1
|
Aksentov K, Sattarova V, Lopatnikov E, Alatorsev A, Kim D, Budanov L, Ryabchuk D, Melgunov M, Mariash A, Selutin S. Features of mercury geochemistry and the dynamics of its accumulation in bottom sediments of the northwestern Bering Sea over the past 150 years. MARINE POLLUTION BULLETIN 2025; 215:117907. [PMID: 40158440 DOI: 10.1016/j.marpolbul.2025.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
The Bering Sea shelf is a transit zone for water masses moving from the Pacific Ocean to the Arctic Ocean. Mercury geochemistry in bottom sediments of the northwestern Bering Sea shelf has been practically unstudied, whereas the Arctic seas are constantly being explored. Hg concentrations ranged from 6 ppb to 65 ppb in the bottom sediments of the study area. Based on the dating of sediment cores, the background concentration was 34 ppb. The concentration of Hg in fine sediment fractions was 60 ppb, in sandy fractions (>63 μm) varied from 17 to 43 μg ppb. In recent decades, a stable increase of mercury fluxes to bottom sediments has been observed. We used the Hg/TOC ratio as an indicator of mercury input to marine waters from natural terrigenous sources.
Collapse
Affiliation(s)
- Kirill Aksentov
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia.
| | - Valentina Sattarova
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia; Karpinsky Russian Geological Research Institute, Sankt Petersburg, Russia
| | - Evgeniy Lopatnikov
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia; Karpinsky Russian Geological Research Institute, Sankt Petersburg, Russia
| | | | - David Kim
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia; Karpinsky Russian Geological Research Institute, Sankt Petersburg, Russia
| | - Leonid Budanov
- Karpinsky Russian Geological Research Institute, Sankt Petersburg, Russia
| | - Daria Ryabchuk
- Karpinsky Russian Geological Research Institute, Sankt Petersburg, Russia
| | - Mikhail Melgunov
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna Mariash
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | - Semen Selutin
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| |
Collapse
|
2
|
Luo X, Yang P, Tian X, Xiang Y, Guo Y, Shen Z, Liu Y, Li Y, Zhang Q, Song M, Yin Y, Cai Y, Jiang G. Particulate mercury (Hg) dominates the microbially available Hg pool over dissolved Hg during the decay of marine diatom Chaetoceros debilis. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138602. [PMID: 40381347 DOI: 10.1016/j.jhazmat.2025.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Phytoplankton concentrate mercury (Hg) from surface water, significantly impacting microbial production and trophic transfer of the neurotoxin methylmercury (MeHg). However, the fate and microbial availability of phytoplankton-associated Hg are poorly understood. This study investigated variations of Hg species and their microbial availability during 42 days' decay experiments using the common marine diatom Chaetoceros debilis. During aerobic decay with irradiation and low-oxygen decay in dark, the majority of phytoplankton-associated Hg remained as particulate Hg (HgP) on debris, with less Hg released as dissolved Hg (HgD), as operationally defined by 0.22 μm filtration. Microbially available Hg, measured using an Escherichia coli-based biosensor under anoxic conditions, primarily originated from HgP (aerobic decay with irradiation: 75.2 ± 22.0 %; low-oxygen decay in dark: 76.6 ± 20.7 %). Besides, HgP demonstrated notably higher microbial availability at early decay stages, with 90.4 ± 1.2 % of HgP being absorbed by biosensors after 5 days' aerobic decay with irradiation. Considering Hg was predominantly associated with thiols in phytoplankton particles, this was mainly attributed to enhanced Hg ligand exchange between thiols on particles and microbial cell surfaces, facilitated by bacteria-particle attachment and interactions. The formation of less bioavailable Hg nanoparticles in phytoplankton-associated particles also contributed to varying microbial Hg availability. This study highlights the critical role of phytoplankton-associated HgP in microbial uptake, offering insights into MeHg production and related risks in aquatic environments.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zelin Shen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|
3
|
Zhang T, Ouyang Z, Zhang Y, Sun H, Kong L, Xu Q, Qu J, Sun Y. Marine Natural Products in Inflammation-Related Diseases: Opportunities and Challenges. Med Res Rev 2025. [PMID: 40202793 DOI: 10.1002/med.22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
In recent decades, the potentiality of marine natural products (MNPs) in the medical field has been increasingly recognized. Natural compounds derived from marine microorganisms, algae, and invertebrates have shown significant promise for treating inflammation-related diseases. In this review, we cover the three primary sources of MNPs and their diverse and unique chemical structures and bioactivities. This review aims to summarize the progress of MNPs in combating inflammation-related diseases. Moreover, we cover the functions and mechanisms of MNPs in diseases, highlighting their functions in regulating inflammatory signaling pathways, cellular stress responses, and gut microbiota, among others. Meanwhile, we focus on key technologies and scientific methods to address the current limitations and challenges in MNPs.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Yueran Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Zhou C, Liu M, Mason RP, Assavapanuvat P, Zhang NH, Bianchi TS, Zhang Q, Li X, Sun R, Chen J, Wang X, Raymond PA. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment. Nat Commun 2025; 16:1831. [PMID: 39979346 PMCID: PMC11842605 DOI: 10.1038/s41467-025-57085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The Southern Ocean, one of Earth's most productive areas, is widely recognized as a major sink for atmospheric carbon and mercury, tightly coupling primary production with the sedimentary sequestration of these elements. The impacts of climate warming on these processes, however, remain unclear. Here, we utilize 20 sediment cores from the Ross Sea, a representative ice-shelf sea in West Antarctica, to examine how Holocene warming and extensive glacial retreat influenced carbon and mercury sequestration. We find that organic carbon (OC) burial has been relatively constant over the past 12,000 years, whereas mercury burial in the Ross Embayment and open ocean exhibited three- and eightfold increases, respectively. Carbon isotopes and accumulation profiles suggest warming boosted glacial- and terrestrial-derived OC inputs to the ocean, while trace elements and biomarkers reveal a declining contribution offshore. Biomarker ratios further indicate greater remineralization of this OC in the open ocean. Consequently, enhanced OC degradation, coupled with rising external mercury inputs, drives mercury enrichment in marine sediments before reaching the seafloor. These findings imply that ongoing warming could trigger a positive feedback loop, accelerating OC degradation into CO2 and amplifying the impacts of anthropogenic mercury on Southern Ocean ecosystems.
Collapse
Affiliation(s)
- Chengzhen Zhou
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Maodian Liu
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- School of the Environment, Yale University, New Haven, CT, USA.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | | - Nikki H Zhang
- School of the Environment, Yale University, New Haven, CT, USA
| | - Thomas S Bianchi
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Qianru Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Xiaolong Li
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Xuejun Wang
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Peter A Raymond
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Galloway JM, Parsons MB, Ardakani OH, Falck H, Fewster RE, Swindles GT, Sanei H, Palmer MJ, Nasser NA, Patterson RT. Organic matter is a predominant control on total mercury concentration of near-surface lake sediments across a boreal to low Arctic tundra transect in northern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176466. [PMID: 39332738 DOI: 10.1016/j.scitotenv.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Mercury (Hg) is a bioavailable and toxic element with concentrations that are persistently high or rising in some Arctic and subarctic lakes despite reduced atmospheric emissions in North America. This is due to rising Hg emissions to the atmosphere outside of North America, enhanced sequestration of Hg to sediments by climate-mediated increases in primary production, and ongoing release of Hg from terrestrial reservoirs. To evaluate the influence of organic matter and other parameters on Hg accumulation in northern lakes, near-surface sediments were sampled from 60 lakes across a boreal to shrub tundra gradient in the central Northwest Territories, Canada. The organic matter of the lake sediments, assessed using programmed pyrolysis and petrology, is composed of a mixture of terrestrial, aquatic, and inert organic matter. The proportion of algal-derived organic matter is higher in sediments of lakes below treeline relative to shrub tundra sites. Total sedimentary Hg concentration is correlated to all organic matter constituents but is unrelated to latitude or lake position below or above treeline. The concentrations of Ag, Ca, P, S, U, Ti, Y, Cd, and Zn are also strong predictors of total sedimentary Hg concentration, indicating input from a common geogenic source and/or common sequestration pathways associated with organic matter. Catchment area is a strong negative predictor of total sedimentary Hg concentration, particularly in lakes above treeline, possibly due to retention capacity of Hg and other elements in local sinks. This research highlights the complexity of controls on Hg sequestration in sediment and shows that while organic matter is a strong predictor of total sedimentary Hg concentration on a landscape scale and across extreme gradients in climate and associated vegetation and permafrost, other factors such as catchment area and sources from mineralized bedrock are also important.
Collapse
Affiliation(s)
- Jennifer M Galloway
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada; Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Michael B Parsons
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Omid H Ardakani
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada
| | - Hendrik Falck
- Diamonds, Royalties and Financial Analysis, Government of the Northwest Territories, P.O. Box 1320, Yellowknife, NT X1A 2L9, Canada
| | - Richard E Fewster
- Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Graeme T Swindles
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Hamed Sanei
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2 Building 1671, Aarhus 8000, Denmark
| | - Michael J Palmer
- Aurora Research Institute, Aurora College, 5004-54 St, Yellowknife, NT X1A 2R3, Canada
| | - Nawaf A Nasser
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - R Timothy Patterson
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
Tian X, Wang Y, Xu T, Guo Y, Bi Y, Liu Y, Liang Y, Cui W, Liu Y, Hu L, Yin Y, Cai Y, Jiang G. Bioconcentration of Inorganic and Methyl Mercury by Algae Revealed Using Dual-Mass Single-Cell ICP-MS with Double Isotope Tracers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7860-7869. [PMID: 38647522 DOI: 10.1021/acs.est.3c10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.
Collapse
Affiliation(s)
- Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Ying Wang
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Tao Xu
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanqun Liu
- School of Medicine, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenbin Cui
- R&D Center, Shandong Yingsheng Biotechnology Co., Ltd., Beijing 100088, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Yang L, Yu B, Liu H, Ji X, Xiao C, Cao M, Fu J, Zhang Q, Hu L, Yin Y, Shi J, Jiang G. Foraging behavior and sea ice-dependent factors affecting the bioaccumulation of mercury in Antarctic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169557. [PMID: 38141978 DOI: 10.1016/j.scitotenv.2023.169557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
To elucidate the potential risks of the toxic pollutant mercury (Hg) in polar waters, the study of accumulated Hg in fish is compelling for understanding the cycling and fate of Hg on a regional scale in Antarctica. Herein, the Hg isotopic compositions of Antarctic cod Notothenia coriiceps were assessed in skeletal muscle, liver, and heart tissues to distinguish the differences in Hg accumulation in isolated coastal environments of the eastern (Chinese Zhongshan Station, ZSS) and the antipode western Antarctica (Chinese Great Wall Station, GWS), which are separated by over 4000 km. Differences in odd mass-independent isotope fractionation (odd-MIF) and mass-dependent fractionation (MDF) across fish tissues were reflection of the specific accumulation of methylmercury (MeHg) and inorganic Hg (iHg) with different isotopic fingerprints. Internal metabolism including hepatic detoxification and processes related to heart may also contribute to MDF. Regional heterogeneity in iHg end-members further provided evidence that bioaccumulated Hg origins can be largely influenced by polar water circumstances and foraging behavior. Sea ice was hypothesized to play critical roles in both the release of Hg with negative odd-MIF derived from photoreduction of Hg2+ on its surface and the impediment of photochemical transformation of Hg in water layers. Overall, the multitissue isotopic compositions in local fish species and prime drivers of the heterogeneous Hg cycling and bioaccumulation patterns presented here enable a comprehensive understanding of Hg biogeochemical cycling in polar coastal waters.
Collapse
Affiliation(s)
- Lin Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Dong H, Liu L, Zhou Q, Tang Y, Wang H, Yin Y, Shi J, He B, Li Y, Hu L, Jiang G. Transformation of Mercuric Ions to Mercury Nanoparticles in Diatom Chaetoceros curvisetus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19772-19781. [PMID: 37932229 DOI: 10.1021/acs.est.3c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Particulate HgS play crucial roles in the mercury (Hg) cycle. Approximately 20-90% of dissolved Hg can be transformed into particulate HgS by algae. However, detailed knowledge regarding these particles, including sizes and distribution, remains unknown. The present study explored the formation, distribution, and excretion of mercury nanoparticles (HgNPs) in diatom Chaetoceros curvisetus. The results demonstrated that HgNPs (HgS nanoparticles, 29.6-66.2 nm) formed intracellularly upon exposure to 5.0-100.0 μg L-1 Hg(II), accounting for 12-27% of the total Hg. HgNP concentrations significantly increased with increasing intracellular Hg(II) concentrations, while their sizes remained unaffected. HgNPs formed intracellularly and partly accumulated inside the cells (7-11%). Subsequently, the sizes of intracellular HgNPs gradually decreased to facilitate expulsion, 21-50% of which were excreted. These suggested the vital roles of HgNPs in comprehending marine Hg fate. Their unique physicochemical properties and bioavailability would influence Hg biotransformation in the ocean. Additionally, both intracellular and extracellular HgNPs contributed to Hg settling with cells, ultimately leading to Hg burial in sediments. Overall, these findings further deepened our understanding of Hg biotransformation and posed challenges in accurately estimating marine Hg flux and Hg burial.
Collapse
Affiliation(s)
- Hongzhe Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiling Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Guerrero S, Schneider L. The global roots of pre-1900 legacy mercury. Proc Natl Acad Sci U S A 2023; 120:e2304059120. [PMID: 37487071 PMCID: PMC10400983 DOI: 10.1073/pnas.2304059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/26/2023] Open
Abstract
During the nineteenth century, a major change took place in the trade, production, and use of mercury that altered its nearly exclusive link to silver refining in the Hispanic New World. We track the global expansion of mercury markets in chronological detail from 1511 to 1900 using historical archives on production and trade, a detailed country-by-country accounting of the pool of anthropogenic mercury from which legacy mercury was ultimately generated. The nature and profile of pre-1900 legacy mercury extends beyond silver refining, mercury production, and gold extraction, and includes alternate sources (vermilion, felt, mercury fulminate) and new regions that were not major silver or gold producers (China, India, United Kingdom, France, among others), that accounted for approximately 50% of total mercury consumed in the nineteenth century. The nature of the pre-1900 mercury market requires a quantitative distinction between legacy mercury and historic anthropogenic mercury production and use, since the chemistry of its end-uses determines the pathways and timelines for its incorporation into the global biogeochemical cycle. We thus introduce the concept of a mercury source pool to account for total historic anthropogenic mercury within and outside this cycle. Together with a critical review of previous assumptions used to reconstruct the historical use and loss of mercury, a much lower level of emissions of pre-1900 legacy mercury is proposed. A coordinated effort across disciplines is needed, to complete a historically accurate scenario that can guide the multilateral policies adopted under the United Nations Minamata Convention to control mercury in the environment.
Collapse
Affiliation(s)
- Saul Guerrero
- School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT2601, Australia
| | - Larissa Schneider
- School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
10
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
11
|
Chaudhary DK, Karki HP, Bajagain R, Kim H, Rhee TS, Hong JK, Han S, Choi YG, Hong Y. Mercury and other trace elements distribution and profiling of microbial community in the surface sediments of East Siberian Sea. MARINE POLLUTION BULLETIN 2022; 185:114319. [PMID: 36343547 DOI: 10.1016/j.marpolbul.2022.114319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, total mercury (THg), methylmercury (MeHg), various trace elements, and microbial communities were measured in surface sediments of the East Siberian Sea (ESS). The results showed that the average values of THg and MeHg were 58.8 ± 15.21 μg/kg and 0.50 ± 0.22 μg/kg, respectively. The notable levels of trace elements present in both surface sediment and porewater were Al, Fe, and Mn. The enrichment factor and geoaccumulation index analyses found that both natural phenomena and anthropogenic activities contributed to elevated concentrations of metals in the ESS. The redox proxy metals, pH, and SO42- were the major factors influencing the THg and MeHg distributions. Microbial profiles were substantially affected by metals and other abiotic factors. Proteobacteria and Thaumarchaeota were the most abundant phyla. Overall, the findings presented here facilitate the understanding of the current status of metal contamination, its influencing factors, and metal-microbiota-interactions in ESS.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hem Prakash Karki
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hwansuk Kim
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Gyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon City, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|
12
|
Liang M, Liu E, Wang X, Zhang Q, Xu J, Ji M, Zhang E. Historical trends in atmospheric metal(loid) contamination in North China over the past half-millennium reconstructed from subalpine lake sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119195. [PMID: 35339617 DOI: 10.1016/j.envpol.2022.119195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Trace metal (loid) contamination in the atmosphere is widely monitored, but there is a gap in understanding its long-term patterns, especially in North China, which is currently a global contamination hotspot mainly caused by heavy industry emissions and coal combustion. Herein, historical trends of atmospheric As, Cd, Cr, Cu, Hg, Ni, Pb and Zn contamination in North China over the past ∼500 years are comparatively studied with sediment cores from two subalpine lakes (Gonghai and Muhai). Arsenic, Pb, Cd and Hg were main pollutants according to Pb isotopes and enrichment factors. Mercury contamination has increased continuously since the late 1800s and increasing As, Pb and Cd contamination started in the 1950s in Gonghai. In contrast, the contamination in Muhai lagged two decades for As, Cd and Pb and a half-century for Hg behind that in Gonghai, although the trends were similar. This contamination lag was attributed to the low sensitivity of Muhai sediment to early weak atmospheric metal contamination under 2.1-fold higher detrital sedimentation. As, Pb and Cd contamination has intensified since the 1980s, and the metals showed similar sedimentary fluxes in the cores. However, sedimentary fluxes of Hg contamination were 3.4-fold higher in Gonghai than in Muhai due to combination with organic matter. No obvious Cr, Cu and Ni contamination in the cores was mainly because of the low atmospheric deposition from anthropogenic sources relative to detrital input, although some of their atmospheric emissions were higher than those of As, Cd and Hg. Atmospheric As, Pb and Cd contamination was mainly from domestic sources of coal combustion and nonferrous smelting. Mercury contamination was mainly from global and Asian sources in the first half of the 20th century, and domestic emissions gradually dominated Hg contamination after the mid-1900s.
Collapse
Affiliation(s)
- Mengyao Liang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; College of Marine Geosciences, Ocean University of China, Qingdao, 266100, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China.
| | - Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Ming Ji
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
13
|
Liang X, Zhu N, Johs A, Chen H, Pelletier DA, Zhang L, Yin X, Gao Y, Zhao J, Gu B. Mercury Reduction, Uptake, and Species Transformation by Freshwater Alga Chlorella vulgaris under Sunlit and Dark Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4961-4969. [PMID: 35389633 DOI: 10.1021/acs.est.1c06558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a major entry point of mercury (Hg) to aquatic food webs, algae play an important role in taking up and transforming Hg species in aquatic ecosystems. However, little is known how and to what extent Hg reduction, uptake, and species transformations are mediated by algal cells and their exudates, algal organic matter (AOM), under either sunlit or dark conditions. Here, using Chlorella vulgaris (CV) as one of the most prevalent freshwater model algal species, we show that solar irradiation could enhance the reduction of mercuric Hg(II) to elemental Hg(0) by both CV cells and AOM. AOM reduced more Hg(II) than algal cells themselves due to cell surface adsorption and uptake of Hg(II) inside the cells under solar irradiation. Synchrotron radiation X-ray absorption near-edge spectroscopy (SR-XANES) analyses indicate that sunlight facilitated the transformation of Hg to less bioavailable species, such as β-HgS and Hg-phytochelatins, compared to Hg(Cysteine)2-like species formed in algal cells in the dark. These findings highlight important functional roles and potential mechanisms of algae in Hg reduction and immobilization under varying lighting conditions and how these processes may modulate Hg cycling and bioavailability in the aquatic environment.
Collapse
Affiliation(s)
- Xujun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- School of Resources and Environment Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Nali Zhu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hongmei Chen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dale A Pelletier
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xixiang Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
15
|
Kütter VT, de Oliveira Pires AC, da Rosa Quintana GC, Mirlean N, Silva-Filho EV, Machado W, Garnier J, Aguilera O, Rosário RP, Kawakami SK, Albuquerque ALS. Mercury distribution in water masses of the South Atlantic Ocean (24°S to 20°S), Brazilian Exclusive Economic Zone. MARINE POLLUTION BULLETIN 2022; 176:113425. [PMID: 35189533 DOI: 10.1016/j.marpolbul.2022.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a toxic globally spread pollutant that has been found at increasing concentrations in the South Atlantic Ocean. The present work provides the first insight into the total mercury (HgT, unfiltered waters) content in the water of the Brazilian Exclusive Economic Zone (BEEZ), within a 24°S to 20°S. Water samples were collected from surface to 3400 m depth along transects, and analyzed with atomic fluorescence. The mean HgT concentration for the Tropical Water mass (TW) was 6.3 ± 1.4 pM (n = 16), for the South Atlantic Central Water (SACW), 5.9 ± 0.7 pM (n = 8), for the Antarctic Intermediate Water (AAIW), 5.0 ± 0.6 pM (n = 2), for the Upper Circumpolar Deep Water (UCDW), 6.5 pM (n = 1), and for the North Atlantic Deep Water (NADW), 5.7 ± 0.9 pM (n = 12). HgT concentrations were highest throughout the BEEZ in comparison with other parts of the Atlantic Ocean, farther from the coast.
Collapse
Affiliation(s)
- Vinicius Tavares Kütter
- Faculdade de Oceanografia, Instituto de Geociências, Universidade Federal do Pará, Augusto Correa n°1, 66075-110 Belém, Pará, Brazil.
| | - Alina Criane de Oliveira Pires
- Faculdade de Oceanografia, Instituto de Geociências, Universidade Federal do Pará, Augusto Correa n°1, 66075-110 Belém, Pará, Brazil
| | - Guilherme Castro da Rosa Quintana
- Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, 96201900 Rio Grande, Rio Grande do Sul, Brazil
| | - Nicolai Mirlean
- Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, 96201900 Rio Grande, Rio Grande do Sul, Brazil
| | - Emmanoel Vieira Silva-Filho
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020-141 Niterói, Rio de Janeiro, Brazil
| | - Wilson Machado
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020-141 Niterói, Rio de Janeiro, Brazil
| | - Jeremie Garnier
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Orangel Aguilera
- Instituto de Biologia Marinha, Universidade Federal Fluminense, Laboratório de Paleoecologia e Mudanças Globais, Campus Gragoatá, Bloco M, 24210-200 Niterói, Rio de Janeiro, Brazil
| | - Renan Peixoto Rosário
- Faculdade de Oceanografia, Instituto de Geociências, Universidade Federal do Pará, Augusto Correa n°1, 66075-110 Belém, Pará, Brazil
| | - Silvia Keiko Kawakami
- Faculdade de Oceanografia, Instituto de Geociências, Universidade Federal do Pará, Augusto Correa n°1, 66075-110 Belém, Pará, Brazil
| | - Ana Luiza Spadano Albuquerque
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proc Natl Acad Sci U S A 2021; 118:2102629118. [PMID: 34903647 DOI: 10.1073/pnas.2102629118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world's deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum-maximum: 24 to 220 μg ⋅ m-2 ⋅ y-1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g-1] to post-1950 (81 ± 32 ng ⋅ g-1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al, Nat. Commun. 11, 3389 (2020); J. D. Blum et al, Proc. Natl. Acad. Sci. U. S. A. 117, 29292-29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.
Collapse
|
17
|
Ogorek JM, Lepak RF, Hoffman JC, DeWild JF, Rosera TJ, Tate MT, Hurley JP, Krabbenhoft DP. Enhanced Susceptibility of Methylmercury Bioaccumulation into Seston of the Laurentian Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12714-12723. [PMID: 34460225 PMCID: PMC10630952 DOI: 10.1021/acs.est.1c02319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mercury concentrations in the Laurentian Great Lakes waters are among the lowest reported in the literature, while game fish concentrations approach consumption advisory limits, particularly in Lakes Superior, Huron, and Michigan, indicating efficient methylmercury transfer from water to game fish. To determine if increased transfer efficiency is evident within the lower food web, we measured (2010-2018) mercury and dissolved organic carbon (DOC) in water, and in size-sieved seston, dietary tracers (carbon and nitrogen isotope ratios), phytoplankton methylmercury bioaccumulation, and methylmercury biomagnification between increasing seston size fractions. We observed consistently low filter-passing methylmercury (<0.010 ng L-1) and comparatively variable DOC (1.1 to 3.4 mg L-1) concentrations. Methylmercury biomagnification factors between size-sieved seston were similar between lakes. Bioaccumulation factors in phytoplankton were among the highest in the literature (log 5.5 to 6.1), exceeding those in oceans, smaller lakes, and streams, and was influenced by DOC. Higher bioaccumulation rates increase the susceptibility of methylmercury accumulation into the food web. Because mercury is dominantly delivered to the Great Lakes through the atmosphere and the biota therein is highly susceptible to methylmercury uptake, we propose that the Laurentian Great Lakes are excellent sentinels to trace the success of efforts to decrease global mercury emissions (e.g., Minamata Treaty) in the future.
Collapse
Affiliation(s)
- Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Ryan F Lepak
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency Office of Research and Development, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel C Hoffman
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency Office of Research and Development, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - John F DeWild
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Tylor J Rosera
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael T Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - James P Hurley
- Environmental Chemistry and Technology program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr.;, Madison, Wisconsin 53706, United States
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| |
Collapse
|
18
|
Aksentov KI, Astakhov AS, Ivanov MV, Shi X, Hu L, Alatortsev AV, Sattarova VV, Mariash AA, Melgunov MS. Assessment of mercury levels in modern sediments of the East Siberian Sea. MARINE POLLUTION BULLETIN 2021; 168:112426. [PMID: 33940372 DOI: 10.1016/j.marpolbul.2021.112426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is an important environmental indicator of anthropogenic pollution. In this study, the Hg content in the bottom sediments of the East Siberian Sea was observed to range from 13 to 92 ppb, with an average of 36 ppb. Facies dependence was also observed and expressed as an increase in the Hg concentration in fine-sized sediments on the shelf edge and continental slope, compared to that in the sandy silts and sands of the inner shelf. The Hg accumulation in bottom sediments of the eastern part has increased over the past 150 years due to an increase in global emissions of anthropogenic Hg, which is caused by the transboundary transport of Hg to the Arctic. Moreover, changes in the Hg value, which occur due to the plankton arriving at the bottom sediments because of changes in hydrology and primary production, are thought to be associated with global warming.
Collapse
Affiliation(s)
- Kirill I Aksentov
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia.
| | - Anatolii S Astakhov
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia
| | - Maksim V Ivanov
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia
| | - Xuefa Shi
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Limin Hu
- Key Laboratory of Submarine Geosciences and Prospecting Technology, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Alexander V Alatortsev
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia
| | - Valentina V Sattarova
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia
| | - Anna A Mariash
- V.I. Il'ichev Pacific Oceanological Institute (POI), Far Eastern Branch of Russian Academy of Sciences (FEB RAS), 43 Baltiyskaya St., 690041 Vladivostok, Russia
| | - Mikhail S Melgunov
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Science, 3 Akademika Koptyuga Av., Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Sanei H, Outridge PM, Oguri K, Stern GA, Thamdrup B, Wenzhöfer F, Wang F, Glud RN. High mercury accumulation in deep-ocean hadal sediments. Sci Rep 2021; 11:10970. [PMID: 34040077 PMCID: PMC8155115 DOI: 10.1038/s41598-021-90459-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Ocean sediments are the largest sink for mercury (Hg) sequestration and hence an important part of the global Hg cycle1. Yet accepted global average Hg flux data for deep-ocean sediments (> 200 m depth) are not based on measurements on sediments but are inferred from sinking particulates2. Mercury fluxes have never been reported from the deepest zone, the hadal (> 6 km depth). Here we report the first measurements of Hg fluxes from two hadal trenches (Atacama and Kermadec) and adjacent abyssal areas (2–6 km). Mercury concentrations of up to 400 ng g−1 were the highest recorded in marine sediments remote from anthropogenic or hydrothermal sources. The two trench systems differed significantly in Hg concentrations and fluxes, but hadal and abyssal areas within each system did not. The relatively low recent mean flux at Kermadec was 6–15 times higher than the inferred deep-ocean average1,3, while the median flux across all cores was 22–56 times higher. Thus, some hadal and abyssal sediments are Hg accumulation hot-spots. The hadal zone comprises only ~ 1% of the deep-ocean area, yet a preliminary estimate based on sediment Hg and particulate organic carbon (POC) fluxes suggests total hadal Hg accumulation may be 12–30% of the estimate for the entire deep-ocean. The few abyssal data show equally high Hg fluxes near trench systems. These results highlight a need for further research into deep-ocean Hg fluxes to better constrain global Hg models.
Collapse
Affiliation(s)
- Hamed Sanei
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Peter M Outridge
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, 8000, Aarhus C, Denmark. .,Geological Survey of Canada, Natural Resources Canada, 601 Booth St, Ottawa, ON, K1A 0E8, Canada. .,Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Kazumasa Oguri
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.,Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark
| | - Gary A Stern
- Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Bo Thamdrup
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark.,HGF-MPG Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, 27570, Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Feiyue Wang
- Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ronnie N Glud
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark.,Department of Ocean and Environmental Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Fioniavej 34, 5230, Odense, Denmark
| |
Collapse
|
20
|
Yu B, Yang L, Liu H, Yang R, Fu J, Wang P, Li Y, Xiao C, Liang Y, Hu L, Zhang Q, Yin Y, Shi J, Jiang G. Katabatic Wind and Sea-Ice Dynamics Drive Isotopic Variations of Total Gaseous Mercury on the Antarctic Coast. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6449-6458. [PMID: 33856785 DOI: 10.1021/acs.est.0c07474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clarifying the sources and fates of atmospheric mercury (Hg) in the Antarctic is crucial to understand the global Hg circulation and its impacts on the fragile ecosystem of the Antarctic. Herein, the annual variations in the isotopic compositions of total gaseous Hg (TGM), with 5-22 days of sampling duration for each sample, were presented for the first time to provide isotopic evidence of the sources and environmental processes of gaseous Hg around the Chinese Great Wall Station (GWS) in the western Antarctic. Different from the Arctic tundra and lower latitude areas in the northern hemisphere, positive δ202Hg (0.58 ± 0.21‰, mean ± 1SD) and negative Δ199Hg (-0.30 ± 0.10‰, mean ± 1SD) in TGM at the GWS indicated little impact from the vegetation-air exchange in the Antarctic. Correlations among TGM Δ199Hg, air temperature, and ozone concentrations suggested that enhanced katabatic wind that transported inland air masses to the continental margin elevated TGM Δ199Hg in the austral winter, while the surrounding marine surface emissions controlled by sea-ice dynamics lowered TGM Δ199Hg in the austral summer. The oxidation of Hg(0) might elevate Δ199Hg in TGM during atmospheric Hg depletion events but have little impact on the seasonal variations of atmospheric Hg isotopes. The presented atmospheric Hg isotopes were essential to identify the transport and transformation of atmospheric Hg and further understand Hg cycling in the Antarctic.
Collapse
Affiliation(s)
- Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Pu Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Martínez Cortizas A, Horák-Terra I, Pérez-Rodríguez M, Bindler R, Cooke CA, Kylander M. Structural equation modeling of long-term controls on mercury and bromine accumulation in Pinheiro mire (Minas Gerais, Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143940. [PMID: 33321335 DOI: 10.1016/j.scitotenv.2020.143940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The application of statistical modeling is still infrequent in mercury research in peat, despite the ongoing debate on the weight of the diverse factors (climate, peat decomposition, vegetation changes, etc.) that may affect mercury accumulation. One of the few exceptions is the Hg record of Pinheiro mire (souheast Brazil). Previous studies on this mire modeled mercury using principal components regression and partial least squares. These methods assume independence between factors, which is seldom the case in natural systems, thus hampering the identification of mediating effects and interactions. To overcome these limitations, in this reserach we use structural equation modeling (PLS-SEM) to model mercury and bromine peat records - bromine has been used in some investigations to normalize mercury accumuation. The mercury model explained 83% of the variance and suggested a complex control: increased peat decomposition, dust deposition and humid climates enhanced mercury accumulation, while increased mineral fluxes resulted in a decrease in mercury accumulation. The bromine model explained 90% of the variation in concentrations: increased dust deposition and peat decomposition promoted bromine accumulation, while time (i.e. peat age) promoted bromine depletion. Thus, although mercury and bromine are both organically bound elements with relevant atmospheric cycles the weights of the factors involved in their accumulation differed significantly. Our results suggest caution when using bromine to normalize mercury accumulation. PLS-SEM results indicate a large time dependence of peat decomposition, catchment mineral fluxes, long-term climate change, and atmospheric deposition; while atmospheric dust, mineral fluxes and peat decomposition showed high to moderate climate dependency. In particular, they also point to a relevant role of autogenic processes (i.e. the build up and expansion of the mire within the catchment), which controlled local mineral fluxes; an aspect that has seldom been considered.
Collapse
Affiliation(s)
- Antonio Martínez Cortizas
- Ecopast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Ingrid Horák-Terra
- Instituto de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brazil
| | - Marta Pérez-Rodríguez
- Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Richard Bindler
- Department of Ecology and Environmental Science, University of Umea, Umea, Sweden
| | - Colin A Cooke
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Malin Kylander
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Cooke CA, Martínez-Cortizas A, Bindler R, Sexauer Gustin M. Environmental archives of atmospheric Hg deposition - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134800. [PMID: 31887515 DOI: 10.1016/j.scitotenv.2019.134800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Environmental archives offer an opportunity to reconstruct temporal trends in atmospheric Hg deposition at various timescales. Lake sediment and peat have been the most widely used archives; however, new records from ice, tree rings, and the measurement of Hg stable isotopes, are offering new insights into past Hg cycling. Preindustrial Hg deposition has been studied over decadal to millennial timescales extending as far back as the late Pleistocene. Exploitation of mercury deposits (mainly cinnabar) first began during the mid to late Holocene in South America, Europe, and Asia, but increased dramatically during the Colonial era (1532-1900) for silver production. However, evidence for preindustrial Hg pollution is restricted to regions directly downwind or downstream of cinnabar or precious metal mining centers. Excluding these areas, there has been an approximately four-fold increase in atmospheric deposition globally over the industrial era (i.e., since 1800-1850), though regional differences exist, especially during the early 20th Century. Lake sediments, peat, ice, and tree rings are all influenced by (and integrate) a range of processes. For example, lake sediments are influenced by atmospheric deposition, sediment focusing, and the input of allochthonous material from the watershed, peat records reflect atmospheric deposition and biotic uptake, ice cores are a record of Hg scrubbed during precipitation, and tree rings record atmospheric concentrations. No archive represents an absolute record of past Hg deposition or concentrations, and post-depositional transformation of Hg profiles remains an important topic of research. However, natural archives continue to provide important insight into atmospheric Hg cycling over various timescales.
Collapse
Affiliation(s)
- Colin A Cooke
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada; Environmental Monitoring and Science Division, Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta T5J 5C6 Canada.
| | - Antonio Martínez-Cortizas
- EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno Reno, Nevada 89557, United States
| |
Collapse
|
23
|
Esteves CV, Costa J, Bernard H, Tripier R, Delgado R. A squaraine-based dipicolylamine derivative acting as a turn-on mercury(ii) fluorescent probe in water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00852d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A squaraine-based ligand, sbdpa, has been synthesized, and the behaviour of its metal complexes was investigated. It was found that it acts as a Hg2+ chemosensor in aqueous solution.
Collapse
Affiliation(s)
- Catarina V. Esteves
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República
- 2780–157 Oeiras
- Portugal
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- Av. Prof. Gama Pinto
- 1649-003 Lisboa
| | - Hélène Bernard
- Univ Brest
- UMR-CNRS CEMCA 6521
- UFR des Sciences et Techniques
- 6 avenue Victor le Gorgeu
- 29200 Brest
| | - Raphaël Tripier
- Univ Brest
- UMR-CNRS CEMCA 6521
- UFR des Sciences et Techniques
- 6 avenue Victor le Gorgeu
- 29200 Brest
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República
- 2780–157 Oeiras
- Portugal
| |
Collapse
|
24
|
Long S, Hamilton PB, Dumont HJ, Rong L, Wu Z, Chen C, Guo Y, Tang J, Fan J, Li C, Zhang T. Effect of algal and bacterial diet on metal bioaccumulation in zooplankton from the Pearl River, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:151-164. [PMID: 31026639 DOI: 10.1016/j.scitotenv.2019.04.141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The biomagnification of metals (Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn) and the metalloid As in aquatic systems is a global health concern. In this study, concentrations of fatty acid biomarkers in zooplankton were analyzed from the Pearl River, South China between September 2016 and July 2017. The objective was to examine how particulate matter, algae and bacteria food sources affect metal bioaccumulation using fatty acid facilitation. In the zooplankton fraction, positive correlations were observed between Pb concentration and Eicosapentaenoic acid (EPA), Zn and Docosahexaenoic acid (DHA) (diatoms and Cryptophyceae biomarkers), Fe with Palmitoleic acid (C16:1n-7, diatom marker), and a weak association of Mn with α-linolenic acid (C18:3n-3). Cu concentration in the zooplankton increased significantly with an endogenous biotic biomarker Stearic acid (C18:0, bacteria biomarker), while Cd concentrations increased with increasing Oleic acid (C18:1n-9, green alga biomarker) concentration. There was a positive correlation between Cr concentration and the sum of Pentadecylic and Margaric acids (C15:0 + C17:0, bacteria biomarkers). Seven of the nine metals examined showed associations with fatty acids in the zooplankton. The bioaccumulation of Co, Cu, Pb, Fe, Mn and Zn concentration was correlated to the individual biomasses of Brachionus calyciflorus, Filinia longiseta, Schmackeria forbesi, Limnoithona sinenisis, Thermocyclops brevifurcatus, and Diaphanosoma dubium. For selected zooplankton taxa, the algal biomasses of Euglenophyceae, Chlorophyceae, Cryptophyceae, and Bacillariophyceae were correlated. Zooplankton were affected by selected species of phytoplankton and bacteria numbers in the Pearl River. These results show that metal accumulation in zooplankton is not only correlated with diet but is also in part, species specific with metal type. Thus, the bioaccumulation or scavenging of metals across trophic levels is a fundamental and complex component of metal cycling in aquatic environments.
Collapse
Affiliation(s)
- Shengxing Long
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, Guizhou, PR China; Guizhou Normal University, Guiyang, Guizhou 55001, PR China
| | - Paul B Hamilton
- Research and Collections, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Henri J Dumont
- Institute of Animal Ecology, University of Ghent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Li Rong
- Guizhou Normal University, Guiyang, Guizhou 55001, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chuan Chen
- Guizhou Normal University, Guiyang, Guizhou 55001, PR China
| | - Yun Guo
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Jinbeng Tang
- Institute of Hydrobiology, College of life Science and Technology, JiNan University, Guangzhou, Guangdong 510632, PR China
| | - Jingjing Fan
- Institute of Hydrobiology, College of life Science and Technology, JiNan University, Guangzhou, Guangdong 510632, PR China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, Guizhou, PR China
| | - Ting Zhang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, Guizhou, PR China.
| |
Collapse
|
25
|
Zhang Q, Zhang X, Zhang X, Jiang L, Yin J, Zhang P, Han S, Wang Y, Zheng G. A feedback-controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. MARINE POLLUTION BULLETIN 2019; 144:20-27. [PMID: 31179989 DOI: 10.1016/j.marpolbul.2019.04.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
By combination of miniaturization potential of digital microfluidics (DMF) and sensitivity of fluorescence probe, an integrated sensor device has been initially constructed for mercury detection in coastal waters. The actuation feature of the detecting target, seawater droplet, which remains unclear, was basically explored. To overcome a potential risk of driven failure, induced by diversity ion ingredients in seawater, a feedback control loop was included into control system. Analyzing method for coastal waters was well established on DMF, which showed satisfied stability and selectivity in Hg sensing under high salinity condition, with the sensitivity of Hg2+ at the parts per billion level and total testing time less than 20s. With the advantages of being fast, amenable to automation and low cost, this device is promising for the formation of simple and rapid sensor device, especially for a routine monitoring and emergency detection of Hg/or other metals in coastal waters.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China
| | - Xingcai Zhang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Xiaolin Zhang
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China
| | - Lan Jiang
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China
| | - Jingmei Yin
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China
| | - Peng Zhang
- National Marine Environmental Monitoring Center, Dalian 116600, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China
| | - Shuang Han
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China
| | - Yunhua Wang
- Medical School, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China.
| | - Guoxia Zheng
- Chemical and Environmental Engineering Institute, Dalian University, Dalian 116622, China; Environmental Micro Total Analysis Lab, Dalian University, Dalian 116622, China.
| |
Collapse
|
26
|
Zhang L, Wu S, Zhao L, Lu X, Pierce EM, Gu B. Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2426-2433. [PMID: 30702880 DOI: 10.1021/acs.est.8b06020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In natural freshwater and sediments, mercuric mercury (Hg(II)) is largely associated with particulate minerals and organics, but it remains unclear under what conditions particulates may become a sink or a source for Hg(II) and whether the particulate-bound Hg(II) is bioavailable for microbial uptake and methylation. In this study, we investigated Hg(II) sorption-desorption characteristics on three organo-coated hematite particulates and a Hg-contaminated natural sediment and evaluated the potential of particulate-bound Hg(II) for microbial methylation. Mercury rapidly sorbed onto particulates, especially the cysteine-coated hematite and sediment, with little desorption observed (0.1-4%). However, the presence of Hg-binding ligands, such as low-molecular-weight thiols and humic acids, resulted in up to 60% of Hg(II) desorption from the Hg-laden hematite particulates but <6% from the sediment. Importantly, the particulate-bound Hg(II) was bioavailable for uptake and methylation by a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under anaerobic incubations, and the methylation rate was 4-10 times higher than the desorption rate of Hg(II). These observations suggest direct contacts and interactions between bacterial cells and the particulate-bound Hg(II), resulting in rapid exchange or uptake of Hg(II) by the bacteria. The results highlight the importance of Hg(II) partitioning at particulate-water interfaces and the role of particulates as a significant source of Hg(II) for methylation in the environment.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Shan Wu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- School of Resource, Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Linduo Zhao
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Eric M Pierce
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
27
|
Kim H, Lee K, Lim DI, Nam SI, Han SH, Kim J, Lee E, Han IS, Jin YK, Zhang Y. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:801-810. [PMID: 30448670 DOI: 10.1016/j.scitotenv.2018.11.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Over the past century, the addition of anthropogenic mercury (HgANTH) to vast areas of North Pacific marginal seas adjacent to the northeast Asian continent has tripled. Analysis of sediment cores showed that the rate of HgANTH addition (HgANTH flux) was greatest in the East China and Yellow Seas (9.1 μg m-2 yr-1) in the vicinity of China (the source continent), but was small in the Bering and western Arctic Ocean (Chukchi Sea) (0.9 μg m-2 yr-1; the regions furthest from China). Our results show that HgANTH has reached open ocean sedimentary environments over extended areas of the northwestern Pacific Ocean, via the formation of organic-mercury complexes and deposition. The implication of these findings is that the addition of HgANTH (via atmospheric deposition and riverine input) to the ocean environment is responsible for elevated Hg flux into sedimentary environments in the northwest Pacific Ocean.
Collapse
Affiliation(s)
- Haryun Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Dhong-Il Lim
- South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Seung Hee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jihun Kim
- South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eunil Lee
- Ocean Research Division, Korea Hydrographic and Oceanographic Agency, Busan 49111, Republic of Korea
| | - In-Seong Han
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young Keun Jin
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yanxu Zhang
- School of Atmospheric Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Tunsu C, Wickman B. Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum. Nat Commun 2018; 9:4876. [PMID: 30451827 PMCID: PMC6242894 DOI: 10.1038/s41467-018-07300-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022] Open
Abstract
Retrieval of mercury from aqueous streams has significant environmental and societal importance due to its very high toxicity and mobility. We present here a method to retrieve mercury from aqueous feeds via electrochemical alloy formation on thin platinum films. This application is a green and effective alternative to traditional chemical decontamination techniques. Under applied potential, mercury ions in solution form a stable PtHg4 alloy with platinum on the cathode. A 100 nanometres platinum film was fully converted to a 750 nanometres thick layer of PtHg4. The overall removal capacity is very high, > 88 g mercury per cm3. The electrodes can easily be regenerated after use. Efficient and selective decontamination is possible in a wide pH range, allowing processing of industrial, municipal, and natural waters. The method is suited for both high and low concentrations of mercury and can reduce mercury levels far below the limits allowed in drinking water.
Collapse
Affiliation(s)
- Cristian Tunsu
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Björn Wickman
- Department of Physics, Chemical Physics, Chalmers University of Technology, 41296, Göteborg, Sweden.
| |
Collapse
|
29
|
Outridge PM, Mason RP, Wang F, Guerrero S, Heimbürger-Boavida LE. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11466-11477. [PMID: 30226054 DOI: 10.1021/acs.est.8b01246] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In support of international efforts to reduce mercury (Hg) exposure in humans and wildlife, this paper reviews the literature concerning global Hg emissions, cycling and fate, and presents revised global and oceanic Hg budgets for the 2018 United Nations Global Mercury Assessment. We assessed two competing scenarios about the impacts of 16th - late 19th century New World silver (Ag) mining, which may be the largest human source of atmospheric Hg in history. Consideration of Ag ore geochemistry, historical documents on Hg use, and comparison of the scenarios against atmospheric Hg patterns in environmental archives, strongly support a "low mining emission" scenario. Building upon this scenario and other published work, the revised global budget estimates human activities including recycled legacy emissions have increased current atmospheric Hg concentrations by about 450% above natural levels (prevailing before 1450 AD). Current anthropogenic emissions to air are 2.5 ± 0.5 kt/y. The increase in atmospheric Hg concentrations has driven a ∼ 300% average increase in deposition, and a 230% increase in surface marine waters. Deeper marine waters show increases of only 12-25%. The overall increase in Hg in surface organic soils (∼15%) is small due to the large mass of natural Hg already present from rock weathering, but this figure varies regionally. Specific research recommendations are made to reduce uncertainties, particularly through improved understanding of fundamental processes of the Hg cycle, and continued improvements in emissions inventories from large natural and anthropogenic sources.
Collapse
Affiliation(s)
- P M Outridge
- Geological Survey of Canada , Natural Resources Canada , 601 Booth St. , Ottawa , Ontario K1A 0E8 , Canada
- Center for Earth Observation Science and Department of Environment and Geography , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - R P Mason
- Department of Marine Sciences , University of Connecticut , 1080 Shennecossett Road , Groton , Connecticut 06340 , United States
| | - F Wang
- Center for Earth Observation Science and Department of Environment and Geography , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - S Guerrero
- Universidad Metropolitana, Autopista Caracas Guarenas , Caracas 1073 , Venezuela
| | - L E Heimbürger-Boavida
- Aix Marseille Université , CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 , Marseille , France
| |
Collapse
|
30
|
The Role of Climate: 71 ka of Atmospheric Mercury Deposition in the Southern Hemisphere Recorded by Rano Aroi Mire, Easter Island (Chile). GEOSCIENCES 2018. [DOI: 10.3390/geosciences8100374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study of mercury accumulation in peat cores provides an excellent opportunity to improve the knowledge on mercury cycling and depositional processes at remote locations far from pollution sources. We analyzed mercury concentrations in 150 peat samples from two cores from Rano Aroi (Easter Island, 27° S) and in selected vegetation samples of present-day flora of the island, in order to characterize the mercury cycling for the last ~71 ka BP. The mercury concentrations showed values ranging between 35 and 200 ng g−1, except for a large maxima (~1000 ng g−1) which occurred at the end of the Last Glacial Maximum (LGM, ~20 ka cal BP) in both peat cores. Low temperatures during the LGM would accelerate the atmospheric oxidation of Hg(0) to divalent mercury that, coupled with higher rainfall during this period, most likely resulted in a very efficient surface deposition of atmospheric mercury. Two exceptional short-lived Hg peaks occurred during the Holocene at 8.5 (350 ng g−1) and 4.7 (1000 ng g−1) ka cal BP. These values are higher than those recorded in most peat records belonging to the industrial period, highlighting that natural factors played a significant role in Hg accumulation—sometimes even more so than anthropogenic sources. Our results suggest that wet deposition, linked to atmospheric oxidation, was the main process controlling the short-lived Hg events, both in the mire and in the catchment soils.
Collapse
|