1
|
Zhang J, Wang Z, Lin X, Gao X, Wang Q, Huang R, Ruan Y, Xu H, Tian L, Ling C, Shi R, Xu S, Chen K, Wu Y. Mn-Ce Symbiosis: Nanozymes with Multiple Active Sites Facilitate Scavenging of Reactive Oxygen Species (ROS) Based on Electron Transfer and Confinement Anchoring. Angew Chem Int Ed Engl 2025; 64:e202416686. [PMID: 39327805 DOI: 10.1002/anie.202416686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Regulating appropriate valence states of metal active centers, such as Ce3+/Ce4+ and Mn3+/Mn2+, as well as surface vacancy defects, is crucial for enhancing the catalytic activity of cerium-based and manganese-based nanozymes. Drawing inspiration from the efficient substance exchange in rhizobia-colonized root cells of legumes, we developed a symbiosis nanozyme system with rhizobia-like CeOx nanoclusters robustly anchored onto root-like Mn3O4 nanosupports (CeOx/Mn3O4). The process of "substance exchange" between Ce and Mn atoms-reminiscent of electron transfer-not only fine-tunes the metal active sites to achieve optimal Ce3+/Ce4+ and Mn3+/Mn2+ ratios but also enhances the vacancy ratio through interface defect engineering. Additionally, the confinement anchoring of CeOx on Mn3O4 ensures efficient electron transfer in catalytic reactions. The final CeOx/Mn3O4 nanozyme demonstrates potent catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities, excelling in both chemical settings and cellular environments with high reactive oxygen species (ROS) levels. This research not only unveils a novel material adept at effectively eliminating ROS but also presents an innovative approach for amplifying the efficacy of nanozymes.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xingen Lin
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoping Gao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rui Huang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yaner Ruan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Haonan Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230009, China
| | - Lin Tian
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Ling
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ran Shi
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 230009, China
| | - Kong Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Deep Space Exploration Laboratory/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 230009, China
- Key Laboratory of Precision and Intelligent Chemistry/, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Cheng W, Wang X, Wu Y, Li W, Fu C, Zou L, Zhang J. Huanglian-Houpo extract attenuates DSS-induced UC mice by protecting intestinal mucosal barrier and regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116181. [PMID: 36738944 DOI: 10.1016/j.jep.2023.116181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian-Houpo Decoction (HLHP), a classical prescription, has been used to treat gastrointestinal diseases for hundreds of years in TCM. However, the effective constituents and underlying mechanisms of HLHP in the treatment of ulcerative colitis (UC) have not been fully investigated. AIM OF THE STUDY This study aimed to reveal the potential anti-UC mechanisms of 50% ethanol extraction of HL and HP (EHLHP), combining transcriptomes and network pharmacology, as well as the animal experiment verification. METHODS Primarily, we identified the chemical composition of EHLHP via UPLC-QE-MS analysis. A visualization network with components-targets-pathways on UC treatment were constructed using network pharmacology. And then, the transcriptomics sequencing method was applied to screen out the differentially expressed genes (DEGs) of EHLHP in the treatment of UC. The key targets and pathways of EHLHP were selected by the combination of the network pharmacology and transcriptomics results. Ultimately, the potential mechanisms of EHLHP on DSS-induced UC mice were verified. RESULTS A total of 34 components of EHLHP were identified by UPLC-QE-MS analysis. Combined with the analysis of network pharmacology and transcriptomics, there were 262 DEGs between the normal group and the model group, and 151 DEGs between the model group and the EHLHP group. At the same time, there are 79 interaction paths, such as PI3K-Akt signaling pathway, MAPK signaling pathway, etc. These results indicated that the anti-UC mechanisms would be involved in calcium signaling pathway, inflammatory signaling pathway (JAK-STAT, TNF-α, cGMP-PKG) and immune regulation (IL-17, B cell receptor). After 160 mg/kg and 320 mg/kg EHLHP were given to DSS induced UC mice, these typical symptoms could be significantly alleviated, such as the decrease of DAI value and inflammation level. The IHC staining results of ZO-1, Occludin and Claudin-1 suggested that the intestinal barrier of UC mice was enhanced by EHLHP. The expression of macrophages and immune cells in F4/80+, CD11c+, Gr-1+, NK1.1+ by FCM determination indicated that EHLHP could suppress UC by immunosuppression and macrophage polarization M1 to M2. CONCLUSION The potential mechanisms of HLHP extract on DSS-induced UC mice were revealed, by the prediction of integrated analysis of transcriptomes and network pharmacology, and subsequently animal test verification. It would provide a viable strategy to elucidate the mechanisms of TCM classical formula.
Collapse
Affiliation(s)
- Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Hu L, Yamamoto M, Chen J, Duan H, Du J, He L, Shi D, Yao X, Nagai T, Kiyohara H, Yao Z. Integrating network pharmacology and experimental verification to decipher the immunomodulatory effect of Bu-Zhong-Yi-Qi-Tang against poly (I:C)-induced pulmonary inflammation. Front Pharmacol 2022; 13:1015486. [DOI: 10.3389/fphar.2022.1015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary inflammation caused by respiratory tract viral infections is usually associated with acute exacerbation of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Therefore, maintaining the pulmonary immune homeostasis is particular important for prevention of the acute exacerbation. Bu-Zhong-Yi-Qi-Tang (BZYQT), a traditional Chinese medicine formula, has been broadly used to improve respiratory and gastrointestinal disorders in China for over 700 years. Previously, we have found the regulatory activity of BZYQT on the lower respiratory immune system, while its potential effects during pulmonary inflammation remain unknown. Thus, the current study focused on deciphering its immunomodulatory effect and potential mechanism against pulmonary inflammation by using a viral RNA analogue, poly (I:C), induced murine pulmonary inflammation model and BEAS-2B cell model coupled with network pharmacology. Inflammatory cells in the bronchoalveolar lavage fluid were counted through microscope examination according to the cell’s morphology and staining characteristics; protein and gene levels of inflammatory mediators were determined with Elisa and quantitative PCR, respectively; network pharmacology was conducted based on 46 BZYQT-related potential bioactive components, pulmonary inflammation and immune-related targets. Our results indicated that the recruitment of neutrophils and the expression of Adgre1 (encoding the F4/80, which is a macrophage marker) in the lung induced by poly (I:C) were significantly reduced after BZYQT treatment, and these effects were further demonstrated to be related to the interference of leukocyte transendothelial migration from the decreased levels of CXCL10, IL-6, TNF-α, CXCL2, ICAM-1, VCAM-1, and E/P-selectins. Furthermore, BZYQT inhibited the CXCL10, TNF-α, and IFN-β expression of poly (I:C)-challenged BEAS-2B cells in a dose-dependent manner. Through integrating results from network pharmacology, experiments, and the published literature, isoliquiritigenin, Z-ligustilide, atractylenolide I, atractylenolide III, formononetin, ferulic acid, hesperidin, and cimigenoside were presumed as the bioactive components of BZYQT against pulmonary inflammation. Overall, our findings demonstrated that BZYQT possesses a pronounced immunomodulatory effect on poly (I:C)-induced pulmonary inflammation, which provides a pharmacological basis for BZYQT in the treatment of respiratory disorders.
Collapse
|
4
|
Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018; 285:147-167. [PMID: 30129209 PMCID: PMC6292442 DOI: 10.1111/imr.12671] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.
Collapse
Affiliation(s)
- Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlin Hult
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louis R. Joslyn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jess A. Millar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|