1
|
Gori K, Baez-Ortega A, Strakova A, Stammnitz MR, Wang J, Chan J, Hughes K, Belkhir S, Hammel M, Moralli D, Bancroft J, Drydale E, Allum KM, Brignone MV, Corrigan AM, de Castro KF, Donelan EM, Faramade IA, Hayes A, Ignatenko N, Karmacharya R, Koenig D, Lanza-Perea M, Lopez Quintana AM, Meyer M, Neunzig W, Pedraza-Ordoñez F, Phuentshok Y, Phuntsho K, Ramirez-Ante JC, Reece JF, Schmeling SK, Singh S, Tapia Martinez LJ, Taulescu M, Thapa S, Thapa S, van der Wel MG, Wehrle-Martinez AS, Stratton MR, Murchison EP. Horizontal transfer of nuclear DNA in transmissible cancer. Proc Natl Acad Sci U S A 2025; 122:e2424634122. [PMID: 40261943 PMCID: PMC12067285 DOI: 10.1073/pnas.2424634122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Horizontal transfer of nuclear DNA between cells of host and cancer is a potential source of adaptive variation in cancer cells. An understanding of the frequency and significance of this process in naturally occurring tumors is, however, lacking. We screened for this phenomenon in the transmissible cancers of dogs and Tasmanian devils and found an instance in the canine transmissible venereal tumor (CTVT). This involved introduction of a 15-megabase dicentric genetic element, composed of 11 fragments of six chromosomes, to a CTVT sublineage occurring in Asia around 2,000 y ago. The element forms the short arm of a small submetacentric chromosome and derives from a dog with ancestry associated with the ancient Middle East. The introduced DNA fragment is transcriptionally active and has adopted the expression profile of CTVT. Its features suggest that it may derive from an engulfed apoptotic body. Our findings indicate that nuclear horizontal gene transfer, although likely a rare event in tumor evolution, provides a viable mechanism for the acquisition of genetic material in naturally occurring cancer genomes.
Collapse
Affiliation(s)
- Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jonathan Chan
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Sophia Belkhir
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maurine Hammel
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Daniela Moralli
- Pandemic Sciences Institute, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | - Edward Drydale
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | | | - María Verónica Brignone
- Faculty of Veterinary Sciences, Universidad de Buenos Aires, Buenos AiresC1053ABJ, Argentina
| | - Anne M. Corrigan
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | - Karina F. de Castro
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University, Jaboticabal14884-900, Brazil
| | - Edward M. Donelan
- Animal Management in Rural and Remote Indigenous Communities, Darwin, NT0820, Australia
| | | | - Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | | | - Rockson Karmacharya
- Veterinary Diagnostic and Research Laboratory Pvt. Ltd., Kathmandu44600, Nepal
| | | | - Marta Lanza-Perea
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | | | | | | | | | | | | | - Juan C. Ramirez-Ante
- Facultad de Ciencias Pecuarias, Corporación Universitaria Santa Rosa de Cabal, Santa Rosa de Cabal661020, Colombia
| | | | | | - Sanjay Singh
- Help in Suffering, Jaipur302018, Rajasthan, India
| | | | - Marian Taulescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca400372, Romania
| | - Samir Thapa
- Kathmandu Animal Treatment Centre, Kathmandu44622, Nepal
| | - Sunil Thapa
- Animal Nepal, Dobighat, Kathmandu44600, Nepal
| | | | | | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| |
Collapse
|
2
|
More KD, Lebrasseur O, Garrido JL, Seguin-Orlando A, Discamps E, Estrada O, Tonasso-Calvière L, Chauvey L, Tressières G, Schiavinato S, Gibert M, Padula H, Chiavazza H, Fernández PM, Guardia NM, Borges C, Bertani S, Contreras-Mancilla J, Allccarima-Crisóstomo D, Fhon M, Barrey E, Charliquart L, Robbe E, de Noblet T, Zhumatayev R, Shakenov S, Vila E, Berthon R, Mashkour M, Khazaeli R, Nikgoftar A, Vahdati AA, Kosintsev P, Houle JL, Bayarsaikhan J, Wilczynski J, Moskal-Del Hoyo M, Nowak M, Taylor W, Bălășescu A, Dobrescu R, Benecke N, Arbuckle B, Steadman S, McMahon G, Šikanjić PR, Buric M, Vukičević TT, Alvarez N, Castel JC, Boudadi-Maligne M, Star B, Post-Melbye JR, Rødsrud CL, Stanton DWG, Charlton S, Mullin VE, Daly KG, Burgos NS, Pablos A, Dalen L, Bradley DG, Frantz L, Larson G, Orlando L. Validating a Target-Enrichment Design for Capturing Uniparental Haplotypes in Ancient Domesticated Animals. Mol Ecol Resour 2025:e14112. [PMID: 40202701 DOI: 10.1111/1755-0998.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
In the last three decades, DNA sequencing of ancient animal osteological assemblages has become an important tool complementing standard archaeozoological approaches to reconstruct the history of animal domestication. However, osteological assemblages of key archaeological contexts are not always available or do not necessarily preserve enough ancient DNA for a cost-effective genetic analysis. Here, we develop an in-solution target-enrichment approach, based on 80-mer species-specific RNA probes (ranging from 306 to 1686 per species) to characterise (in single experiments) the mitochondrial genetic variation from eight domesticated animal species of major economic interest: cattle, chickens, dogs, donkeys, goats, horses, pigs and sheep. We also illustrate how our design can be adapted to enrich DNA library content and map the Y-chromosomal diversity within Equus caballus. By applying our target-enrichment assay to an extensive panel of ancient osteological remains, farm soil, and cave sediments spanning the last 43 kyrs, we demonstrate that minimal sequencing efforts are necessary to exhaust the DNA library complexity and to characterise mitogenomes to an average depth-of-coverage of 19.4 to 2003.7-fold. Our assay further retrieved horse mitogenome and Y-chromosome data from Late Pleistocene coprolites, as well as bona fide mitochondrial sequences from species that were not part of the probe design, such as bison and cave hyena. Our methodology will prove especially useful to minimise costs related to the genetic analyses of maternal and paternal lineages of a wide range of domesticated and wild animal species, and for mapping their diversity changes over space and time, including from environmental samples.
Collapse
Affiliation(s)
- Kuldeep D More
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Jaime Lira Garrido
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Emmanuel Discamps
- TRACES UMR 5608, CNRS-Université de Toulouse-Jean Jaurès, Toulouse, France
| | - Oscar Estrada
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Laure Tonasso-Calvière
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Loreleï Chauvey
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Gaëtan Tressières
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Stéphanie Schiavinato
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Morgane Gibert
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| | - Horacio Padula
- Centro de Interpretaciòn de Arqueologìa y Paleontologìa 'Mario Silveira', Dirección General de Patrimonio, Museos y Casco Històrico, Buenos Aires, Argentina
| | - Horacio Chiavazza
- Instituto de Arqueología y Etnología, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Pablo M Fernández
- National Institute of Anthropology and Latin American Thought (INAPL), Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Nicolás M Guardia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Arqueología y Etnología, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Caroline Borges
- Universidade Federal Rural de Pernambuco Recife, Recife, PE, Brazil
| | - Stéphane Bertani
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse Cedex 9, France
- International Joint Laboratory of Molecular Anthropological Oncology (LOAM), National Cancer Institute (INEN), Lima, Peru
| | - Juan Contreras-Mancilla
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse Cedex 9, France
- International Joint Laboratory of Molecular Anthropological Oncology (LOAM), National Cancer Institute (INEN), Lima, Peru
| | | | | | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, Paris, France
| | | | - Emilie Robbe
- Musée de l'Armée, Hôtel Des Invalides, Paris, France
| | | | - Rinat Zhumatayev
- Department of Archaeology, Ethnology and Museology, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | - Samat Shakenov
- Department of Archaeology, Ethnology and Museology, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Rémi Berthon
- Centre National de Recherche Scientifique, Muséum National d'Histoire Naturelle, Archéozoologie, Archéobotanique (AASPE), Paris, CP, France
| | - Marjan Mashkour
- Centre National de Recherche Scientifique, Muséum National d'Histoire Naturelle, Archéozoologie, Archéobotanique (AASPE), Paris, CP, France
| | - Roya Khazaeli
- Central Laboratory, Bioarchaeology Laboratory, Archaeozoology Section, University of Tehran, Tehran, Iran
| | - Ahmad Nikgoftar
- Ministry of Cultural Heritage, Tourism and Handicrafts, Shahr-e Belqays National Research Base, Esfarayen, Iran
| | - Ali A Vahdati
- Ministry of Cultural Heritage, Tourism and Handicrafts, North Khorasan Office, Bojnord, Iran
| | - Pavel Kosintsev
- Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Jamsranjav Bayarsaikhan
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute of Archaeology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Jaroslaw Wilczynski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | | | - Marek Nowak
- Institute of Archeology, Jagiellonian University, Kraków, Poland
| | - William Taylor
- Museum of Natural History, University of Colorado-Boulder, Boulder, Colorado, USA
| | | | | | - Norbert Benecke
- Eurasia Department of the German Archaeological Institute, Berlin, Germany
| | - Benjamin Arbuckle
- Department of Anthropology, Alumni Building, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon Steadman
- Department of Sociology/Anthropology, College at Cortland, State University of New York, New York, New York, USA
| | - Gregory McMahon
- Classics, Humanities and Italian Studies Department, University of new Hampshire, Durham, New Hampshire, USA
| | | | - Marcel Buric
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Tajana Trbojević Vukičević
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nadir Alvarez
- Geneva Natural History Museum, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Myriam Boudadi-Maligne
- UMR 5199 De la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie (PACEA), CNRS, Université de Bordeaux, Pessac Cedex, France
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kevin G Daly
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Nohemi Sala Burgos
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Investigaciòn Sobre Evoluciòn y Comportamiento Humanos, Madrid, Spain
| | - Adrian Pablos
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Departamento de Geodinamica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Prehistoria y Arqueología, Universidad de Sevilla, Sevilla, Spain
| | - Love Dalen
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Laurent Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR5288/Université de Toulouse), Toulouse, France
| |
Collapse
|
3
|
Lord KA, Chen FL, Karlsson EK. An Evolutionary Perspective on Dog Behavioral Genetics. Annu Rev Anim Biosci 2025; 13:167-188. [PMID: 39413150 DOI: 10.1146/annurev-animal-111523-101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Dogs have played an outsized role in the field of behavioral genetics since its earliest days. Their unique evolutionary history and ubiquity in the modern world make them a potentially powerful model system for discovering how genetic changes lead to changes in behavior. Genomic technology has supercharged this potential by enabling scientists to sequence the DNA of thousands of dogs and test for correlations with behavioral traits. However, fractures in the early history of animal behavior between biological and psychological subfields may be impeding progress. In addition, canine behavioral genetics has included almost exclusively dogs from modern breeds, who represent just a small fraction of all dog diversity. By expanding the scope of dog behavior studies, and incorporating an evolutionary perspective on canine behavioral genetics, we can move beyond associations to understanding the complex interactions between genes and environment that lead to dog behavior.
Collapse
Affiliation(s)
- Kathryn A Lord
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Frances L Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; , ,
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Ollivier M. [Thousands of years of human-dog relationship]. Biol Aujourdhui 2025; 218:115-127. [PMID: 39868711 DOI: 10.1051/jbio/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 01/28/2025]
Abstract
During recent years, much progress has been made in understanding the origin and evolution of the dog. Thanks to the collaboration between zooarchaeology, genomics and paleogenetics, researchers were able to hypothesize scenarios regarding the origins of the canine lineages present in Europe at the end of the Pleistocene and the beginning of the Holocene. Research has also shown a correlation between human and canine migration across time and space, highlighting a strong relationship between man and his best friend. This proximity between the two species is also illustrated by the adaptation of this species to anthropogenic selective pressures, particularly in parallel with cultural transitions. Although the history of this species still requires much exploration to be fully understood, these results provide new theoretical bases for understanding the interplay between humans and dogs.
Collapse
Affiliation(s)
- Morgane Ollivier
- Univ. Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
| |
Collapse
|
5
|
Lanoë F, Reuther J, Fields S, Potter B, Smith G, McKinney H, Halffman C, Holmes C, Mills R, Crass B, Frome R, Hildebrandt K, Sattler R, Shirar S, de Flamingh A, Kemp BM, Malhi R, Witt KE. Late Pleistocene onset of mutualistic human/canid ( Canis spp.) relationships in subarctic Alaska. SCIENCE ADVANCES 2024; 10:eads1335. [PMID: 39630895 PMCID: PMC11619702 DOI: 10.1126/sciadv.ads1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Large canids (wolves, dogs, and coyote) and people form a close relationship in northern (subarctic and arctic) socioecological systems. Here, we document the antiquity of this bond and the multiple ways it manifested in interior Alaska, a region key to understanding the peopling of the Americas and early northern lifeways. We compile original and existing genomic, isotopic, and osteological canid data from archaeological, paleontological, and modern sites. Results show that in contrast to canids recovered in non-anthropic contexts, canids recovered in association with human occupations are markedly diverse. They include multiple species and intraspecific lineages, morphological variation, and diets ranging from terrestrial to marine. This variation is expressed along both geographic and temporal gradients, starting in the terminal Pleistocene with canids showing high marine dietary estimates. This paper provides evidence of the multiple ecological relationships between canids and people in the north-from predation, probable commensalism, and taming, to domestication-and of their early onset.
Collapse
Affiliation(s)
- François Lanoë
- School of Anthropology, University of Arizona, Tucson, AZ, USA
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Joshua Reuther
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Stormy Fields
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Ben Potter
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Gerad Smith
- Department of Anthropology and Geography, University of Alaska Anchorage, Anchorage, AK, USA
| | - Holly McKinney
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Carrin Halffman
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Charles Holmes
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Robin Mills
- Bureau of Land Management, Fairbanks District, AK, USA
| | - Barbara Crass
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Ryan Frome
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Kyndall Hildebrandt
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | | | - Scott Shirar
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Alida de Flamingh
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Brian M. Kemp
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Ripan Malhi
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Department of Anthropology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Clemson, SC, USA
| |
Collapse
|
6
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Diederich C. The beauty of the beast: Suggestions to curb the excesses of dog breeding and restore animal welfare - Invited review. VET MED-CZECH 2024; 69:369-380. [PMID: 39810823 PMCID: PMC11728315 DOI: 10.17221/62/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Dog. Specifically created to save its master's life. - (The dog is the ideal) Friend of man, (because it is his devoted slave) (source: Gustave Flaubert, Dictionnaire des Idées Reçues). But is man the best friend of the dog? This question is legitimate when we consider living situations to which modern domestic dogs are exposed. They often do not satisfy basic animal needs. In this narrative review, the author revisits the history of the dog's presence alongside humans, in the light of current knowledge. The modern dog (breed standards and their interests in canine research) and its breeding strategy, including extreme breeding, will then be given particular attention. Dysfunctional human psychological processes will be explored to make it possible to grasp why the breeding of the modern dog is undergoing such a transformation. Finally, based on these factual and conceptual insights, suggestions to improve canine welfare will be proposed. To be effective, all these must be assessed against real-world conditions.
Collapse
Affiliation(s)
- Claire Diederich
- Department of Veterinary Medicine (NARILIS-IVRU), Faculty of Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
8
|
Reeve HK, Pfennig DW. Evolution of transmissible cancers: An adaptive, plastic strategy of selfish genetic elements? iScience 2024; 27:110740. [PMID: 39286496 PMCID: PMC11402641 DOI: 10.1016/j.isci.2024.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
A growing number of studies have applied evolutionary and ecological principles to understanding cancer. However, few such studies have examined whether phenotypic plasticity--the ability of a single individual or genome to respond differently to different environmental circumstances--can impact the origin and spread of cancer. Here, we propose the adaptive horizontal transmission hypothesis to explain how flexible decision-making by selfish genetic elements can cause them to spread from the genome of their original host into the genomes of other hosts through the evolution of transmissible cancers. Specifically, we hypothesize that such cancers appear when the likelihood of successful vertical transmission is sufficiently low relative to the likelihood of successful horizontal transmission. We develop an evolutionary optimization model of this hypothesis, highlight empirical findings that support it, and offer suggestions for future research. Generally, phenotypically plastic selfish genetic elements might play an important role in the evolution of transmissible cancers.
Collapse
Affiliation(s)
- Hudson Kern Reeve
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| | - David W Pfennig
- Department of Biology, CB#3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
9
|
Jonas D, Tatrai K, Sandor S, Egyed B, Kubinyi E. Dog Domestication Strongly Relied on Translation Regulation According to Differential Gene Expression Analysis. Animals (Basel) 2024; 14:2655. [PMID: 39335245 PMCID: PMC11428534 DOI: 10.3390/ani14182655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Domestication of dogs from their shared ancestors with wolves occurred more than 15,000 years ago and affected many characteristics of the species. We analyzed the blood RNA sequence data of 12 dogs and 11 wolves from Europe and Asia to shed more light on the domestication history of dogs. We implemented a differential gene expression analysis, a weighted gene correlation network analysis, gene ontology and genetic pathway analyses. We found that both the sample origin (Europe or Asia) and the species had a significant effect on the blood gene expression profiles of the animals. We identified 1567 differentially expressed genes between wolves and dogs and found several significantly overrepresented gene ontology terms, such as RNA polymerase II transcription regulatory region sequence-specific DNA binding or translation. We identified 11 significant gene co-expression networks, hosting a total of 4402 genes, related to DNA replication, metabolism of RNA or metabolism of proteins, for example. Our findings suggest that gene expression regulation played a cardinal role in dog domestication. We recommend further diversifying the analyzed dog and wolf populations in the future by including individuals from different dog breeds and geographical origins, in order to enhance the specificity of detecting significant, true positive genes related to domestication as well as to reduce the false positive rate.
Collapse
Affiliation(s)
- David Jonas
- Department of Ethology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (K.T.); (E.K.)
- MTA-ELTE Lendület “Momentum” Companion Animal Research Group, 1117 Budapest, Hungary
| | - Kitti Tatrai
- Department of Ethology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (K.T.); (E.K.)
- Department of Genetics, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Sara Sandor
- Department of Ethology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (K.T.); (E.K.)
| | - Balazs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (K.T.); (E.K.)
- MTA-ELTE Lendület “Momentum” Companion Animal Research Group, 1117 Budapest, Hungary
- ELTE NAP Canine Brain Research Group, 1117 Budapest, Hungary
| |
Collapse
|
10
|
Smith TA, Srikanth K, Huson HJ. Comparative Population Genomics of Arctic Sled Dogs Reveals a Deep and Complex History. Genome Biol Evol 2024; 16:evae190. [PMID: 39193769 PMCID: PMC11403282 DOI: 10.1093/gbe/evae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent evidence demonstrates genomic and morphological continuity in the Arctic ancestral lineage of dogs. Here, we use the Siberian Husky to investigate the genomic legacy of the northeast Eurasian Arctic lineage and model the deep population history using genome-wide single nucleotide polymorphisms. Utilizing ancient dog-calibrated molecular clocks, we found that at least two distinct lineages of Arctic dogs existed in ancient Eurasia at the end of the Pleistocene. This pushes back the origin of sled dogs in the northeast Siberian Arctic with humans likely intentionally selecting dogs to perform different functions and keeping breeding populations that overlap in time and space relatively reproductively isolated. In modern Siberian Huskies, we found significant population structure based on how they are used by humans, recent European breed introgression in about half of the dogs that participate in races, moderate levels of inbreeding, and fewer potentially harmful variants in populations under strong selection for form and function (show, sled show, and racing populations of Siberian Huskies). As the struggle to preserve unique evolutionary lineages while maintaining genetic health intensifies across pedigreed dogs, understanding the genomic history to guide policies and best practices for breed management is crucial to sustain these ancient lineages and their unique evolutionary identity.
Collapse
Affiliation(s)
- Tracy A Smith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Heather Jay Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Coutinho-Lima D, Dreger DL, Doadrio I, Parker HG, Ghanavi HR, Frantz L, Larson G, Ostrander EA, Godinho R. Multiple ancestries and shared gene flow among modern livestock guarding dogs. iScience 2024; 27:110396. [PMID: 39156647 PMCID: PMC11326944 DOI: 10.1016/j.isci.2024.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Livestock guarding dogs (LGDs) have been used to protect livestock for millennia. While previous works suggested a single origin of modern LGDs, the degree and source of shared ancestry have not been tested. To address this, we generated genome-wide SNP data from 304 LGDs and combined it with public genomic data from 2,183 modern and 22 ancient dogs. Our findings reveal shared ancestry and extensive gene flow among modern LGD breeds which we attribute to historical livestock migrations. Additionally, admixture between LGDs and free-ranging dogs argues against reproductive isolation as a core mechanism for maintaining the specialized skills of LGDs. Finally, we identify two lineages within modern LGDs and uncover multiple ancestries tracing back to distinct Eurasian ancient dogs, concordant with the absence of a single ancestor. Overall, our work explores the complex evolutionary history of LGDs, offering valuable insights into how human and livestock co-migrations shaped this functional group.
Collapse
Affiliation(s)
- Diogo Coutinho-Lima
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS - Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Dayna L. Dreger
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ignacio Doadrio
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Faculty of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS - Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
12
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
13
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Zhang M, Song Y, Wang C, Sun G, Zhuang L, Guo M, Ren L, Wangdue S, Dong G, Dai Q, Cao P, Yang R, Liu F, Feng X, Bennett EA, Zhang X, Chen X, Wang F, Luan F, Dong W, Lu G, Hao D, Hou H, Wang H, Qiao H, Wang Z, Hu X, He W, Xi L, Wang W, Shao J, Sun Z, Yue L, Ding Y, Tashi N, Tsho Y, Tong Y, Yang Y, Zhu S, Miao B, Wang W, Zhang L, Hu S, Ni X, Fu Q. Ancient Mitogenomes Reveal the Maternal Genetic History of East Asian Dogs. Mol Biol Evol 2024; 41:msae062. [PMID: 38507661 PMCID: PMC11003542 DOI: 10.1093/molbev/msae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Recent studies have suggested that dogs were domesticated during the Last Glacial Maximum (LGM) in Siberia, which contrasts with previous proposed domestication centers (e.g. Europe, the Middle East, and East Asia). Ancient DNA provides a powerful resource for the study of mammalian evolution and has been widely used to understand the genetic history of domestic animals. To understand the maternal genetic history of East Asian dogs, we have made a complete mitogenome dataset of 120 East Asian canids from 38 archaeological sites, including 102 newly sequenced from 12.9 to 1 ka BP (1,000 years before present). The majority (112/119, 94.12%) belonged to haplogroup A, and half of these (55/112, 49.11%) belonged to sub-haplogroup A1b. Most existing mitochondrial haplogroups were present in ancient East Asian dogs. However, mitochondrial lineages in ancient northern dogs (northeastern Eurasia and northern East Asia) were deeper and older than those in southern East Asian dogs. Results suggests that East Asian dogs originated from northeastern Eurasian populations after the LGM, dispersing in two possible directions after domestication. Western Eurasian (Europe and the Middle East) dog maternal ancestries genetically influenced East Asian dogs from approximately 4 ka BP, dramatically increasing after 3 ka BP, and afterwards largely replaced most primary maternal lineages in northern East Asia. Additionally, at least three major mitogenome sub-haplogroups of haplogroup A (A1a, A1b, and A3) reveal at least two major dispersal waves onto the Qinghai-Tibet Plateau in ancient times, indicating eastern (A1b and A3) and western (A1a) Eurasian origins.
Collapse
Affiliation(s)
- Ming Zhang
- China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi’an, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Yanbo Song
- School of Archaeology, Shandong University, Jinan, China
| | - Caihui Wang
- China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi’an, China
| | - Guoping Sun
- Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou, China
| | | | | | - Lele Ren
- School of History and Culture, Lanzhou University, Lanzhou, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Department of Cultural Heritage and Museology, Nanjing Normal University, Nanjing, China
| | - Fen Wang
- School of Archaeology, Shandong University, Jinan, China
| | - Fengshi Luan
- School of Archaeology, Shandong University, Jinan, China
| | - Wenbin Dong
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Guoquan Lu
- School of Archaeology, Shandong University, Jinan, China
| | - Daohua Hao
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Hongwei Hou
- Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou, China
| | - Hui Wang
- Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou, China
- Fudan Archaeological Science Institute, Fudan University, Shanghai, China
| | - Hong Qiao
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Zhongxin Wang
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Xiaojun Hu
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Weilin Wang
- School of Archaeology and Museology, Shanxi University, Taiyuan, China
| | - Jing Shao
- Shaanxi Academy of Archaeology, Xi’an, China
| | | | | | - Yan Ding
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yangheshan Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Science and Technology Archaeology, National Centre for Archaeology, Beijing, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Songmei Hu
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Xijun Ni
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B, Breslin EM, Littleton J, Almahari S, Aloraifi F, Bradley DG, Lombard P, Durbin R. Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. CELL GENOMICS 2024; 4:100507. [PMID: 38417441 PMCID: PMC10943591 DOI: 10.1016/j.xgen.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.
Collapse
Affiliation(s)
- Rui Martiniano
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Berenice Chamel
- Institut Français du Proche-Orient (MEAE/CNRS), Beirut, Lebanon
| | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Judith Littleton
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Salman Almahari
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain
| | - Fatima Aloraifi
- Mersey and West Lancashire Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot, L35 5DR Liverpool, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pierre Lombard
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain; Archéorient UMR 5133, CNRS, Université Lyon 2, Maison de l'Orient et de la Méditerranée - Jean Pouilloux, Lyon, France
| | - Richard Durbin
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK.
| |
Collapse
|
16
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
17
|
Gojobori J, Arakawa N, Xiaokaiti X, Matsumoto Y, Matsumura S, Hongo H, Ishiguro N, Terai Y. Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs. Nat Commun 2024; 15:1680. [PMID: 38396028 PMCID: PMC10891106 DOI: 10.1038/s41467-024-46124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Although the domestic dog's origin is still unclear, this lineage is believed to have been domesticated from an extinct population of gray wolves, which is expected to be more closely related to dogs than to other populations of gray wolves. Here, we sequence the whole genomes of nine Japanese wolves (7.5-100x: Edo to Meiji periods) and 11 modern Japanese dogs and analyze them together with those from other populations of dogs and wolves. A phylogenomic tree shows that, among the gray wolves, Japanese wolves are closest to the dog, suggesting that the ancestor of dogs is closely related to the ancestor of the Japanese wolf. Based on phylogenetic and geographic relationships, the dog lineage has most likely originated in East Asia, where it diverged from a common ancestor with the Japanese wolf. Since East Eurasian dogs possess Japanese wolf ancestry, we estimate an introgression event from the ancestor of the Japanese wolf to the ancestor of the East Eurasian dog that occurred before the dog's arrival in the Japanese archipelago.
Collapse
Affiliation(s)
- Jun Gojobori
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Nami Arakawa
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Xiayire Xiaokaiti
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute, Naka-ku, Chojamachi, Yokohama, 231-0033, Japan
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Hitomi Hongo
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Naotaka Ishiguro
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
18
|
van der Valk T, Jensen A, Caillaud D, Guschanski K. Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas. BMC Ecol Evol 2024; 24:14. [PMID: 38273244 PMCID: PMC10811819 DOI: 10.1186/s12862-023-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.
Collapse
Affiliation(s)
- Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- SciLifeLab, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Damien Caillaud
- Department of Anthropology, University of CA - Davis, Davis, California, USA
| | - Katerina Guschanski
- SciLifeLab, Stockholm, Sweden
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Zhou BW, Wu QQ, Mauki DH, Wang X, Zhang SR, Yin TT, Chen FL, Li C, Liu YH, Wang GD, Zhang YP. Germline gene fusions across species reveal the chromosomal instability regions and cancer susceptibility. iScience 2023; 26:108431. [PMID: 38205119 PMCID: PMC10777377 DOI: 10.1016/j.isci.2023.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/24/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
The canine transmissible venereal tumor (CTVT) is a clonal cell-mediated cancer with a long evolutionary history and extensive karyotype rearrangements in its genome. However, little is known about its genetic similarity to human tumors. Here, using multi-omics data we identified 11 germline gene fusions (GGFs) in CTVT, which showed higher genetic susceptibility than others. Additionally, we illustrate a mechanism of a complex gene fusion of three gene segments (HSD17B4-DMXL1-TNFAIP8) that we refer to "greedy fusion". Our findings also provided evidence that expressions of GGFs are downregulated during the tumor regressive phase, which is associated with DNA methylation level. This study presents a comprehensive landscape of gene fusions (GFs) in CTVT, which offers a valuable genetic resource for exploring potential genetic mechanisms underlying the development of cancers in both dogs and humans.
Collapse
Affiliation(s)
- Bo-Wen Zhou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qing-Qin Wu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - David H. Mauki
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shu-Run Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fang-Liang Chen
- Kunming Police Dog Base of the Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Chao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, Yunnan 650500, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| |
Collapse
|
20
|
Orlando L. The history of the Coast Salish "woolly dogs". Science 2023; 382:1236-1237. [PMID: 38096278 DOI: 10.1126/science.adm6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
DNA and traditional knowledge reveal the history of an extinct dog bred for its wool.
Collapse
Affiliation(s)
- Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
21
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
22
|
Jamieson A, Carmagnini A, Howard-McCombe J, Doherty S, Hirons A, Dimopoulos E, Lin AT, Allen R, Anderson-Whymark H, Barnett R, Batey C, Beglane F, Bowden W, Bratten J, De Cupere B, Drew E, Foley NM, Fowler T, Fox A, Geigl EM, Gotfredsen AB, Grange T, Griffiths D, Groß D, Haruda A, Hjermind J, Knapp Z, Lebrasseur O, Librado P, Lyons LA, Mainland I, McDonnell C, Muñoz-Fuentes V, Nowak C, O'Connor T, Peters J, Russo IRM, Ryan H, Sheridan A, Sinding MHS, Skoglund P, Swali P, Symmons R, Thomas G, Trolle Jensen TZ, Kitchener AC, Senn H, Lawson D, Driscoll C, Murphy WJ, Beaumont M, Ottoni C, Sykes N, Larson G, Frantz L. Limited historical admixture between European wildcats and domestic cats. Curr Biol 2023; 33:4751-4760.e14. [PMID: 37935117 DOI: 10.1016/j.cub.2023.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 11/09/2023]
Abstract
Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities.
Collapse
Affiliation(s)
- Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK
| | - Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK; RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Sean Doherty
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Alexandra Hirons
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Evangelos Dimopoulos
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Department of Veterinary Medicine, University of Cambridge, CB3 0ES Cambridge, UK
| | - Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Richard Allen
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Hugo Anderson-Whymark
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | - Ross Barnett
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Colleen Batey
- Institute for Northern Studies, University of the Highlands and Islands, KW15 1FL Kirkwall, UK; Department of Archaeology, University of Durham, DH1 3LE Durham, UK
| | - Fiona Beglane
- CERIS, School of Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Will Bowden
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - John Bratten
- Department of Anthropology, University of West Florida, Pensacola, FL 32514, USA
| | - Bea De Cupere
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Ellie Drew
- York Archaeological Trust, YO1 7BX York, UK
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Tom Fowler
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - Allison Fox
- Manx National Heritage, Manx Museum, IM1 3LY Douglas, Isle of Man
| | - Eva-Maria Geigl
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Thierry Grange
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - David Griffiths
- Department for Continuing Education, University of Oxford, OX1 2JA Oxford, UK
| | - Daniel Groß
- Museum Lolland-Falster, 4800 Nykøbing Falster, Denmark
| | - Ashleigh Haruda
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | | | - Zoe Knapp
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France; The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Pablo Librado
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Ingrid Mainland
- UHI Archaeology Institute, University of the Highlands and Islands, Orkney, Scotland
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Carsten Nowak
- Centre for Wildlife Genetics & LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, YO10 5DD York, UK
| | - Joris Peters
- SNSB, State Collection of Palaeoanatomy Munich, 85586 Poing, Germany; Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | | | - Hannah Ryan
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | | | | | - Pooja Swali
- The Francis Crick Institute, NW1 1AT London, UK
| | | | - Gabor Thomas
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Theis Zetner Trolle Jensen
- Section for Molecular Ecology and Evolution, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, EH1 1JF Edinburgh, UK; School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Daniel Lawson
- School of Mathematics, University of Bristol, BS8 1UG Bristol, UK
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK
| | - Claudio Ottoni
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Naomi Sykes
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK.
| | - Laurent Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK.
| |
Collapse
|
23
|
Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, Driscoll CA, Pang Y, Li C, Pan Y, Velasco MS, Gopalakrishnan S, Yang RZ, Li BG, Jin K, Xu X, Uphyrkina O, Huang Y, Wu XH, Gilbert MTP, O'Brien SJ, Yamaguchi N, Luo SJ. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 2023; 7:1914-1929. [PMID: 37652999 DOI: 10.1038/s41559-023-02185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Collapse
Affiliation(s)
- Xin Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry O Gimranov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Ural Federal University, Yekaterinburg, Russia
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Han
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Carlos A Driscoll
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD, USA
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yan Pan
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Marcela Sandoval Velasco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui-Zheng Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Olga Uphyrkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiao-Hong Wu
- School of Archaeology and Museology, Peking University, Beijing, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
24
|
Koganebuchi K, Matsunami M, Imamura M, Kawai Y, Hitomi Y, Tokunaga K, Maeda S, Ishida H, Kimura R. Demographic history of Ryukyu islanders at the southern part of the Japanese Archipelago inferred from whole-genome resequencing data. J Hum Genet 2023; 68:759-767. [PMID: 37468573 PMCID: PMC10597838 DOI: 10.1038/s10038-023-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023]
Abstract
The Ryukyu Islands are located in the southernmost part of the Japanese Archipelago and consist of several island groups. Each island group has its own history and culture, which differ from those of mainland Japan. People of the Ryukyu Islands are genetically subdivided; however, their detailed demographic history remains unclear. We report the results of a whole-genome sequencing analysis of a total of 50 Ryukyu islanders, focusing on genetic differentiation between Miyako and Okinawa islanders. We confirmed that Miyako and Okinawa islanders cluster differently in principal component analysis and ADMIXTURE analysis and that there is a population structure among Miyako islanders. The present study supports the hypothesis that population differentiation is primarily caused by genetic drift rather than by differences in the rate of migration from surrounding regions, such as the Japanese main islands or Taiwan. In addition, the genetic cline observed among Miyako and Okinawa islanders can be explained by recurrent migration beyond the bounds of these islands. Our analysis also suggested that the presence of multiple subpopulations during the Neolithic Ryukyu Jomon period is not crucial to explain the modern Ryukyu populations. However, the assumption of multiple subpopulations during the time of admixture with mainland Japanese is necessary to explain the modern Ryukyu populations. Our findings add insights that could help clarify the complex history of populations in the Ryukyu Islands.
Collapse
Affiliation(s)
- Kae Koganebuchi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Mt. Olive Hospital, Naha, 903-0804, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
| |
Collapse
|
25
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
O'Neill DG, McMillan KM, Church DB, Brodbelt DC. Dog breeds and conformations in the UK in 2019: VetCompass canine demography and some consequent welfare implications. PLoS One 2023; 18:e0288081. [PMID: 37494312 PMCID: PMC10370710 DOI: 10.1371/journal.pone.0288081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Growing concerns over health and welfare impacts from extreme phenotypes in dogs have created an urgent need for reliable demographic information on the national breed structures of dogs. METHODS This study included all dogs under primary veterinary care in the UK during 2019 at practices participating in VetCompass. Demographic data on these dogs were analysed to report on the frequency of common breeds and also to report on conformation, bodyweight, sex and neuter associations with these breeds. RESULTS The study included 2,237,105 dogs under UK veterinary care in 2019. Overall, 69.4% (n = 1,551,462) were classified as purebred, 6.7% (149,308) as designer-crossbred and 24.0% (536,335) as nondesigner-crossbred. Across 800 unique breed names, the most frequent breeds at any age were nondesigner-crossbred (n = 536,335, 24.0%), Labrador Retriever (154,222, 6.9%) and Jack Russell Terrier (101,294, 4.5%). Among 229,624 (10.3%) dogs aged under one year, the most frequent breeds were nondesigner-crossbred (n = 45,995, 20.0%), French Bulldog (16,036, 7.0%) and Cockapoo (14,321, 6.2%). Overall, based on breed characteristics, 17.6% (395,739) were classified as brachycephalic, 43.1% (969,403) as mesaticephalic and 8.3% (186,320) as dolichocephalic. Of 1,551,336 dogs that were classifiable based on breed, 52.6% (815,673) were chondrodystrophic. Of 1,462,925 dogs that were classifiable, there were 54.6% (n = 798,426) short haired, 32.6% (476,883) medium haired and 12.8% (186,934) long haired. Of 1,547,653 dogs that were classifiable for ear carriage, 24.5% (n = 379,581) were erect, 28.1% (434,273) were semi-erect, 19.7% (305,475) were v-shaped drop and 27.7% (428,324) were pendulous. Overall, there was a 1.09:1.00 ratio of male (n = 1,163,512; 52.2%) to female dogs (n = 1,067,552; 47.8%). CONCLUSIONS Health and welfare issues linked to popular breeds with extreme phenotypes suggest that there is much work to do to help owners to make more welfare-friendly decisions when choosing which type of dog to own.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Kirsten M McMillan
- DataSEA (Science, Engineering & Analytics), Research Team, Strategy & Transformation, Dogs Trust, London, United Kingdom
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
27
|
Louis M, Korlević P, Nykänen M, Archer F, Berrow S, Brownlow A, Lorenzen ED, O'Brien J, Post K, Racimo F, Rogan E, Rosel PE, Sinding MHS, van der Es H, Wales N, Fontaine MC, Gaggiotti OE, Foote AD. Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters. Nat Commun 2023; 14:4020. [PMID: 37463880 DOI: 10.1038/s41467-023-39532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.
Collapse
Affiliation(s)
- Marie Louis
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK.
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands.
- Greenland Institute of Natural Resources, Kivioq 2, Nuuk, 3900, Greenland.
| | - Petra Korlević
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Milaja Nykänen
- Department of Environmental and Biological Sciences, PO Box 111, FI-80101, Joensuu, Finland
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Frederick Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Simon Berrow
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Eline D Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Joanne O'Brien
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Klaas Post
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Fernando Racimo
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA, 646 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Mikkel-Holger S Sinding
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Henry van der Es
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Nathan Wales
- University of York, BioArCh, Environment Building, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
- MIVEGEC (Université de Montpellier, CNRS 5290, IRD 229) Institut de Recherche pour le Développement (IRD), F-34394, Montpellier, France
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
28
|
Cardona A, Hawes SM, Cull J, Connolly K, O’Reilly KM, Moss LR, Bexell SM, Yellow Bird M, Morris KN. Mandan, Hidatsa, and Arikara Nation Perspectives on Rez Dogs on the Fort Berthold Reservation in North Dakota, U.S.A. Animals (Basel) 2023; 13:1422. [PMID: 37106984 PMCID: PMC10135030 DOI: 10.3390/ani13081422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The research on the relationships between free-roaming dogs, also referred to as reservation dogs or rez dogs, and Indigenous communities is extremely limited. This study aimed to document the cultural significance of rez dogs, challenges related to rez dogs, and community-specific solutions for rez dog issues affecting community health and safety from members of the Mandan, Hidatsa, and Arikara (MHA) Nation, also referred to as the Three Affiliated Tribes (TAT), who live on the Fort Berthold reservation in North Dakota, U.S.A. One hour semi-structured interviews with 14 community members of the MHA Nation were conducted in 2016. The interviews were analyzed via systematic and inductive coding using Gadamer's hermeneutical phenomenology. The primary intervention areas described by the participants included: culturally relevant information sharing, improved animal control policies and practices, and improved access to veterinary care and other animal services.
Collapse
Affiliation(s)
- Alexandra Cardona
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Sloane M. Hawes
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Jeannine Cull
- Department of Social Work, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Katherine Connolly
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Kaleigh M. O’Reilly
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Liana R. Moss
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Sarah M. Bexell
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| | - Michael Yellow Bird
- Department of Social Work, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin N. Morris
- Institute for Human-Animal Connection, Graduate School of Social Work, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
29
|
Potash AD, Conner LM, Clinchy M, Zanette LY, McCleery RA. Prey species increase activity in refugia free of terrestrial predators. Oecologia 2023; 201:661-671. [PMID: 36897410 DOI: 10.1007/s00442-023-05350-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
The decline of terrestrial predator populations across the globe is altering top-down pressures that drive predator-prey interactions. However, a knowledge gap remains in understanding how removing terrestrial predators affects prey behavior. Using a bifactorial playback experiment, we exposed fox squirrels to predator (red-tailed hawks, coyotes, dogs) and non-predator control (Carolina wren) calls inside terrestrial predator exclosures, accessible to avian predators, and in control areas subject to ambient predation risk. Fox squirrels increased their use of terrestrial predator exclosures, a pattern that corresponded with 3 years of camera trapping. Our findings suggest fox squirrels recognized that exclosures had predictably lower predation risk. However, exclosures had no effect on their immediate behavioral response towards any call, and fox squirrels responded most severely to hawk predator calls. This study shows that anthropogenically driven predator loss creates predictably safer areas (refugia) that prey respond to proactively with increased use. However, the persistence of a lethal avian predator is sufficient to retain a reactive antipredator response towards an immediate predation threat. Some prey may benefit from shifting predator-prey interactions by gaining refugia without sacrificing a sufficient response towards potential predators.
Collapse
Affiliation(s)
- Alex D Potash
- Department of Wildlife Ecology, University of Florida Institute of Food and Agricultural Science, 110 Newins-Ziegler Hall, P.O. Box 110430, Gainesville, FL, 32611, USA.
- The Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA, 39870, USA.
| | - L Mike Conner
- The Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA, 39870, USA
| | - Michael Clinchy
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Liana Y Zanette
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Robert A McCleery
- Department of Wildlife Ecology, University of Florida Institute of Food and Agricultural Science, 110 Newins-Ziegler Hall, P.O. Box 110430, Gainesville, FL, 32611, USA
| |
Collapse
|
30
|
Min-Shan Ko A. The 2022 nobel prize in physiology or medicine awarded for the decoding of the complete ancient human genome. Biomed J 2023; 46:100584. [PMID: 36796758 DOI: 10.1016/j.bj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Since the publication of the first ancient DNA sequence in 1984, experimental methods used to recover ancient DNA have advanced greatly, illuminating previously unknown branches of the human family tree and opening up several promising new avenues for future studies of human evolution. The 2022 Nobel Prize in Physiology or Medicine was awarded to Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, for his work on ancient DNA and human evolution. On his first day back at work, he was thrown in the pond as part of his institute's tradition of celebrating award winners.
Collapse
Affiliation(s)
- Albert Min-Shan Ko
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Strakova A, Baez-Ortega A, Wang J, Murchison EP. Sex disparity in oronasal presentations of canine transmissible venereal tumour. Vet Rec 2022; 191:e1794. [PMID: 35781651 PMCID: PMC7615771 DOI: 10.1002/vetr.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The canine transmissible venereal tumour (CTVT) is a contagious cancer spread by the direct transfer of living cancer cells. CTVT usually spreads during mating, manifesting as genital tumours. However, oronasal CTVT is also occasionally observed, and presumably arises through oronasal contact with genital CTVT tumours during sniffing and licking. METHODS Given that sniffing and licking transmission behaviours may differ between sexes, we investigated whether oronasal CTVT shows sex disparity. RESULTS Twenty-seven of 32 (84%) primary oronasal tumours in a CTVT tumour database occurred in males. In addition, 53 of 65 (82%) primary oronasal CTVT tumours reported in the published literature involved male hosts. These findings suggest that male dogs are at four to five times greater risk of developing primary oronasal CTVT than females. This disparity may be due to sex differences in licking and sniffing activity, perhaps also influenced by sex differences in CTVT accessibility for these behaviours. CONCLUSION Although oronasal CTVT is rare, it should be considered as a possible diagnosis for oronasal tumours, particularly in male dogs.
Collapse
Affiliation(s)
- Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Wu MY, Lau CJ, Ng EYX, Baveja P, Gwee CY, Sadanandan K, Ferasyi TR, Haminuddin, Ramadhan R, Menner JK, Rheindt FE. Genomes From Historic DNA Unveil Massive Hidden Extinction and Terminal Endangerment in a Tropical Asian Songbird Radiation. Mol Biol Evol 2022; 39:6692815. [PMID: 36124912 PMCID: PMC9486911 DOI: 10.1093/molbev/msac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the magnitude of the global extinction crisis is important but remains challenging, as many extinction events pass unnoticed owing to our limited taxonomic knowledge of the world's organisms. The increasing rarity of many taxa renders comprehensive sampling difficult, further compounding the problem. Vertebrate lineages such as birds, which are thought to be taxonomically well understood, are therefore used as indicator groups for mapping and quantifying global extinction. To test whether extinction patterns are adequately gauged in well-studied groups, we implemented ancient-DNA protocols and retrieved whole genomes from the historic DNA of museum specimens in a widely known songbird radiation of shamas (genus Copsychus) that is assumed to be of least conservation concern. We uncovered cryptic diversity and an unexpected degree of hidden extinction and terminal endangerment. Our analyses reveal that >40% of the phylogenetic diversity of this radiation is already either extinct in the wild or nearly so, including the two genomically most distinct members of this group (omissus and nigricauda), which have so far flown under the conservation radar as they have previously been considered subspecies. Comparing the genomes of modern samples with those from roughly a century ago, we also found a significant decrease in genetic diversity and a concomitant increase in homozygosity affecting various taxa, including small-island endemics that are extinct in the wild as well as subspecies that remain widespread across the continental scale. Our application of modern genomic approaches demonstrates elevated levels of allelic and taxonomic diversity loss in a songbird clade that has not been listed as globally threatened, highlighting the importance of ongoing reassessments of extinction incidence even across well-studied animal groups. Key words: extinction, introgression, white-rumped shama, conservation.
Collapse
Affiliation(s)
- Meng Yue Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clara Jesse Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elize Ying Xin Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pratibha Baveja
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Keren Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Haminuddin
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Rezky Ramadhan
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Helleu Q, Roux C, Ross KG, Keller L. Radiation and hybridization underpin the spread of the fire ant social supergene. Proc Natl Acad Sci U S A 2022; 119:e2201040119. [PMID: 35969752 PMCID: PMC9407637 DOI: 10.1073/pnas.2201040119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA 30605
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
35
|
Poyarkov AD, Korablev MP, Bragina E, Hernandez-Blanco JA. Overview of Current Research on Wolves in Russia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper provides an overview of wolf research in Russia at the beginning of the 21st century. Wolf research covered various directions, including population density estimation, management methods and minimization of human-wildlife conflicts, general and behavioral ecology, behavior, wolf population genetics and morphology, paleontology, dog domestication, helminthology and the wolves’ role in the rabies transmission. Some studies are performed with state-of-art methodology using molecular genetics, mathematical modeling, camera traps, and GPS telemetry.
Collapse
|
36
|
Garcia-Erill G, Jørgensen CHF, Muwanika VB, Wang X, Rasmussen MS, de Jong YA, Gaubert P, Olayemi A, Salmona J, Butynski TM, Bertola LD, Siegismund HR, Albrechtsen A, Heller R. Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes. Mol Biol Evol 2022; 39:6627297. [PMID: 35779009 PMCID: PMC9250280 DOI: 10.1093/molbev/msac134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian H F Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malthe S Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Philippe Gaubert
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Jordi Salmona
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
37
|
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MHS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 2022; 607:313-320. [PMID: 35768506 PMCID: PMC9279150 DOI: 10.1038/s41586-022-04824-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. DNA from ancient wolves spanning 100,000 years sheds light on wolves’ evolutionary history and the genomic origin of dogs.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - David W G Stanton
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden.,School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ophélie Lebrasseur
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Morgane Ollivier
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, Rennes, France
| | - Leo Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.,Genetics Institute, University College London, London, UK
| | | | - Michael V Westbury
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Joscha Gretzinger
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden.,The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Texas A&M University, College Station, TX, USA.,Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris Baumann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Ruth F Carden
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | | | | | | | - Pam Groves
- University of Alaska, Fairbanks, AK, USA
| | - Stefan T Hertwig
- Naturhistorisches Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | - Richard P Jennings
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Irina V Kirillova
- Ice Age Museum, Shidlovskiy National Alliance 'Ice Age', Moscow, Russian Federation
| | - Islam Kurmaniyazov
- Department of Archaeology, Ethnology and Museology, Al-Farabi Kazakh State University, Almaty, Kazakhstan
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | | | | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Cóilín O'Drisceoil
- National Monuments Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Elena Y Pavlova
- Arctic & Antarctic Research Institute, St Petersburg, Russian Federation
| | - Angela R Perri
- PaleoWest, Henderson, NV, USA.,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Małgorzata Pilot
- Museum & Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | | | | | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - Victor F Zaibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Grant Zazula
- Yukon Palaeontology Program, Whitehorse, Yukon Territories, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden.,Stockholm University, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
38
|
Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids. Curr Biol 2022; 32:889-897.e9. [PMID: 35090588 PMCID: PMC8891063 DOI: 10.1016/j.cub.2021.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
Collapse
|
39
|
Hammel M, Simon A, Arbiol C, Villalba A, Burioli EAV, Pépin JF, Lamy JB, Benabdelmouna A, Bernard I, Houssin M, Charrière G, Destoumieux-Garzon D, Welch J, Metzger MJ, Bierne N. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol Ecol 2022; 31:736-751. [PMID: 34192383 PMCID: PMC8716645 DOI: 10.1111/mec.16052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.
Collapse
Affiliation(s)
- Maurine Hammel
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France,IHPE, Univ Montpellier, CNRS, Ifremer, Univ Perpignan,
Via Domitia, France
| | - Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France
| | | | - Antonio Villalba
- Centro de Investigacións Mariñas,
Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain,Departamento de Ciencias de la Vida, Universidad de
Alcalá, Alcalá de Henares, Spain.,Research Centre for Experimental Marine Biology and
Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque
Country, Spain
| | - Erika AV Burioli
- IHPE, Univ Montpellier, CNRS, Ifremer, Univ Perpignan,
Via Domitia, France,LABÉO, Caen, France
| | - Jean-François Pépin
- Laboratoire Environnement ressources des Pertuis
Charentais, IFREMER, La Tremblade, France
| | - Jean-Baptiste Lamy
- Santé, Génétique, Microbiologie des
Mollusques, IFREMER, La Tremblade, France
| | | | | | | | | | | | - John Welch
- Department of Genetics, University of Cambridge,
Downing Street, Cambridge, UK
| | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier,
France
| |
Collapse
|
40
|
Garg KM, Chattopadhyay B, Cros E, Tomassi S, Benedick S, Edwards DP, Rheindt FE. Island Biogeography Revisited: Museomics Reveals Affinities of Shelf Island Birds Determined by Bathymetry and Paleo-Rivers, Not by Distance to Mainland. Mol Biol Evol 2022; 39:msab340. [PMID: 34893875 PMCID: PMC8789277 DOI: 10.1093/molbev/msab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Island biogeography is one of the most powerful subdisciplines of ecology: its mathematical predictions that island size and distance to mainland determine diversity have withstood the test of time. A key question is whether these predictions follow at a population-genomic level. Using rigorous ancient-DNA protocols, we retrieved approximately 1,000 genomic markers from approximately 100 historic specimens of two Southeast Asian songbird complexes from across the Sunda Shelf archipelago collected 1893-1957. We show that the genetic affinities of populations on small shelf islands defy the predictions of geographic distance and appear governed by Earth-historic factors including the position of terrestrial barriers (paleo-rivers) and persistence of corridors (Quaternary land bridges). Our analyses suggest that classic island-biogeographic predictors may not hold well for population-genomic dynamics on the thousands of shelf islands across the globe, which are exposed to dynamic changes in land distribution during Quaternary climate change.
Collapse
Affiliation(s)
- Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for Interdisciplinary Archaeological Research, Ashoka University, Sonipat, India
- Department of Biology, Ashoka University, Sonipat, India
| | - Balaji Chattopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Emilie Cros
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Suzan Benedick
- Faculty of Sustainable Agriculture, University of Malaysia, Sabah, Malaysia
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
41
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
42
|
Murchison EP. Rising incidence of canine transmissible venereal tumours in the UK. Vet Rec 2021; 189:472-474. [PMID: 34918817 DOI: 10.1002/vetr.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Modern Siberian dog ancestry was shaped by several thousand years of Eurasian-wide trade and human dispersal. Proc Natl Acad Sci U S A 2021; 118:2100338118. [PMID: 34544854 PMCID: PMC8488619 DOI: 10.1073/pnas.2100338118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The Siberian Arctic has witnessed numerous societal changes since the first known appearance of dogs in the region ∼10,000 years ago. These changes include the introduction of ironworking ∼2,000 years ago and the emergence of reindeer pastoralism ∼800 years ago. The analysis of 49 ancient dog genomes reveals that the ancestry of Arctic Siberia dogs shifted over the last 2,000 years due to an influx of dogs from the Eurasian Steppe and Europe. Combined with genomic data from humans and archaeological evidence, our results suggest that though the ancestry of human populations in Arctic Siberia did not change over this period, people there participated in trade with distant communities that involved both dogs and material culture. Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.
Collapse
|
44
|
Thorsrud JA, Huson HJ. Description of breed ancestry and genetic health traits in arctic sled dog breeds. Canine Med Genet 2021; 8:8. [PMID: 34544496 PMCID: PMC8454093 DOI: 10.1186/s40575-021-00108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background This study describes the presence and frequency of health traits among three populations of dogs traditionally used for sledding and explores their ancestry and breed composition as provided by the commercially available Embark dog DNA test. The three populations include the purebred Siberian Husky and the admixed populations of Alaskan sled dogs and Polar Huskies. While the Siberian Husky represents a well-established breed with extensive historical and health data, the Alaskan sled dog is less studied but has been the subject of nutritional, physiological, and genetic studies related to ancestry and performance. In contrast, the Polar Husky is a relatively obscure and rare group of dogs used for arctic exploration with very little-known information. The three populations were compared using Embark results, providing new insight into the health traits circulating within the populations and the potential ancestral linkage of the health traits between the sledding populations. Embark results are based upon 228,588 single-nucleotide polymorphisms (SNPs) spanning the canine genome, characterized using a custom-designed Illumina beadchip array. Results Specifically, breed composition was summarized for the two admixed populations with most of the dogs being predominantly categorized as Alaskan husky- type dog or “Supermutt”. Mitochondrial and Y chromosome haplogroups and haplotypes were found with Alaskan sled dogs carrying most of the haplogroups and types found in Siberian and Polar Huskies. Genomic principal component analysis reflected population structure corresponding to breed and substructure within the Alaskan sled dogs related to sprint or distance competition. Genetic markers associated with Alanine Aminotransferase activity, Alaskan Husky Encephalopathy, dilated cardiomyopathy, Collie eye anomaly, degenerative myelopathy, ichthyosis, and factor VII deficiency were identified in the populations of sledding breeds. Conclusion These results provide a preliminary description of genetic characteristics found in sledding breeds, improving the understanding and care of working sled dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00108-z.
Collapse
Affiliation(s)
- Joseph A Thorsrud
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, 201 Morrison Hall, 507 Tower Road, Ithaca, NY, 14853, USA
| | - Heather J Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, 201 Morrison Hall, 507 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
45
|
Almarri MA, Haber M, Lootah RA, Hallast P, Al Turki S, Martin HC, Xue Y, Tyler-Smith C. The genomic history of the Middle East. Cell 2021; 184:4612-4625.e14. [PMID: 34352227 PMCID: PMC8445022 DOI: 10.1016/j.cell.2021.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15–20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East. Middle Easterners do not have ancestry from an early out-of-Africa expansion Basal Eurasian and African ancestry in Arabians deplete their Neanderthal ancestry Populations experienced bottlenecks overlapping aridification events Identification of recent single and polygenic signals of selection in Arabia
Collapse
Affiliation(s)
- Mohamed A Almarri
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Reem A Lootah
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Pille Hallast
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Saeed Al Turki
- Translational Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; Department of Genetics & Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
46
|
Runge AKW, Hendy J, Richter KK, Masson-MacLean E, Britton K, Mackie M, McGrath K, Collins M, Cappellini E, Speller C. Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome. Proc Biol Sci 2021; 288:20210020. [PMID: 34229485 PMCID: PMC8261203 DOI: 10.1098/rspb.2021.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The domestic dog has inhabited the anthropogenic niche for at least 15 000 years, but despite their impact on human strategies, the lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. In the Arctic, dogs rely exclusively on humans for food during the winter, and while stable isotope analyses have revealed dietary similarities at some sites, deciphering the details of provisioning strategies have been challenging. In this study, we apply zooarchaeology by mass spectrometry (ZooMS) and liquid chromatography tandem mass spectrometry to dog palaeofaeces to investigate protein preservation in this highly degradable material and obtain information about the diet of domestic dogs at the Nunalleq site, Alaska. We identify a suite of digestive and metabolic proteins from the host species, demonstrating the utility of this material as a novel and viable substrate for the recovery of gastrointestinal proteomes. The recovered proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon species (coho, chum, chinook and sockeye) and that the consumed tissues derived from muscle and bone tissues as well as roe and guts. Overall, the study demonstrated the viability of permafrost-preserved palaeofaeces as a unique source of host and dietary proteomes.
Collapse
Affiliation(s)
- Anne Kathrine W Runge
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07743 Jena, Germany
| | - Kristine K Richter
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07743 Jena, Germany.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | | | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, Scotland, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103
| | - Meaghan Mackie
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark.,The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 København N, Denmark
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Matthew Collins
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark.,Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Enrico Cappellini
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1353 København K, Denmark
| | - Camilla Speller
- BioArCh, Department of Archaeology, University of York, Environment Building, Wentworth Way, YO10 5DD York, UK.,Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, Canada V6T 1Z1
| |
Collapse
|
47
|
Dog domestication and the dual dispersal of people and dogs into the Americas. Proc Natl Acad Sci U S A 2021; 118:2010083118. [PMID: 33495362 DOI: 10.1073/pnas.2010083118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.
Collapse
|
48
|
Segura V, Sánchez-Villagra MR. Human-canid relationship in the Americas: an examination of canid biological attributes and domestication. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00129-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Abstract
Studies of dogs have proliferated among canine scientists, aided in part by the logistical convenience of working with owned animals whose care is handled by others. These pet dogs are unlike most dogs that have lived in contemporary or prehistoric settings. In particular, many of the dogs studied by canine scientists are NATIVE dogs: (1) neutered, (2) alimented, (3) trained, (4) isolated, (5) vaccinated, and (6) engineered. The distinct genotypes and unusual environments of NATIVE dogs stand in contrast to the characteristics of dogs who have adapted to lives in other human communities and settings. For a holistic perspective on the evolution of dogs, it is helpful to study dogs in environments that share features of the settings in which dogs evolved.
Collapse
Affiliation(s)
- Jeremy Koster
- Max Planck Institute for Evolutionary Anthropology, Deutscher Pl. 6, Leipzig 04103, Germany
| |
Collapse
|
50
|
Serres-Armero A, Davis BW, Povolotskaya IS, Morcillo-Suarez C, Plassais J, Juan D, Ostrander EA, Marques-Bonet T. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res 2021; 31:762-774. [PMID: 33863806 PMCID: PMC8092016 DOI: 10.1101/gr.266049.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Carlos Morcillo-Suarez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Juan
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08201, Spain
| |
Collapse
|