1
|
Tanaya T, Iwamura S, Okada W, Kuwae T. Artificial structures can facilitate rapid coral recovery under climate change. Sci Rep 2025; 15:9116. [PMID: 40097480 PMCID: PMC11914049 DOI: 10.1038/s41598-025-93531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Rising seawater temperatures from climate change have caused coral bleaching, risking coral extinction by century's end. To save corals, reef restoration must occur alongside other climate-change mitigation. Here we show the effectiveness of habitat creation on artificial structures for rapid coral restoration in response to climate change. We use 29 years of field observations for coral distributions on breakwaters and surrounding reefs (around 33,000 measurements in total). Following bleaching in 1998, breakwaters had higher coral cover (mainly Acropora spp.) than did surrounding natural reefs. Coral recovery times on breakwaters matched the frequency of recent bleaching events (~ every 6 years) and were accelerated by surface processing of the artificial structures with grooves. Corals on breakwaters were more abundant in shallow waters, under high light, and on moderately sloped substrate. Coral abundance on breakwaters was increased by incorporating shallow areas and surface texture. Our results suggest that habitat creation on artificial structures can increase coral community resilience against climate change by increasing coral recovery potential.
Collapse
Affiliation(s)
- Toko Tanaya
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, 239-0826, Japan.
| | - Shunpei Iwamura
- Daiei Consultant Co., Ltd, 412-4 Minatogawa, Urasoe, 901-2134, Japan
| | - Wataru Okada
- Incorporated Foundation Okinawa Prefecture Environment Science Center, 720 Kyozuka, Urasoe, 901-2111, Japan
| | - Tomohiro Kuwae
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, 239-0826, Japan
| |
Collapse
|
2
|
Smith RS, Pruett JL. Oyster Restoration to Recover Ecosystem Services. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:83-113. [PMID: 39028991 DOI: 10.1146/annurev-marine-040423-023007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Oyster reef loss represents one of the most dramatic declines of a foundation species worldwide. Oysters provide valuable ecosystem services (ES), including habitat provisioning, water filtration, and shoreline protection. Since the 1990s, a global community of science and practice has organized around oyster restoration with the goal of restoring these valuable services. We highlight ES-based approaches throughout the restoration process, consider applications of emerging technologies, and review knowledge gaps about the life histories and ES provisioning of underrepresented species. Climate change will increasingly affect oyster populations, and we assess how restoration practices can adapt to these changes. Considering ES throughout the restoration process supports adaptive management. For a rapidly growing restoration practice, we highlight the importance of early community engagement, long-term monitoring, and adapting actions to local conditions to achieve desired outcomes.
Collapse
Affiliation(s)
- Rachel S Smith
- Marine Science Institute, University of California, Santa Barbara, California, USA;
| | - Jessica L Pruett
- Mississippi Based RESTORE Act Center of Excellence, The University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
3
|
Mellin C, Stuart-Smith RD, Heather F, Oh E, Turak E, Edgar GJ. Coral responses to a catastrophic marine heatwave are decoupled from changes in total coral cover at a continental scale. Proc Biol Sci 2024; 291:20241538. [PMID: 39378994 PMCID: PMC11461067 DOI: 10.1098/rspb.2024.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
The services provided by the world's coral reefs are threatened by increasingly frequent and severe marine heatwaves. Heatwave-induced degradation of reefs has often been inferred from the extent of the decline in total coral cover, which overlooks extreme variation among coral taxa in their susceptibility and responses to thermal stress. Here, we provide a continental-scale assessment of coral cover changes at 262 shallow tropical reef sites around Australia, using ecological survey data on 404 coral taxa before and after the 2016 mass bleaching event. A strong spatial structure in coral community composition along large-scale environmental gradients largely dictated how coral communities responded to heat stress. While heat stress variables were the best predictors of change in total coral cover, the pre-heatwave community composition best predicted the temporal beta-diversity index (an indicator of change in community composition over time). Indicator taxa in each coral community differed before and after the heatwave, highlighting potential winners and losers of climate-driven coral bleaching. Our results demonstrate how assessment of change in total cover alone may conceal very different responses in community structure, some of which showed strong regional consistency, and may provide a telling outlook of how coral reefs may reorganize in a warmer future.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Freddie Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Sguotti C, Vasilakopoulos P, Tzanatos E, Frelat R. Resilience assessment in complex natural systems. Proc Biol Sci 2024; 291:20240089. [PMID: 38807517 DOI: 10.1098/rspb.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic cusp model derived from catastrophe theory. The cusp model models tipping points derived from a cusp bifurcation. We extend cusp in order to identify the presence of stable and unstable states in complex natural systems. Our Cusp Resilience Assessment (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a cusp bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that Cusp Resilience Assessment is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.
Collapse
Affiliation(s)
- Camilla Sguotti
- Department of Biology, University of Padova , Padova 35100, Italy
- Institute of Marine Ecosystems and Fishery Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , Hamburg 22767, Germany
| | | | | | - Romain Frelat
- PO Box 30709, International Livestock Research Institute , Nairobi 00100, Kenya
| |
Collapse
|
5
|
Sannassy Pilly S, Roche RC, Richardson LE, Turner JR. Depth variation in benthic community response to repeated marine heatwaves on remote Central Indian Ocean reefs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231246. [PMID: 38545610 PMCID: PMC10966399 DOI: 10.1098/rsos.231246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean. Our analyses show an overall decline in hard and soft coral cover and an increase in crustose coralline algae, sponge and reef pavement following successive marine heatwaves on the remote reef system. Our findings indicate that the changes in benthic communities in response to elevated seawater temperatures varied across depths. We found greater changes in benthic group cover at shallow depths (5-15 m) compared with deeper zones (15-25 m). The loss of hard coral cover was better predicted by initial thermal stress, while the loss of soft coral was associated with repeated thermal stress following successive warming events. Our study shows that benthic communities extending to 25 m depth were impacted by successive marine heatwaves, supporting concerns about the resilience of shallow coral reef communities to increasingly severe climate-driven warming events.
Collapse
Affiliation(s)
| | - Ronan C. Roche
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| | | | - John R. Turner
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| |
Collapse
|
6
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
Zuo X, Qin B, Teng J, Duan X, Yu K, Su F. Optimized spatial and temporal pattern for coral bleaching heat stress alerts for China's coral reefs. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106152. [PMID: 37604086 DOI: 10.1016/j.marenvres.2023.106152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Most studies on coral bleaching alerts use common Degree Heating Week (DHW) thresholds; however, these may underestimate historical patterns of heat stress for coral reef ecosystems. Taking an optimized DHW threshold for coral bleaching alerts for Coral Reef Watch (CRW) and Coral Reef Temperature Anomaly Database (CoRTAD) products, we analyzed the precise spatial and temporal pattern of heat stress on China's coral reefs from 2010 to 2021 in the South China Sea (SCS) and the Beibu Gulf (BG). We compared acute heat stress using common and optimized thresholds. Results indicated that the ocean warming rate in 2010-2021 was approximately 0.43 ± 0.22 °C/10a, showing a significant increase in the northern SCS and the BG. More severe bleaching events were predicted by the optimized thresholds and the high-frequency areas were mainly in the northern SCS. The number and intensity of years with severe heat stress anomalies was in the order 2020 > 2014 > 2010 > 2015. Heat stress duration was the longest in the Xisha Islands among offshore archipelagos, and longest in 2020-2021 in Weizhou Island in BG in the relative high-latitude inshore reefs. These abnormal events were mainly caused by El Niño, but La Niña was also involved in 2020.
Collapse
Affiliation(s)
- Xiuling Zuo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Binni Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Juncan Teng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xiaopeng Duan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Fenzhen Su
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Qin B, Yu K, Zuo X. Study of the bleaching alert capability of the CRW and CoRTAD coral bleaching heat stress products in China's coral reefs. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105939. [PMID: 36924536 DOI: 10.1016/j.marenvres.2023.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Coral bleaching heat stress products provide real-time and rapid coral bleaching alerts for coral reefs globally. However, geographical variations in the alert accuracy of multi-source coral bleaching heat stress products exist. Taking the coral reefs in the South China Sea (SCS) as the study area, we evaluated and improved the coral bleaching alert capabilities of two coral bleaching heat stress products: Coral Reef Watch (CRW) and Coral Reef Temperature Anomaly Database (CoRTAD). Using in situ coral bleaching survey data and evaluation indicators, the optimized thresholds of degree heating weeks (DHWs) for coral bleaching alerts were determined. The results in the SCS indicated that, first, CRW was better than CoRTAD for coral bleaching event alerts. However, both products underestimated coral bleaching events using the common DHW thresholds of 4°C-weeks and 8°C-weeks. Second, the DHW optimized threshold for CRW was 3.32°C-weeks for coral bleaching event alerts and 4.52°C-weeks for severe coral bleaching event alerts. For CoRTAD products, the DHW optimized threshold was 2.36°C-weeks for coral bleaching event alerts and 4.14°C-weeks for severe coral bleaching event alerts. This study proposed a method to evaluate and optimize the alert capability of multi-source coral bleaching heat stress products, which can provide more accurate basic data for coral reef ecosystem health assessment and contribute to global coral reef ecosystem protection and restoration.
Collapse
Affiliation(s)
- Binni Qin
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Xiuling Zuo
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Fish community structure and dynamics are insufficient to mediate coral resilience. Nat Ecol Evol 2022; 6:1700-1709. [PMID: 36192541 DOI: 10.1038/s41559-022-01882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Coral reefs are being impacted by myriad stressors leading to drastic changes to their structure and function. Fishes play essential roles in driving ecosystem processes on coral reefs but the extent to which these processes are emergent at temporal or ecosystem scales or otherwise masked by other drivers (for example, climatic events and crown-of-thorns starfish outbreaks) is poorly understood. Using time series data on fish community composition and coral and macroalgae percentage cover between 2006 and 2017 from 57 sites around Mo'orea, Polynesia, we found that fish community diversity predicts temporal stability in fish biomass but did not translate to temporal stability of coral cover. Furthermore, we found limited evidence of directional influence of fish on coral dynamics at temporal and ecosystem scales and no evidence that fish mediate coral recovery rate from disturbance. Our findings suggest that coral reef fisheries management will benefit from maintaining fish diversity but that this level of management is unlikely to strongly mediate coral loss or recovery over time.
Collapse
|
10
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Solé R, Levin S. Ecological complexity and the biosphere: the next 30 years. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210376. [PMID: 35757877 PMCID: PMC9234814 DOI: 10.1098/rstb.2021.0376] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global warming, habitat loss and overexploitation of limited resources are leading to alarming biodiversity declines. Ecosystems are complex adaptive systems that display multiple alternative states and can shift from one to another in abrupt ways. Some of these tipping points have been identified and predicted by mathematical and computational models. Moreover, multiple scales are involved and potential mitigation or intervention scenarios are tied to particular levels of complexity, from cells to human–environment coupled systems. In dealing with a biosphere where humans are part of a complex, endangered ecological network, novel theoretical and engineering approaches need to be considered. At the centre of most research efforts is biodiversity, which is essential to maintain community resilience and ecosystem services. What can be done to mitigate, counterbalance or prevent tipping points? Using a 30-year window, we explore recent approaches to sense, preserve and restore ecosystem resilience as well as a number of proposed interventions (from afforestation to bioengineering) directed to mitigate or reverse ecosystem collapse. The year 2050 is taken as a representative future horizon that combines a time scale where deep ecological changes will occur and proposed solutions might be effective. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 80, Barcelona 08003, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona 08003, Spain.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Simon Levin
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Carturan BS, Parrott L, Pither J. Functional Richness and Resilience in Coral Reef Communities. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.780406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Anthropocene the functional diversity of coral communities is changing rapidly, putting the resilience of many coral reef ecosystems in jeopardy. A better understanding of the relationship between coral functional diversity and reef resilience could reveal practical ways to achieve increased resilience. However, manipulating coral diversity experimentally is challenging, and consequently the links between coral functional diversity, resilience, and ecosystem functioning remain obscure. We used an ecologically detailed agent-based model to conduct a virtual experiment in which functional diversity was manipulated over the entire trait space of scleractinian corals. Using an imputed trait dataset of 798 coral species and eight key functional traits, we assembled 245 functionally distinct coral communities, which we subjected to a cyclone and bleaching event. We then measured four different aspects of their resilience and quantified for each measure the respective effect of (i) the functional richness (FRic), and (ii) community-weighted means (CWM) of four types of trait: effect, resistance, recovery, and competitive. FRic represents the volume occupied by a community in the functional space, while CWM indicates the location of the communities’ centroid in the functional space. We found a significant and positive effect of FRic on three measures of resilience: communities with higher FRic recovered surface cover faster and had more rugosity and cover 10 years after the disturbances. In contrast, the resistance of the coral community—i.e., the capacity to maintain surface cover when subjected to the disturbances—was independent of FRic and was determined primarily by the CWM of resistance traits. By analyzing community dynamics and functional trade-offs, we show that FRic increases resilience via the selection and the insurance effects due to the presence of competitive species in the functional space, i.e., those highly dominant species that contribute the most to the complexity of the habitat and recover quickly from disturbances. Building from the results of our experiment and the trait correlation analysis, we discuss the potential for FRic to serve as a proxy measure of resilience and we present a strategy that can provide direction to on-going reef restoration efforts, and pave the way for sustaining coral communities in a context of rapid global change.
Collapse
|
13
|
Limiting motorboat noise on coral reefs boosts fish reproductive success. Nat Commun 2022; 13:2822. [PMID: 35595750 PMCID: PMC9123000 DOI: 10.1038/s41467-022-30332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Anthropogenic noise impacts are pervasive across taxa, ecosystems and the world. Here, we experimentally test the hypothesis that protecting vulnerable habitats from noise pollution can improve animal reproductive success. Using a season-long field manipulation with an established model system on the Great Barrier Reef, we demonstrate that limiting motorboat activity on reefs leads to the survival of more fish offspring compared to reefs experiencing busy motorboat traffic. A complementary laboratory experiment isolated the importance of noise and, in combination with the field study, showed that the enhanced reproductive success on protected reefs is likely due to improvements in parental care and offspring length. Our results suggest noise mitigation could have benefits that carry through to the population-level by increasing adult reproductive output and offspring growth, thus helping to protect coral reefs from human impacts and presenting a valuable opportunity for enhancing ecosystem resilience.
Collapse
|
14
|
Hidalgo M, Vasilakopoulos P, García-Ruiz C, Esteban A, López-López L, García-Gorriz E. Resilience dynamics and productivity-driven shifts in the marine communities of the Western Mediterranean Sea. J Anim Ecol 2021; 91:470-483. [PMID: 34873693 PMCID: PMC9300018 DOI: 10.1111/1365-2656.13648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Ecological resilience has become a conceptual cornerstone bridging ecological processes to conservation needs. Global change is increasingly associated with local changes in environmental conditions that can cause abrupt ecosystem reorganizations attending to system‐specific resilience fluctuations with time (i.e. resilience dynamics). Here we assess resilience dynamics associated with climate‐driven ecosystems transitions, expressed as changes in the relevant contribution of species with different life‐history strategies, in two benthopelagic systems. We analysed data from 1994 to 2019 coming from a scientific bottom trawl survey in two environmentally contrasting ecosystems in the Western Mediterranean Sea—Northern Spain and Alboran Sea. Benthopelagic species were categorized according to their life‐history strategies (opportunistic, periodic and equilibrium), ecosystem functions and habitats. We implemented an Integrated Resilience Assessment (IRA) to elucidate the response mechanism of the studied ecosystems to several candidate environmental stressors and quantify the ecosystems’ resilience. We demonstrate that both ecosystems responded discontinuously to changes in chlorophyll‐a concentration more than any other stressor. The response in Northern Spain indicated a more overarching regime shift than in the Alboran Sea. Opportunistic fish were unfavoured in both ecosystems in the recent periods, while invertebrate species of short life cycle were generally favoured, particularly benthic species in the Alboran Sea. The study illustrates that the resilience dynamics of the two ecosystems were mostly associated with fluctuating productivity, but subtle and long‐term effects from sea warming and fishing reduction were also discernible. Such dynamics are typical of systems with wide environmental gradient such as the Northern Spain, as well as systems with highly hydrodynamic and of biogeographical complexity such as the Alboran Sea. We stress that management should become more adaptive by utilizing the knowledge on the systems’ productivity thresholds and underlying shifts to help anticipate both short‐term/less predictable events and long‐term/expected effects of climate change.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Baleares (COB), Ecosystem Oceanography Group (GRECO), Palma, Balearic Islands, Spain
| | | | - Cristina García-Ruiz
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Málaga, Fuengirola, Málaga, Spain
| | - Antonio Esteban
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Murcia, San Pedro del Pinar, Murcia, Spain
| | - Lucía López-López
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Baleares (COB), Ecosystem Oceanography Group (GRECO), Palma, Balearic Islands, Spain
| | | |
Collapse
|
15
|
Valuing marine restoration beyond the 'too small and too expensive'. Trends Ecol Evol 2021; 36:968-971. [PMID: 34456067 DOI: 10.1016/j.tree.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Restoration is criticized as ineffectively small scale, a smoke screen against global-scale action. Yet, large-scale solutions arise from small-scale successes, which inject social values and optimism needed for global investment. Human values are central to achieving socio-ecological sustainability; understanding human behavior is now arguably more important than understanding the ecological processes.
Collapse
|
16
|
Page CE, Leggat W, Heron SF, Fordyce AJ, Ainsworth TD. High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals' endosymbiotic algae. CONSERVATION PHYSIOLOGY 2021; 9:coab046. [PMID: 34188937 PMCID: PMC8226191 DOI: 10.1093/conphys/coab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/24/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
The effects of thermal anomalies on tropical coral endosymbiosis can be mediated by a range of environmental factors, which in turn ultimately influence coral health and survival. One such factor is the water flow conditions over coral reefs and corals. Although the physiological benefits of living under high water flow are well known, there remains a lack of conclusive experimental evidence characterizing how flow mitigates thermal stress responses in corals. Here we use in situ measurements of flow in a variety of reef habitats to constrain the importance of flow speeds on the endosymbiosis of an important reef building species under different thermal regimes. Under high flow speeds (0.15 m s-1) and thermal stress, coral endosymbionts retained photosynthetic function and recovery capacity for longer compared to low flow conditions (0.03 m s-1). We hypothesize that this may be due to increased rates of mass transfer of key metabolites under higher flow, putatively allowing corals to maintain photosynthetic efficiency for longer. We also identified a positive interactive effect between high flow and a pre-stress, sub-lethal pulse in temperature. While higher flow may delay the onset of photosynthetic stress, it does not appear to confer long-term protection; sustained exposure to thermal stress (eDHW accumulation equivalent to 4.9°C weeks) eventually overwhelmed the coral meta-organism as evidenced by eventual declines in photo-physiological function and endosymbiont densities. Investigating flow patterns at the scale of metres within the context of these physiological impacts can reveal interesting avenues for coral reef management. This study increases our understanding of the effects of water flow on coral reef health in an era of climate change and highlights the potential to learn from existing beneficial bio-physical interactions for the effective preservation of coral reefs into the future.
Collapse
Affiliation(s)
- C E Page
- Life Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK
- School of Biological, Earth and Environmental Sciences, UNSW, Kensington, High St, New South Wales 2033, Australia
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - W Leggat
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - S F Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, James Cook Dr, Townsville, Queensland 4811, Australia
- NOAA Coral Reef Watch, College Park, MD 20740, USA
| | - A J Fordyce
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - T D Ainsworth
- School of Biological, Earth and Environmental Sciences, UNSW, Kensington, High St, New South Wales 2033, Australia
| |
Collapse
|
17
|
Qin Z, Yu K, Chen S, Chen B, Liang J, Yao Q, Yu X, Liao Z, Deng C, Liang Y. Microbiome of juvenile corals in the outer reef slope and lagoon of the South China Sea: insight into coral acclimatization to extreme thermal environments. Environ Microbiol 2021; 23:4389-4404. [PMID: 34110067 DOI: 10.1111/1462-2920.15624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Environmental conditions between the outer reef slope (ORS) and lagoon in tropical atolls are significantly different, but the variations of juvenile coral-microbiomes in the two environments and their relationship with coral thermal acclimatization are poorly understood. We explored this issue based on local water conditions and the microbiome of juvenile corals in the ORS and lagoon in the central South China Sea. Coral-symbiotic Symbiodiniaceae showed significant differences among coral species; Pocillopora verrucosa and Pachyseris rugosa in the ORS, and Acropora formosa in the lagoon were dominated by Durusdinium, but other corals were dominated by Cladocopium. Although A. formosa in the ORS were dominated by Cladocopium (C3u), they were dominated by Durusdinium (D1/D1a) and Cladocopium (C50) in the lagoon. Other coral species were both dominated by Cladocopium in the lagoon and ORS. The relative abundance of bacteria in the Deinococcus-Thermus was generally higher in the lagoon corals than in the ORS corals. Our study indicates that P. verrucosa, P. rugosa and Porites lutea may have high thermal tolerance based on the relatively high abundance of heat-tolerant Durusdinium and Thermus scotoductus. Likewise, A. formosa in the lagoon may acclimatize to the thermal environment based on a high relative abundance of heat-tolerant Durusdinium.
Collapse
Affiliation(s)
- Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China.,Southern Marine and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shuchang Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Qiucui Yao
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xiaopeng Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhiheng Liao
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Chuanqi Deng
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yanting Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China.,School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
18
|
Ferse SCA, Hein MY, Rölfer L. A survey of current trends and suggested future directions in coral transplantation for reef restoration. PLoS One 2021; 16:e0249966. [PMID: 33939716 PMCID: PMC8092780 DOI: 10.1371/journal.pone.0249966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Coral transplantation has been used in reef restoration for several decades, but information on the type of projects, their scope, scale, and success is mostly limited to published scientific studies and technical reports. Many practitioners do not have the capacity to share their progress in peer-reviewed literature, yet likely have a wealth of information to share on how to improve the efficiency of transplantation efforts. In order to incorporate non-published data on coral transplantation projects and gain an overview of the general features of these projects, we conducted an initial systematic online survey of projects run by various practitioners. Surveyed projects (n = 50) covered most of the tropical belt and ranged in size from a few hundred transplanted corals to >5000 transplants. The most frequent source of coral fragments were corals already broken from some previous impact (“corals of opportunity”; 58% of projects), followed by fragments stored in different types of aquaculture systems (42% of projects). The use of sexual reproduction was very limited. Fast-growing, branching corals were used in 96% of projects, being by far the most common transplanted growth form. About half of the projects mentioned undertaking maintenance of the transplantation plots. The majority of projects undertook subsequent monitoring (80%), yet the available data indicates that duration of monitoring efforts was not adequate to evaluate long-term success. The findings underline that while some general principles for successful coral restoration projects are reasonably well established, others need to be mainstreamed better in order to improve the effectiveness of coral transplantation for reef restoration. This relates in particular to sustainable funding, adequate site assessment, and long-term monitoring using established protocols. Additional information is needed to better understand and address potential challenges with regards to the sourcing of transplants and use of slow-growing species. A better integration of practitioners is necessary to improve the understanding of coral transplantation effectiveness. The results underline a need to develop and use monitoring protocols that allow gauging and comparing the effectiveness of coral transplantation among various projects, as well as for accessible platform(s) to allow the exchange of experiences made in different projects. Regular surveys of restoration projects are recommended to collate and share information among practitioners. We provide a number of recommendations for items to include in future surveys.
Collapse
Affiliation(s)
- Sebastian C. A. Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Faculty of Biology & Chemistry (FB2), University of Bremen, Bremen, Germany
- * E-mail:
| | - Margaux Y. Hein
- Marine Ecosystem Restoration (MER) Research and Consulting, Monaco
- TropWATER, James Cook University, Townsville, Queensland, Australia
| | - Lena Rölfer
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Faculty of Biology & Chemistry (FB2), University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
González-Barrios FJ, Cabral-Tena RA, Alvarez-Filip L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. GLOBAL CHANGE BIOLOGY 2021; 27:640-651. [PMID: 33131196 DOI: 10.1111/gcb.15431] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The ecology and structure of many tropical coral reefs have been markedly altered over the past few decades. Although long-term recovery has been observed in terms of coral cover, it is not clear how novel species configurations shape reef functionality in impaired reefs. The identities and life-history strategies of the corals species that recover are essential for understanding reef functional dynamics. We used a species identity approach to quantify the physical functionality outcomes over a 13 year period across 56 sites in the Mexican Caribbean. This region was affected by multiple stressors that converged and drastically damaged reefs in the early 2000s. Since then, the reefs have shown evidence of a modest recovery of coral cover. We used Bayesian linear models and annual rates of change to estimate temporal changes in physical functionality and coral cover. Moreover, a functional diversity framework was used to explore changes in coral composition and the traits of those assemblages. Between 2005 and 2018, physical functionality increased at a markedly lower rate compared to that of coral cover. The disparity between recovery rates depended on the identity of the species that increased (mainly non-framework and foliose-digitate corals). No changes in species dominance or functional trait composition were observed, whereas non-framework building corals consistently dominated most reefs. Although the observed recovery of coral cover and functional potential may provide some ecological benefits, the long-term effects on reef frameworks remain unclear, as changes in the cover of key reef-building species were not observed. Our findings are likely to be representative of many reefs across the wider Caribbean basin, as declines in coral cover and rapid increases in the relative abundance of weedy corals have been reported regionally. A coral identity approach to assess species turnover is needed to understand and quantify changes in the functionality of coral reefs.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Rafael A Cabral-Tena
- Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
| |
Collapse
|
20
|
Pearson RM, Schlacher TA, Jinks KI, Olds AD, Brown CJ, Connolly RM. Disturbance type determines how connectivity shapes ecosystem resilience. Sci Rep 2021; 11:1188. [PMID: 33441960 PMCID: PMC7806881 DOI: 10.1038/s41598-021-80987-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
Connectivity is fundamentally important for shaping the resilience of complex human and natural networks when systems are disturbed. Ecosystem resilience is, in part, shaped by the spatial arrangement of habitats, the permeability and fluxes between them, the stabilising functions performed by organisms, their dispersal traits, and the interactions between functions and stressor types. Controlled investigations of the relationships between these phenomena under multiple stressors are sparse, possibly due to logistic and ethical difficulties associated with applying and controlling stressors at landscape scales. Here we show that grazing performance, a key ecosystem function, is linked to connectivity by manipulating the spatial configuration of habitats in microcosms impacted by multiple stressors. Greater connectivity enhanced ecosystem function and reduced variability in grazing performance in unperturbed systems. Improved functional performance was observed in better connected systems stressed by harvesting pressure and temperature rise, but this effect was notably reversed by the spread of disease. Connectivity has complex effects on ecological functions and resilience, and the nuances should be recognised more fully in ecosystem conservation.
Collapse
Affiliation(s)
- Ryan M Pearson
- Australian Rivers Institute-Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Thomas A Schlacher
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, DC, 4558, Australia
| | - Kristin I Jinks
- Australian Rivers Institute-Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Andrew D Olds
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, DC, 4558, Australia
| | - Christopher J Brown
- Australian Rivers Institute-Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Rod M Connolly
- Australian Rivers Institute-Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
21
|
Cant J, Salguero-Gómez R, Kim SW, Sims CA, Sommer B, Brooks M, Malcolm HA, Pandolfi JM, Beger M. The projected degradation of subtropical coral assemblages by recurrent thermal stress. J Anim Ecol 2020; 90:233-247. [PMID: 32920820 DOI: 10.1111/1365-2656.13340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
Subtropical coral assemblages are threatened by similar extreme thermal stress events to their tropical counterparts. Yet, the mid- and long-term thermal stress responses of corals in subtropical environments remain largely unquantified, limiting our capacity to predict their future viability. The annual survival, growth and recruitment of 311 individual corals within the Solitary Islands Marine Park (Australia) was recorded over a 3-year period (2016-2018), including the 2015/2016 thermal stress event. These data were used to parameterise integral projection models quantifying the effect of thermal stress within a subtropical coral assemblage. Stochastic simulations were also applied to evaluate the implications of recurrent thermal stress scenarios predicted by four different Representative Concentration Pathways. We report differential shifts in population growth rates (λ) among coral populations during both stress and non-stress periods, confirming contrasting bleaching responses among taxa. However, even during non-stress periods, the observed dynamics for all taxa were unable to maintain current community composition, highlighting the need for external recruitment sources to support the community structure. Across all coral taxa, projected stochastic growth rates (λs ) were found to be lowest under higher emissions scenarios. Correspondingly, predicted increases in recurrent thermal stress regimes may accelerate the loss of coral coverage, species diversity and structural complexity within subtropical regions. We suggest that these trends are primarily due to the susceptibility of subtropical specialists and endemic species, such as Pocillopora aliciae, to thermal stress. Similarly, the viability of many tropical coral populations at higher latitudes is highly dependent on the persistence of up-current tropical systems. As such, the inherent dynamics of subtropical coral populations appear unable to support their future persistence under unprecedented thermal disturbance scenarios.
Collapse
Affiliation(s)
- James Cant
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia.,Max Planck Institute for Demographic Research, Rostock, Germany
| | - Sun W Kim
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Carrie A Sims
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Brigitte Sommer
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| | - Maxime Brooks
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Hamish A Malcolm
- Fisheries Research, NSW Department of Primary Industries, Coffs Harbour, NSW, Australia
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Anthony KRN, Helmstedt KJ, Bay LK, Fidelman P, Hussey KE, Lundgren P, Mead D, McLeod IM, Mumby PJ, Newlands M, Schaffelke B, Wilson KA, Hardisty PE. Interventions to help coral reefs under global change-A complex decision challenge. PLoS One 2020; 15:e0236399. [PMID: 32845878 PMCID: PMC7449401 DOI: 10.1371/journal.pone.0236399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.
Collapse
Affiliation(s)
- Kenneth R. N. Anthony
- Australian Institute of Marine Science, QLD, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate J. Helmstedt
- ARC Centre of Excellence in Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, QLD, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, QLD, Australia
| | - Pedro Fidelman
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | - Karen E. Hussey
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | | | - David Mead
- Australian Institute of Marine Science, QLD, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Kerrie A. Wilson
- ARC Centre of Excellence for Environmental Decisions, The University of Queensland, QLD, Australia
| | | |
Collapse
|
23
|
Zhang H, Liu X, Wang Q, Zhang W, Gao J. Co-adaptation enhances the resilience of mutualistic networks. J R Soc Interface 2020; 17:20200236. [PMID: 32693741 PMCID: PMC7423412 DOI: 10.1098/rsif.2020.0236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Mutualistic networks, which describe the ecological interactions between multiple types of species such as plants and pollinators, play a paramount role in the generation of Earth's biodiversity. The resilience of a mutualistic network denotes its ability to retain basic functionality when errors and failures threaten the persistence of the community. Under the disturbances of mass extinctions and human-induced disasters, it is crucial to understand how mutualistic networks respond to changes, which enables the system to increase resilience and tolerate further damages. Despite recent advances in the modelling of the structure-based adaptation, we lack mathematical and computational models to describe and capture the co-adaptation between the structure and dynamics of mutualistic networks. In this paper, we incorporate dynamic features into the adaptation of structure and propose a co-adaptation model that drastically enhances the resilience of non-adaptive and structure-based adaptation models. Surprisingly, the reason for the enhancement is that the co-adaptation mechanism simultaneously increases the heterogeneity of the mutualistic network significantly without changing its connectance. Owing to the broad applications of mutualistic networks, our findings offer new ways to design mechanisms that enhance the resilience of many other systems, such as smart infrastructures and social-economical systems.
Collapse
Affiliation(s)
- Huixin Zhang
- Automation Department, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, People’s Republic of China
| | - Xueming Liu
- Key Laboratory of Imaging Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Qi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Weidong Zhang
- Automation Department, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, People’s Republic of China
| | - Jianxi Gao
- Department of Computer Science and Network Science and Technology Center, Troy, NY 12180, USA
| |
Collapse
|
24
|
Towards a Comparative Framework of Demographic Resilience. Trends Ecol Evol 2020; 35:776-786. [PMID: 32482368 DOI: 10.1016/j.tree.2020.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/23/2022]
Abstract
In the current global biodiversity crisis, the development of tools to define, quantify, compare, and predict resilience is essential for understanding the responses of species to global change. However, disparate interpretations of resilience have hampered the development of a common currency to quantify and compare resilience across natural systems. Most resilience frameworks focus on upper levels of biological organization, especially ecosystems or communities, which complicates measurements of resilience using empirical data. Surprisingly, there is no quantifiable definition of resilience at the demographic level. We introduce a framework of demographic resilience that draws on existing concepts from community and population ecology, as well as an accompanying set of metrics that are comparable across species.
Collapse
|
25
|
Gordon TAC, Radford AN, Simpson SD, Meekan MG. Marine restoration projects are undervalued. Science 2020; 367:635-636. [PMID: 32029619 DOI: 10.1126/science.aba9141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Timothy A C Gordon
- University of Exeter, Exeter EX4 4PS, UK. .,Australian Institute of Marine Science, Perth, WA 6009, Australia
| | | | | | - Mark G Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| |
Collapse
|
26
|
Morrison TH, Adger N, Barnett J, Brown K, Possingham H, Hughes T. Advancing Coral Reef Governance into the Anthropocene. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2019.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Thermal Stress and Resilience of Corals in a Climate-Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse8010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coral reef ecosystems are under the direct threat of increasing atmospheric greenhouse gases, which increase seawater temperatures in the oceans and lead to bleaching events. Global bleaching events are becoming more frequent and stronger, and understanding how corals can tolerate and survive high-temperature stress should be accorded paramount priority. Here, we review evidence of the different mechanisms that corals employ to mitigate thermal stress, which include association with thermally tolerant endosymbionts, acclimatisation, and adaptation processes. These differences highlight the physiological diversity and complexity of symbiotic organisms, such as scleractinian corals, where each species (coral host and microbial endosymbionts) responds differently to thermal stress. We conclude by offering some insights into the future of coral reefs and examining the strategies scientists are leveraging to ensure the survival of this valuable ecosystem. Without a reduction in greenhouse gas emissions and a divergence from our societal dependence on fossil fuels, natural mechanisms possessed by corals might be insufficient towards ensuring the ecological functioning of coral reef ecosystems.
Collapse
|
28
|
Cleary DFR, Polónia ARM, Huang YM, Swierts T. Compositional variation between high and low prokaryotic diversity coral reef biotopes translates to different predicted metagenomic gene content. Antonie van Leeuwenhoek 2019; 113:563-587. [PMID: 31802337 DOI: 10.1007/s10482-019-01364-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In a previous study, we identified host species that housed high and low diversity prokaryotic communities. In the present study, we expand on this and assessed the prokaryotic communities associated with seawater, sediment and 11 host species from 7 different phyla in a Taiwanese coral reef setting. The host taxa sampled included hard, octo- and black corals, molluscs, bryozoans, flatworms, fish and sea urchins. There were highly significant differences in composition among host species and all host species housed distinct communities from those found in seawater and sediment. In a hierarchical clustering analysis, samples from all host species, with the exception of the coral Galaxea astreata, formed significantly supported clusters. In addition to this, the coral G. astreata and the bryozoan Triphyllozoon inornatum on the one hand and the coral Tubastraea coccinea, the hermit crab Calcinus laevimanus and the flatworm Thysanozoon nigropapillosum on the other formed significantly supported clusters. In addition to composition, there were highly pronounced differences in richness and evenness among host species from the most diverse species, the bryozoan T. inornatum at 2518 ± 240 OTUs per 10,000 sequences to the least diverse species, the octocoral Cladiella sp. at 142 ± 14 OTUs per 10,000 sequences. In line with the differences in composition, there were significant differences in predicted metagenomic gene counts among host species. Furthermore, there were pronounced compositional and predicted functional differences between high diversity hosts (Liolophura japonica, G. astreata, T. coccinea, C. laevimanus, T. inornatum) and low diversity hosts (Antipathes sp., Pomacentrus coelestis, Modiolus auriculatus, T. nigropapillosum, Cladiella sp. and Diadema savigny). In particular, we found that all tested low diversity hosts were predicted to be enriched for the phosphotransferase system compared to high diversity hosts.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ana Rita M Polónia
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Penghu, Taiwan.,Department of Marine Recreation, University of Science and Technology, Penghu, Taiwan
| | - Thomas Swierts
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Kline DI, Teneva L, Okamoto DK, Schneider K, Caldeira K, Miard T, Chai A, Marker M, Dunbar RB, Mitchell BG, Dove S, Hoegh-Guldberg O. Living coral tissue slows skeletal dissolution related to ocean acidification. Nat Ecol Evol 2019; 3:1438-1444. [PMID: 31558830 DOI: 10.1038/s41559-019-0988-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/19/2019] [Indexed: 11/09/2022]
Abstract
Climate change is causing major changes to marine ecosystems globally, with ocean acidification of particular concern for coral reefs. Using a 200 d in situ carbon dioxide enrichment study on Heron Island, Australia, we simulated future ocean acidification conditions, and found reduced pH led to a drastic decline in net calcification of living corals to no net growth, and accelerated disintegration of dead corals. Net calcification declined more severely than in previous studies due to exposure to the natural community of bioeroding organisms in this in situ study and to a longer experimental duration. Our data suggest that reef flat corals reach net dissolution at an aragonite saturation state (ΩAR) of 2.3 (95% confidence interval: 1.8-2.8) with 100% living coral cover and at ΩAR > 3.5 with 30% living coral cover. This model suggests that areas of the reef with relatively low coral mortality, where living coral cover is high, are likely to be resistant to carbon dioxide-induced reef dissolution.
Collapse
Affiliation(s)
- David I Kline
- Smithsonian Tropical Research Institute, Ancón, Panama. .,Scripps Institution of Oceanography, Integrative Oceanography Division, University of California San Diego, La Jolla, CA, USA. .,Global Change Institute and Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia. .,Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia.
| | - Lida Teneva
- Environmental Earth System Science, Stanford University, Stanford, CA, USA.,OceanX, New York, NY, USA
| | - Daniel K Okamoto
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kenneth Schneider
- Department of Global Ecology, Carnegie Institution, Stanford, CA, USA.,Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution, Stanford, CA, USA
| | - Thomas Miard
- Global Change Institute and Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| | - Aaron Chai
- Global Change Institute and Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| | - Malcolm Marker
- Faculty of Engineering, Architecture and Information Technology, University of Queensland, St Lucia, Australia
| | - Robert B Dunbar
- Environmental Earth System Science, Stanford University, Stanford, CA, USA
| | - B Greg Mitchell
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California San Diego, La Jolla, CA, USA
| | - Sophie Dove
- Global Change Institute and Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute and Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, St Lucia, Queensland, Australia
| |
Collapse
|
30
|
Edmunds PJ. The demography of hurricane effects on two coral populations differing in dynamics. Ecosphere 2019. [DOI: 10.1002/ecs2.2836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Peter J. Edmunds
- Department of Biology California State University 18111 Nordhoff Street Northridge California 91330 USA
| |
Collapse
|
31
|
Immediate Effects of Hurricanes on a Diverse Coral/Mangrove Ecosystem in the U.S. Virgin Islands and the Potential for Recovery. DIVERSITY 2019. [DOI: 10.3390/d11080130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hurricanes Irma and Maria, two powerful storms that hit the U.S. Virgin Islands less than 2 weeks apart in September 2017, caused extensive damage to the natural resources on St. John. Damage was particularly severe in a unique mangrove/coral ecosystem in three bays within Virgin Islands Coral Reef National Monument, a National Park Service marine protected area. Many Red Mangrove (Rhizophora mangle) trees were uprooted and tossed into the sea, and the prop roots of others were stripped of corals, sponges and other marine life. No other mangrove area in the Caribbean is known to have so many scleractinian corals (about 30 species before the storms). Although many corals were overturned or buried in rubble, colonies of most of the species, including four that are listed as threatened under the U.S. Endangered Species Act, survived. Recovery of this ecosystem will depend on Red Mangrove propagules becoming established and producing prop roots to support rich marine life along with a canopy to provide the shade that was critical to the biodiversity that was present before the storms. Unlike in many situations where major disturbances reduce coral cover, the substrate that must be restored for full recovery to occur is a living substrate—the prop roots of the mangroves. Larvae of corals and sponges will need to recruit on to the roots. Future storms could hinder this process.
Collapse
|
32
|
Hock K, Doropoulos C, Gorton R, Condie SA, Mumby PJ. Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat Commun 2019; 10:3463. [PMID: 31371712 PMCID: PMC6671964 DOI: 10.1038/s41467-019-11367-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Many habitat-building corals undergo mass synchronous spawning events. Yet, despite the enormous amounts of larvae produced, larval dispersal from a single spawning event and the reliability of larval supply are highly dependent on vagaries of ocean currents. However, colonies from the same population will occasionally spawn over successive months. These split spawning events likely help to realign reproduction events to favourable environmental conditions. Here, we show that split spawning may benefit corals by increasing the reliability of larval supply. By modelling the dispersal of coral larvae across Australia's Great Barrier Reef, we find that split spawning increased the diversity of sources and reliability of larval supply the reefs could receive, especially in regions with low and intrinsically variable connectivity. Such increased larval supply might help counteract the expected declines in reproductive success associated with split spawning events.
Collapse
Affiliation(s)
- Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, 4067, Australia. .,ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, St Lucia, 4067, Australia.
| | - Christopher Doropoulos
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, St Lucia, 4067, Australia
| | - Rebecca Gorton
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, 7000, Australia
| | - Scott A Condie
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, 7000, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, 4067, Australia.,ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, St Lucia, 4067, Australia
| |
Collapse
|
33
|
Page CE, Leggat W, Heron SF, Choukroun SM, Lloyd J, Ainsworth TD. Seeking Resistance in Coral Reef Ecosystems: The Interplay of Biophysical Factors and Bleaching Resistance under a Changing Climate. Bioessays 2019; 41:e1800226. [DOI: 10.1002/bies.201800226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Charlotte E. Page
- Department of Life Sciences Imperial College London Kensington London SW7 2AZ UK
- School of Environmental and Life Sciences University of Newcastle University Dr Callaghan NSW 2308 Australia
- School of Biological Earth and Environmental Sciences (BEES), UNSW Kensington NSW 2033 Australia
| | - William Leggat
- School of Environmental and Life Sciences University of Newcastle University Dr Callaghan NSW 2308 Australia
| | - Scott F. Heron
- Coral Reef Watch U.S. National Oceanic and Atmospheric Administration College Park MD 20740 USA
- Marine Geophysical Laboratory, Physics Department, College of Science and Engineering James Cook University Townsville QLD 4811 Australia
| | - Severine M. Choukroun
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD 4811 Australia
| | - Jon Lloyd
- Department of Life Sciences Imperial College London Kensington London SW7 2AZ UK
| | - Tracy D. Ainsworth
- School of Biological Earth and Environmental Sciences (BEES), UNSW Kensington NSW 2033 Australia
| |
Collapse
|
34
|
Edmunds PJ. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 2019; 100:e02587. [DOI: 10.1002/ecy.2587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/18/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Peter J. Edmunds
- Department of Biology California State University Northridge California 91330‐8303 USA
| |
Collapse
|
35
|
Vercelloni J, Kayal M, Chancerelle Y, Planes S. Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Sci Rep 2019; 9:1027. [PMID: 30705361 PMCID: PMC6355954 DOI: 10.1038/s41598-018-38228-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023] Open
Abstract
Preserving coral reef resilience is a major challenge in the Anthropocene, yet recent studies demonstrate failures of reef recovery from disturbance, globally. The wide and vigorous outer-reef system of French Polynesia presents a rare opportunity to assess ecosystem resilience to disturbances at a large-scale equivalent to the size of Europe. In this purpose, we analysed long-term data on coral community dynamics and combine the mixed-effects regression framework with a set of functional response models to evaluate coral recovery trajectories. Analyses of 14 years data across 17 reefs allowed estimating impacts of a cyclone, bleaching event and crown-of-thorns starfish outbreak, which generated divergence and asynchrony in coral community trajectory. We evaluated reef resilience by quantifying levels of exposure, degrees of vulnerability, and descriptors of recovery of coral communities in the face of disturbances. Our results show an outstanding rate of coral recovery, with a systematic return to the pre-disturbance state within only 5 to 10 years. Differences in the impacts of disturbances among reefs and in the levels of vulnerability of coral taxa to these events resulted in diverse recovery patterns. The consistent recovery of coral communities, and convergence toward pre-disturbance community structures, reveals that the processes that regulate ecosystem recovery still prevail in French Polynesia.
Collapse
Affiliation(s)
- Julie Vercelloni
- École pratique des hautes études, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia. .,Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mohsen Kayal
- École pratique des hautes études, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UPVD, CNRS, UMR 5110, 52 Avenue Paul Alduy, 66860, Perpignan, France.,Centre de Recherche sur les Ecosystèmes Marins, Impasse du solarium, 66420, Port-Barcarès, France
| | - Yannick Chancerelle
- École pratique des hautes études, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.,Laboratoire d'Excellence "CORAIL", Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Serge Planes
- École pratique des hautes études, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.,Laboratoire d'Excellence "CORAIL", Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| |
Collapse
|
36
|
Sandifer PA, Walker AH. Enhancing Disaster Resilience by Reducing Stress-Associated Health Impacts. Front Public Health 2018; 6:373. [PMID: 30627528 PMCID: PMC6309156 DOI: 10.3389/fpubh.2018.00373] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disasters are a recurring fact of life, and major incidents can have both immediate and long-lasting negative effects on the health and well-being of people, communities, and economies. A primary goal of many disaster preparedness, response, and recovery plans is to reduce the likelihood and severity of disaster impacts through increased resilience of individuals and communities. Unfortunately, most plans do not address directly major drivers of long-term disaster impacts on humans-that is, acute, chronic, and cumulative stress-and therefore do less to enhance resilience than they could. Stress has been shown to lead to or exacerbate ailments ranging from mental illness, domestic violence, substance abuse, post-traumatic stress disorders, and suicide to cardiovascular disease, respiratory problems, and other infirmities. Individuals, groups, communities, organizations, and social ties are all vulnerable to stress. Based on a targeted review of what we considered to be key literature about disasters, resilience, and disaster-associated stress effects, we recommend eight actions to improve resiliency through inclusion of stress alleviation in disaster planning: (1) Improve existing disaster behavioral and physical health programs to better address, leverage, and coordinate resources for stress reduction, relief, and treatment in disaster planning and response. (2) Emphasize pre- and post-disaster collection of relevant biomarker and other health-related data to provide a baseline of health status against which disaster impacts could be assessed, and continued monitoring of these indicators to evaluate recovery. (3) Enhance capacity of science and public health early-responders. (4) Use natural infrastructure to minimize disaster damage. (5) Expand the geography of disaster response and relief to better incorporate the displacement of affected people. (6) Utilize nature-based treatment to alleviate pre- and post-disaster stress effects on health. (7) Review disaster laws, policies, and regulations to identify opportunities to strengthen public health preparedness and responses including for stress-related impacts, better engage affected communities, and enhance provision of health services. (8) With community participation, develop and institute equitable processes pre-disaster for dealing with damage assessments, litigation, payments, and housing.
Collapse
Affiliation(s)
- Paul A. Sandifer
- Center for Coastal Environmental and Human Health, School of Sciences and Mathematics, College of Charleston, Charleston, SC, United States
- Center for Oceans and Human Health, University of South Carolina, Columbia, SC, United States
| | | |
Collapse
|
37
|
Hoegh-Guldberg O, Kennedy EV, Beyer HL, McClennen C, Possingham HP. Securing a Long-term Future for Coral Reefs. Trends Ecol Evol 2018; 33:936-944. [DOI: 10.1016/j.tree.2018.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/23/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
|
38
|
MacDonald C, Jones GP, Bridge T. Marginal sinks or potential refuges? Costs and benefits for coral-obligate reef fishes at deep range margins. Proc Biol Sci 2018; 285:rspb.2018.1545. [PMID: 30404872 DOI: 10.1098/rspb.2018.1545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/12/2018] [Indexed: 11/12/2022] Open
Abstract
Escalating climate-related disturbances and asymmetric habitat losses will increasingly result in species living in more marginal habitats. Marginal habitats may represent important refuges if individuals can acquire adequate resources to survive and reproduce. However, resources at range margins are often distributed more sparsely; therefore, increased effort to acquire resources can result in suboptimal performance and lead to marginal populations becoming non-self-sustaining sink-populations. Shifting resource availability is likely to be particularly problematic for dietary specialists. Here, we use extensive in situ behavioural observations and physiological condition measurements to examine the costs and benefits of resource-acquisition along a depth gradient in two obligate corallivore reef fishes with contrasting levels of dietary specialization. As expected, the space used to secure coral resources increased towards the lower depth margin. However, increased territory sizes resulted in equal or greater availability of resources within deeper territories. In addition, we observed decreased competition and no differences in foraging distance, pairing behaviour, body condition or fecundity at greater depths. Contrary to expectation, our results demonstrate that coral-obligate fishes can select high-quality coral patches on the deeper-reef to access equal or greater resources than their shallow-water counterparts, with no extra costs. This suggests depth offers a viable potential refuge for some at-risk coral-specialist fishes.
Collapse
Affiliation(s)
- Chancey MacDonald
- Marine Biology and Aquaculture Science, College of Science and Engineering, James Cook University, Townsville 4811, Australia .,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Geoffrey P Jones
- Marine Biology and Aquaculture Science, College of Science and Engineering, James Cook University, Townsville 4811, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Tom Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, 70-102 Flinders Street, Townsville 4810, Australia
| |
Collapse
|
39
|
Mumby PJ, Hock K, Condie SA, Ortiz JC, Wolff NH, Anthony KRN, Blackwell PG. Response to Bode and colleagues: 'Resilient reefs may exist, but can larval dispersal models find them?'. PLoS Biol 2018; 16:e2007047. [PMID: 30133435 PMCID: PMC6104910 DOI: 10.1371/journal.pbio.2007047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Australia
| | - Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Australia
| | | | - Juan C. Ortiz
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - Nicholas H. Wolff
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Australia
- The Nature Conservancy, Brunswick, Maine, United States of America
| | | | - Paul G. Blackwell
- School of Mathematics & Statistics, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Camp EF, Schoepf V, Suggett DJ. How can "Super Corals" facilitate global coral reef survival under rapid environmental and climatic change? GLOBAL CHANGE BIOLOGY 2018; 24:2755-2757. [PMID: 29582529 DOI: 10.1111/gcb.14153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Coral reefs are in a state of rapid global decline via environmental and climate change, and efforts have intensified to identify or engineer coral populations with increased resilience. Concurrent with these efforts has been increasing use of the popularized term "Super Coral" in both popular media and scientific literature without a unifying definition. However, how this subjective term is currently applied has the potential to mislead inference over factors contributing to coral survivorship, and the future trajectory of coral reef form and functioning. Here, we discuss that the information required to support a single definition does not exist, and in fact may never be appropriate, i.e. "How Super is Super"? Instead, we advocate caution of this term, and suggest a workflow that enables contextualization and clarification of superiority to ensure that inferred or asserted survivorship is appropriate into future reef projections. This is crucial to robustly unlock how "Super Corals" can be integrated into the suite of management options required to facilitate coral survival under rapid environmental and climate change.
Collapse
Affiliation(s)
- Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Verena Schoepf
- School of Earth Sciences, UWA Oceans Institute, ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, WA, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|