous cascade catalytic aptasensing circuit can detect low-abundance endogenous ATP of cancer cells, due to its intrinsically rich recognition repertoire and avalanche-mimicking hierarchical acceleration, thus demonstrating broad prospects for analyzing clinically important biomolecules and the associated physiological processes.
Collapse
Affiliation(s)
- Zhiqiao Zou
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Min Pan
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University Wuhan 430072 P.R. China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Qunying Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Ailing Feng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Yizhuo Zhou
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| |
Collapse
|
26
|
Aida H, Shigeta Y, Harada R. The role of ATP in solubilizing RNA-binding protein fused in sarcoma. Proteins 2022; 90:1606-1612. [PMID: 35297101 DOI: 10.1002/prot.26335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered protein (IDP) plays an important role in liquid-liquid phase separation (LLPS). RNA-binding protein fused in sarcoma (FUS) is a well-studied IDP that induces LLPS since its low-complexity core region (FUS-LC-core) is essential for droplet formation through contacts between FUS-LC-cores. Several experimental studies have reported that adenosine triphosphate (ATP) concentrations modulate LLPS-driven droplet formation through the dissolution of FUS. To elucidate the role of ATP in this dissolution, microsecond-order all-atom molecular dynamics (MD) simulations were performed for a crowded system of FUS-LC-cores in the presence of multiple ATP molecules. Our analysis revealed that the adenine group of ATP frequently contacted the FUS-LC-core, and the phosphoric acid group of ATP was exposed to the external solvent, which promoted both hydration and solubilization of FUS.
Collapse
Affiliation(s)
- Hayato Aida
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Effect of ATP and amino acids on the properties of cationic amphiphiles in solution and on the surface. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Jing X, Hu H, Sun Y, Yu B, Cong H, Shen Y. The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuli-Responsive Drug Delivery Systems. SMALL METHODS 2022; 6:e2101437. [PMID: 35048560 DOI: 10.1002/smtd.202101437] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment (TME), including intracellular and extracellular microenvironment, contains many biochemical indicators (such as acidity/alkalinity, oxygen content, and enzymatic activity) that are different from the normal physiological environment. These abnormal biochemical indicators can accelerate the heterogeneity of tumors, but on the other hand, they also provide opportunities for the design of intelligent drug delivery systems (DDSs). The TME-responsive DDSs have shown great potential in reducing the side effects of chemotherapy and improving the curative effect of tumors. In this review, the abnormal biochemical indicators of TME are introduced in detail from both the extracellular and intracellular aspects. In view of the various physiological barriers encountered during drug delivery, the strategy of constructing TME-responsive DDSs is discussed. By summarizing the typical research progress, the authors prospect the development of TME-responsive DDS in the future.
Collapse
Affiliation(s)
- Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
30
|
Dec R, Puławski W, Dzwolak W. Selective and stoichiometric incorporation of ATP by self-assembling amyloid fibrils. J Mater Chem B 2021; 9:8626-8630. [PMID: 34622264 DOI: 10.1039/d1tb01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ATP acts as a biological hydrotrope preventing protein aggregation. Here, we report a novel chimeric peptide, ACC1-13K8, with an unusual capacity to bind and incorporate ATP while self-assembling into amyloid fibrils. The amino acid sequence combines a highly amyloidogenic segment of insulin's A-chain (ACC1-13) and octalysine (K8). Fibrillization requires binding 2 ATP molecules per ACC1-13K8 monomer and is not triggered by adenosine di- and monophosphates (ADP, AMP). Infrared and CD spectra and AFM-based morphological analysis reveal tight and orderly entrapment of ATP within superstructural hybrid peptide-ATP fibrils. The incorporation of ATP is an emergent property of ACC1-13K8 not observed for ACC1-13 and K8 segments separately. We demonstrate how new functionalities (e.g. ATP storage) emerge from synergistic coupling of amyloidogenic segments with non-amyloidogenic peptide ligands, and suggest that ATP's role in protein misfolding is more nuanced than previously assumed.
Collapse
Affiliation(s)
- Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland. .,Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01-142 Warsaw, Poland
| | - Wojciech Puławski
- Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01-142 Warsaw, Poland.,Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland. .,Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01-142 Warsaw, Poland
| |
Collapse
|
31
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
32
|
Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res 2021; 49:7839-7855. [PMID: 34244785 PMCID: PMC8373145 DOI: 10.1093/nar/gkab580] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
33
|
Farina S, Esposito F, Battistoni M, Biamonti G, Francia S. Post-Translational Modifications Modulate Proteinopathies of TDP-43, FUS and hnRNP-A/B in Amyotrophic Lateral Sclerosis. Front Mol Biosci 2021; 8:693325. [PMID: 34291086 PMCID: PMC8287968 DOI: 10.3389/fmolb.2021.693325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
It has been shown that protein low-sequence complexity domains (LCDs) induce liquid-liquid phase separation (LLPS), which is responsible for the formation of membrane-less organelles including P-granules, stress granules and Cajal bodies. Proteins harbouring LCDs are widely represented among RNA binding proteins often mutated in ALS. Indeed, LCDs predispose proteins to a prion-like behaviour due to their tendency to form amyloid-like structures typical of proteinopathies. Protein post-translational modifications (PTMs) can influence phase transition through two main events: i) destabilizing or augmenting multivalent interactions between phase-separating macromolecules; ii) recruiting or excluding other proteins and/or nucleic acids into/from the condensate. In this manuscript we summarize the existing evidence describing how PTM can modulate LLPS thus favouring or counteracting proteinopathies at the base of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Stefania Farina
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,University School for Advanced Studies IUSS, Pavia, Italy
| | - Francesca Esposito
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,Università Degli Studi di Pavia, Pavia, Italy
| | | | - Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| |
Collapse
|
34
|
Song J. Adenosine triphosphate energy-independently controls protein homeostasis with unique structure and diverse mechanisms. Protein Sci 2021; 30:1277-1293. [PMID: 33829608 PMCID: PMC8197423 DOI: 10.1002/pro.4079] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2-12 mM, much higher than required for its previously-known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic-acid-binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding-induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π-π, π-cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy-independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein-aggregation diseases.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|
35
|
Dang M, Lim L, Kang J, Song J. ATP biphasically modulates LLPS of TDP-43 PLD by specifically binding arginine residues. Commun Biol 2021; 4:714. [PMID: 34112944 PMCID: PMC8192790 DOI: 10.1038/s42003-021-02247-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mysteriously neurons maintain ATP concentrations of ~3 mM but whether ATP modulates TDP-43 LLPS remains completely unexplored. Here we characterized the effect of ATP on LLPS of TDP-43 PLD and seven mutants by DIC and NMR. The results revealed: 1) ATP induces and subsequently dissolves LLPS of TDP-43 PLD by specifically binding Arg saturated at 1:100. 2) ATP modifies the conformation-specific electrostatic property beyond just imposing screening effect. 3) Reversibility of LLPS of TDP-43 PLD and further exaggeration into aggregation appear to be controlled by a delicate network composed of both attractive and inhibitory interactions. Results together establish that ATP might be a universal but specific regulator for most, if not all, R-containing intrinsically-disordered regions by altering physicochemical properties, conformations, dynamics, LLPS and aggregation. Under physiological conditions, TDP-43 is highly bound with ATP and thus inhibited for LLPS, highlighting a central role of ATP in cell physiology, pathology and aging. Dang Mei et al. use NMR and microscopy approaches to examine how ATP impacts the liquid-liquid phase separation (LLPS) of prion-like domains in TDP-43, a RNA-binding protein that is implicated in ALS and other neurological disorders. Their results suggest that ATP specifically binds to a subset of TDP-43 arginine residues at a particular molar ratio to modulate LLPS, and provides insight into how ATP affects the LLPS of biomolecular systems.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
Zhou Q, Usluer S, Zhang F, Lenard AJ, Bourgeois BMR, Madl T. ATP regulates RNA-driven cold inducible RNA binding protein phase separation. Protein Sci 2021; 30:1438-1453. [PMID: 33991007 PMCID: PMC8197425 DOI: 10.1002/pro.4123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Intrinsically disordered proteins and proteins containing intrinsically disordered regions are highly abundant in the proteome of eukaryotes and are extensively involved in essential biological functions. More recently, their role in the organization of biomolecular condensates has become evident and along with their misregulation in several neurologic disorders. Currently, most studies involving these proteins are carried out in vitro and using purified proteins. Given that in cells, condensate‐forming proteins are exposed to high, millimolar concentrations of cellular metabolites, we aimed to reveal the interactions of cellular metabolites and a representative condensate‐forming protein. Here, using the arginine–glycine/arginine–glycine–glycine (RG/RGG)‐rich cold inducible RNA binding protein (CIRBP) as paradigm, we studied binding of the cellular metabolome to CIRBP. We found that most of the highly abundant cellular metabolites, except nucleotides, do not directly bind to CIRBP. ATP, ADP, and AMP as well as NAD+, NADH, NADP+, and NADPH directly interact with CIRBP, involving both the folded RNA‐recognition motif and the disordered RG/RGG region. ATP binding inhibited RNA‐driven phase separation of CIRBP. Thus, it might be beneficial to include cellular metabolites in in vitro liquid–liquid phase separation studies of RG/RGG and other condensate‐forming proteins in order to better mimic the cellular environment in the future.
Collapse
Affiliation(s)
- Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M R Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
37
|
Qiao H, Zhang L, Fang D, Zhu Z, He W, Hu L, Di L, Guo Z, Wang X. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci 2021; 12:4547-4556. [PMID: 34163720 PMCID: PMC8179575 DOI: 10.1039/d0sc06680j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Copper complexes are promising anticancer agents widely studied to overcome tumor resistance to metal-based anticancer drugs. Nevertheless, copper complexes per se encounter drug resistance from time to time. Adenosine-5'-triphosphate (ATP)-responsive nanoparticles containing a copper complex CTND and B-cell lymphoma 2 (Bcl-2) small interfering RNA (siRNA) were constructed to cope with the resistance of cancer cells to the complex. CTND and siRNA can be released from the nanoparticles in cancer cells upon reacting with intracellular ATP. The resistance of B16F10 melanoma cells to CTND was terminated by silencing the cellular Bcl-2 gene via RNA interference, and the therapeutic efficacy was significantly enhanced. The nanoparticles triggered a cellular autophagy that amplified the apoptotic signals, thus revealing a novel mechanism for antagonizing the resistance of copper complexes. In view of the extensive association of Bcl-2 protein with cancer resistance to chemotherapeutics, this strategy may be universally applicable for overcoming the ubiquitous drug resistance to metallodrugs.
Collapse
Affiliation(s)
- Hongzhi Qiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Lei Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Dong Fang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Liuqing Di
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| |
Collapse
|
38
|
Tian Z, Qian F. Adenosine Triphosphate-Induced Rapid Liquid-Liquid Phase Separation of a Model IgG1 mAb. Mol Pharm 2020; 18:267-274. [PMID: 33307701 DOI: 10.1021/acs.molpharmaceut.0c00905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adenosine triphosphate (ATP) is amphiphilic in nature and has the characteristics of a hydrotrope because of the charged triphosphate moiety and the large aromatic ring located on each end of its structure. Previous studies revealed that ATP can effectively maintain the solubility and prevent liquid-liquid phase separation (LLPS) of some biological proteins. In this study, we assessed the impact of ATP on the stability of a model therapeutic IgG1 antibody (MA1) to evaluate its potential application in protein formulation design. In our system, ATP promotes rapid LLPS of MA1 and we demonstrate that the ATP-MA1 static interaction drives phase separation of MA1. The attractive protein-protein interaction increased exclusively in the presence of ATP but not in the presence of other ATP analogues, such as adenosine diphosphate, adenosine monophosphate, and adenine. Through an intrinsic fluorescence quenching study, we revealed that ATP bound to MA1 electrostatically and formed static interactions; furthermore, such static ATP-MA1 interactions significantly altered the surface property of the protein and the protein-protein interactions and subsequently induced LLPS of MA1. This ATP-induced LLPS could be effectively eliminated by Mg2+, which chelated with ATP and thus negated ATP-MA1 static interaction. Our results revealed the unique molecular mechanism of ATP-induced rapid LLPS of MA1.
Collapse
Affiliation(s)
- Zhou Tian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Tong XY, Quan Y, Zhang HY. NUDT5 as a novel drug target and prognostic biomarker for ER-positive breast cancer. Drug Discov Today 2020; 26:620-625. [PMID: 33276127 DOI: 10.1016/j.drudis.2020.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer (BRCA) is the most common malignant tumor in women. The estrogen receptor-positive (ER+) subtype accounts for ∼70% of BRCA cases. Estrogen is a crucial hormone that directly stimulates the growth and development of mammary glands. Recent studies revealed that, as an estrogen cofactor, ATP has an important role in determining the action of estrogen by mediating phase separation. NUDT5 has been recognized as a key factor for ATP production in the nucleus of BRCA cells and, therefore, could represent a novel drug target for ER+ BRCA. Based on a survival analysis of patients with BRCA documented in The Cancer Genome Atlas (TGCA) database, we show that NUDT5 is also a potential prognostic biomarker for ER+ BRCA.
Collapse
Affiliation(s)
- Xin-Yu Tong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
40
|
Yoshizawa T, Matsumura H. Effect of nuclear import receptors on liquid-liquid phase separation. Biophys Physicobiol 2020; 17:25-29. [PMID: 33110735 PMCID: PMC7550251 DOI: 10.2142/biophysico.bsj-2019052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
Low-complexity (LC) sequences, regions that are predominantly made up of limited amino acids, are often observed in eukaryotic nuclear proteins. The role of these LC sequences has remained unclear for decades. Recent studies have shown that LC sequences are important in the formation of membrane-less organelles via liquid–liquid phase separation (LLPS). The RNA binding protein, fused in sarcoma (FUS), is the most widely studied of the proteins that undergo LLPS. It forms droplets, fibers, or hydrogels using its LC sequences. The N-terminal LC sequence of FUS is made up of Ser, Tyr, Gly, and Gln, which form a labile cross-β polymer core while the C-terminal Arg-Gly-Gly repeats accelerate LLPS. Normally, FUS localizes to the nucleus via the nuclear import receptor karyopherin β2 (Kapβ2) with the help of its C-terminal proline-tyrosine nuclear localization signal (PY-NLS). Recent findings revealed that Kapβ2 blocks FUS mediated LLPS, suggesting that Kapβ2 is not only a transport protein but also a chaperone which regulates LLPS during the formation of membrane-less organelles. In this review, we discuss the effects of the nuclear import receptors on LLPS.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
41
|
Chu XY, Zhang HY. Cofactors as Molecular Fossils To Trace the Origin and Evolution of Proteins. Chembiochem 2020; 21:3161-3168. [PMID: 32515532 DOI: 10.1002/cbic.202000027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their early origin and extreme conservation, cofactors are valuable molecular fossils for tracing the origin and evolution of proteins. First, as the order of protein folds binding with cofactors roughly coincides with protein-fold chronology, cofactors are considered to have facilitated the origin of primitive proteins by selecting them from pools of random amino acid sequences. Second, in the subsequent evolution of proteins, cofactors still played an important role. More interestingly, as metallic cofactors evolved with geochemical variations, some geochemical events left imprints in the chronology of protein architecture; this provides further evidence supporting the coevolution of biochemistry and geochemistry. In this paper, we attempt to review the molecular fossils used in tracing the origin and evolution of proteins, with a special focus on cofactors.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
42
|
Miller SG, Hafen PS, Brault JJ. Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. Int J Mol Sci 2019; 21:E88. [PMID: 31877712 PMCID: PMC6981514 DOI: 10.3390/ijms21010088] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022] Open
Abstract
Adenine nucleotides (AdNs: ATP, ADP, AMP) are essential biological compounds that facilitate many necessary cellular processes by providing chemical energy, mediating intracellular signaling, and regulating protein metabolism and solubilization. A dramatic reduction in total AdNs is observed in atrophic skeletal muscle across numerous disease states and conditions, such as cancer, diabetes, chronic kidney disease, heart failure, COPD, sepsis, muscular dystrophy, denervation, disuse, and sarcopenia. The reduced AdNs in atrophic skeletal muscle are accompanied by increased expression/activities of AdN degrading enzymes and the accumulation of degradation products (IMP, hypoxanthine, xanthine, uric acid), suggesting that the lower AdN content is largely the result of increased nucleotide degradation. Furthermore, this characteristic decrease of AdNs suggests that increased nucleotide degradation contributes to the general pathophysiology of skeletal muscle atrophy. In view of the numerous energetic, and non-energetic, roles of AdNs in skeletal muscle, investigations into the physiological consequences of AdN degradation may provide valuable insight into the mechanisms of muscle atrophy.
Collapse
Affiliation(s)
| | | | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Department of Anatomy, Cell Biology & Physiology, 635 Barnhill Dr., Van Nuys Medical Science Bldg. 5035, Indianapolis, IN 46202, USA; (S.G.M.); (P.S.H.)
| |
Collapse
|
43
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
44
|
Liu Y, Cui K, Kong Q, Zhang L, Ge S, Yu J. A self-powered origami paper analytical device with a pop-up structure for dual-mode electrochemical sensing of ATP assisted by glucose oxidase-triggered reaction. Biosens Bioelectron 2019; 148:111839. [PMID: 31706177 DOI: 10.1016/j.bios.2019.111839] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
A self-powered origami paper-based analytical device (oPAD), being with a pop-up structure as mechanical valve to first realize dual-mode of differential pulse voltammery (DPV)/supercapacitor amplified signal read out systems, was designed for detecting adenosine 5'-triphosphate (ATP) assisted by glucose oxidase (GOx)-triggered reaction. In order to accommodate the alternative step for dual-mode detection, a pop-up structure inspired by pop-up greeting cards was developed, making it possible to change the fluidic path with good registration and repeatability. To realize supercapacitor detection mode, a sandwich structure of a DNA sequence (DNA1), aptamer and a DNA sequence modified with GOx (GOx-DNA2) was formed on detection zone by hybridization reaction. With the addition of ATP, the GOx-DNA2 could be released with the specific binding between ATP and aptamer, and flowed into the reaction zone to catalyze the oxidation of glucose. Due to the difference in concentrations of [Fe(CN)6]3- and [Fe(CN)6]4- caused by the GOx-triggered reaction, a voltage could be produced to charge a paper supercapacitor which could provide a high instantaneous current with a digital multimeter to transduce the result of the assay, and realize the self-generation of an amplified electrical signal. By simply varying the direction of pop-up structure, the electrochemical signal from DPV read out mode could be achieved through catalytic oxidation of glucose by the remaining GOx-DNA2 on the detection zone. The proposed self-powered oPAD enabled the sensitive diagnosis of ATP in a linear range of 10-5000 nM with a limit of detection of 3 nM and 1.4 nM, respectively.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qingkun Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
45
|
Kang J, Lim L, Song J. ATP binds and inhibits the neurodegeneration-associated fibrillization of the FUS RRM domain. Commun Biol 2019; 2:223. [PMID: 31240261 PMCID: PMC6586847 DOI: 10.1038/s42003-019-0463-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Adenosine triphosphate (ATP) provides energy for cellular processes but has recently been found to act also as a hydrotrope to maintain protein homeostasis. ATP bivalently binds the disordered domain of FUS containing the RG/RGG sequence motif and thereby affects FUS liquid-liquid phase separation. Here, using NMR spectroscopy and molecular docking studies, we report that ATP specifically binds also to the well-folded RRM domain of FUS at physiologically relevant concentrations and with the binding interface overlapping with that of its physiological ssDNA ligand. Importantly, although ATP has little effect on the thermodynamic stability of the RRM domain or its binding to ssDNA, ATP kinetically inhibits the RRM fibrillization that is critical for the gain of cytotoxicity associated with ALS and FTD. Our study provides a previously unappreciated mechanism for ATP to inhibit fibrillization by specific binding, and suggests that ATP may bind additional proteins other than the classic ATP-dependent enzymes.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| |
Collapse
|
46
|
Kang J, Lim L, Lu Y, Song J. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids. PLoS Biol 2019; 17:e3000327. [PMID: 31188823 PMCID: PMC6590835 DOI: 10.1371/journal.pbio.3000327] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/24/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
526-residue Fused in sarcoma (FUS) undergoes liquid-liquid phase separation (LLPS) for its functions, which can further transit into pathological aggregation. ATP and nucleic acids, the universal cellular actors, were shown to modulate LLPS of FUS in a unique manner: enhancement and then dissolution. Currently, the driving force for LLPS of FUS is still under debate, while the mechanism for the modulation remains completely undefined. Here, by NMR and differential interference contrast (DIC) imaging, we characterized conformations, dynamics, and LLPS of FUS and its domains and subsequently their molecular interactions with oligonucleic acids, including one RNA and two single-stranded DNA (ssDNA) molecules, as well as ATP, Adenosine monophosphate (AMP), and adenosine. The results reveal 1) both a prion-like domain (PLD) rich in Tyr but absent of Arg/Lys and a C-terminal domain (CTD) abundant in Arg/Lys fail to phase separate. By contrast, the entire N-terminal domain (NTD) containing the PLD and an Arg-Gly (RG)-rich region efficiently phase separate, indicating that the π-cation interaction is the major driving force; 2) despite manifesting distinctive NMR observations, ATP has been characterized to modulate LLPS by specific binding as oligonucleic acids but with much lower affinity. Our results together establish a unified mechanism in which the π-cation interaction acts as the major driving force for LLPS of FUS and also serves as the target for modulation by ATP and oligonucleic acids through specific binding. This mechanism predicts that a myriad of proteins unrelated to RNA-binding proteins (RBPs) but with Arg/Lys-rich disordered regions could be modulated by ATP and nucleic acids, thus rationalizing the pathological association of Amyotrophic lateral sclerosis (ALS)-causing C9ORF72 dipeptides with any nucleic acids to manifest cytotoxicity.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
47
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Wang L, Lim L, Dang M, Song J. A novel mechanism for ATP to enhance the functional oligomerization of TDP-43 by specific binding. Biochem Biophys Res Commun 2019; 514:809-814. [PMID: 31079926 DOI: 10.1016/j.bbrc.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022]
Abstract
Pathological TDP-43 aggregation has been found in ∼98% ALS and other neurodegenerative diseases including Alzheimer's. TDP-43 N-terminal domain (NTD) was recently shown to form a tubular super-helical filament by oligomerization in vivo, which functions to prevent its pathological aggregation. ATP, the universal energy currency with very high concentrations in all living cells, was recently decoded to act as a biological hydrotrope to maintain protein homeostasis. Here by NMR spectroscopy, we reveal for the first time that at physiological concentrations ATP binds the TDP-43 NTD to enhance its oligomerization. Most strikingly, this binding is specifically coupled with oligomerization because three mutants with the capacity of oligomerization eliminated lose the ability to bind ATP. Our study thus provides a novel mechanism for ATP to prevent pathological aggregation by specific binding; and further implies that ATP might have many previously-unknown functions in cells by binding to proteins other than the classic ATP-dependent proteins/enzymes.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
49
|
Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. Int J Biol Macromol 2018; 125:244-255. [PMID: 30529354 DOI: 10.1016/j.ijbiomac.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
pH-induced structural changes of the synthetic homopolypeptides poly-E, poly-K, poly-R, and intrinsically disordered proteins (IDPs) prothymosin α (ProTα) and linker histone H1, in concentrated PEG solutions simulating macromolecular crowding conditions within the membrane-less organelles, were characterized. The conformational transitions of the studied poly-amino acids in the concentrated PEG solutions depend on the polymerization degree of these homopolypeptides, the size of their side chains, the charge distribution of the side chains, and the crowding agent concentration. The results obtained for poly-amino acids are valid for IDPs having a significant total charge. The overcrowded conditions promote a significant increase in the cooperativity of the pH-induced coil-α-helix transition of ProTα and provoke histone H1 aggregation. The most favorable conditions for the pH-induced structural transitions in concentrated PEG solutions are realized when the charged residues are grouped in blocks, and when the distance between the end of the side group carrying charge and the backbone is small. Therefore, the block-wise distribution of charged residues within the IDPs not only plays an important role in the liquid-liquid phase transitions, but may also define the expressivity of structural transitions of these proteins in the overcrowded conditions of the membrane-less organelles.
Collapse
|
50
|
Pu Y, Li Y, Jin X, Tian T, Ma Q, Zhao Z, Lin SY, Chen Z, Li B, Yao G, Leake MC, Lo CJ, Bai F. ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance. Mol Cell 2018; 73:143-156.e4. [PMID: 30472191 DOI: 10.1016/j.molcel.2018.10.022] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 01/06/2023]
Abstract
Cell dormancy is a widespread mechanism used by bacteria to evade environmental threats, including antibiotics. Here we monitored bacterial antibiotic tolerance and regrowth at the single-cell level and found that each individual survival cell shows different "dormancy depth," which in return regulates the lag time for cell resuscitation after removal of antibiotic. We further established that protein aggresome-a collection of endogenous protein aggregates-is an important indicator of bacterial dormancy depth, whose formation is promoted by decreased cellular ATP level. For cells to leave the dormant state and resuscitate, clearance of protein aggresome and recovery of proteostasis are required. We revealed that the ability to recruit functional DnaK-ClpB machineries, which facilitate protein disaggregation in an ATP-dependent manner, determines the lag time for bacterial regrowth. Better understanding of the key factors regulating bacterial regrowth after surviving antibiotic attack could lead to new therapeutic strategies for combating bacterial antibiotic tolerance.
Collapse
Affiliation(s)
- Yingying Pu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingxing Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Tian Tian
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Qi Ma
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyi Zhao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Ssu-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhong-Li, Taoyuan 32001, Republic of China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, Beijing 100069, China
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Mark C Leake
- Department of Physics, University of York, York YO10, UK; Department of Biology, University of York, York YO10, UK
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhong-Li, Taoyuan 32001, Republic of China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|