1
|
Pali E, Masoli S, Di Domenico D, Sorbo T, Prestori F, D'Angelo E. Coincidence detection between apical and basal dendrites drives STDP in cerebellar Golgi cells. Commun Biol 2025; 8:731. [PMID: 40350534 PMCID: PMC12066733 DOI: 10.1038/s42003-025-08153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Cerebellar Golgi cells (GoCs), segregate parallel fiber (pf), and mossy fiber (mf) inputs on apical and basal dendrites. Computational modeling predicted that this anatomical arrangement, coupled with a specific ionic channel localization, could be instrumental to drive STDP at mf-GoC synapses. Here, we test this hypothesis with GoC patch-clamp recordings in acute mouse cerebellar slices. Repeated mf-pf pairing on the theta-band within a ± 50 ms time window induces anti-symmetric Hebbian-STDP, with spike-timing long-term potentiation or depression (st-LTP or st-LTD) occurring when action potentials (APs) elicited by pf stimulation follow or precede the activation of mf synapses, respectively. Mf-GoC STDP induction requires AP backpropagation from apical to basal dendrites, NMDA receptor activation at mf-GoC synapses, and intracellular calcium changes. Importantly, STDP is inverted by inhibitory control. Thus, experimental evidence confirms and extends model predictions suggesting that GoC STDP can bind molecular layer to granular layer activity, regulating cerebellar computation and learning.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Masoli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Danila Di Domenico
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Teresa Sorbo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
| | - Egidio D'Angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
2
|
Convertino G, Talbot J, Mazzoni G. Psychophysiological indexes in the detection of deception: A systematic review. Acta Psychol (Amst) 2024; 251:104618. [PMID: 39642425 DOI: 10.1016/j.actpsy.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
Robust evidence on deception detection highlights that humans perform at chance level, especially when a truth-default cognitive threshold is crossed by the deceiver. This systematic review examined whether identification of deceptive stimuli elicits specific physiological responses in the detectors of deception. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, five databases were searched for human studies that evaluate physiological reactivity to deceptive stimuli, along with behavioural responses. Eleven studies (thirteen experiments) were included in a qualitative synthesis. Results show that deception detection is associated with higher activity in the prefrontal cortex and temporal lobe, with a specific involvement of the temporoparietal junction, alongside the cerebellum and cingulate cortex. Specific changes in other physiological activities (i.e., heart rate, skin temperature, motor excitability) also seem to be differently associated with the detection of deception. This review suggests that detecting deception should be considered a complex decision-making process and indicates that specific physiological activity is present across different types of deceptive stimuli. Implications are promising for further developments in security and forensic sciences.
Collapse
Affiliation(s)
- Gianmarco Convertino
- Faculty of Medicine and Psychology, "Sapienza", University of Rome, Rome, Italy.
| | - Jessica Talbot
- Faculty of Medicine and Psychology, "Sapienza", University of Rome, Rome, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, "Sapienza", University of Rome, Rome, Italy; Department of Psychology, University of Hull, Hull, United Kingdom
| |
Collapse
|
3
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
4
|
Gambosi B, Jamal Sheiban F, Biasizzo M, Antonietti A, D'angelo E, Mazzoni A, Pedrocchi A. A Model with Dopamine Depletion in Basal Ganglia and Cerebellum Predicts Changes in Thalamocortical Beta Oscillations. Int J Neural Syst 2024; 34:2450045. [PMID: 38886870 DOI: 10.1142/s012906572450045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Parkinsonism is presented as a motor syndrome characterized by rigidity, tremors, and bradykinesia, with Parkinson's disease (PD) being the predominant cause. The discovery that those motor symptoms result from the death of dopaminergic cells in the substantia nigra led to focus most of parkinsonism research on the basal ganglia (BG). However, recent findings point to an active involvement of the cerebellum in this motor syndrome. Here, we have developed a multiscale computational model of the rodent brain's BG-cerebellar network. Simulations showed that a direct effect of dopamine depletion on the cerebellum must be taken into account to reproduce the alterations of neural activity in parkinsonism, particularly the increased beta oscillations widely reported in PD patients. Moreover, dopamine depletion indirectly impacted spike-time-dependent plasticity at the parallel fiber-Purkinje cell synapses, degrading associative motor learning as observed in parkinsonism. Overall, these results suggest a relevant involvement of cerebellum in parkinsonism associative motor symptoms.
Collapse
Affiliation(s)
- Benedetta Gambosi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Francesco Jamal Sheiban
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Marco Biasizzo
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Information Engineering (DIE), University of Pisa, Pisa, Italy
| | - Alberto Antonietti
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| | - Egidio D'angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alberto Mazzoni
- Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
| |
Collapse
|
5
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
6
|
Caragea VM, Méndez-Couz M, Manahan-Vaughan D. Dopamine receptors of the rodent fastigial nucleus support skilled reaching for goal-directed action. Brain Struct Funct 2024; 229:609-637. [PMID: 37615757 PMCID: PMC10978667 DOI: 10.1007/s00429-023-02685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023]
Abstract
The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Marta Méndez-Couz
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
7
|
Wang Y, Ma L, Chen R, Liu N, Zhang H, Li Y, Wang J, Hu M, Zhao G, Men W, Tan S, Gao J, Qin S, He Y, Dong Q, Tao S. Emotional and behavioral problems change the development of cerebellar gray matter volume, thickness, and surface area from childhood to adolescence: A longitudinal cohort study. CNS Neurosci Ther 2023; 29:3528-3548. [PMID: 37287420 PMCID: PMC10580368 DOI: 10.1111/cns.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Increasing evidence indicates that major neurodevelopmental disorders have potential links to abnormal cerebellar development. However, the developmental trajectories of cerebellar subregions from childhood to adolescence are lacking, and it is not clear how emotional and behavioral problems affect them. We aim to map the developmental trajectories of gray matter volume (GMV), cortical thickness (CT), and surface area (SA) in cerebellar subregions from childhood to adolescence and examine how emotional and behavioral problems change the cerebellar development trajectory in a longitudinal cohort study. METHOD This population-based longitudinal cohort study used data on a representative sample of 695 children. Emotional and behavioral problems were assessed at baseline and at three annual follow-ups with the Strengths and Difficulties Questionnaire (SDQ). RESULTS Using an innovative automated image segmentation technique, we quantified the GMV, CT, and SA of the whole cerebellum and 24 subdivisions (lobules I-VI, VIIB, VIIIA&B, and IX-X plus crus I-II) with 1319 MRI scans from a large longitudinal sample of 695 subjects aged 6-15 years and mapped their developmental trajectories. We also examined sex differences and found that boys showed more linear growth, while girls showed more nonlinear growth. Boys and girls showed nonlinear growth in the cerebellar subregions; however, girls reached the peak earlier than boys. Further analysis found that emotional and behavioral problems modulated cerebellar development. Specifically, emotional symptoms impede the expansion of the SA of the cerebellar cortex, and no gender differences; conduct problems lead to inadequate cerebellar GMV development only in girls, but not boys; hyperactivity/inattention delays the development of cerebellar GMV and SA, with left cerebellar GMV, right VIIIA GMV and SA in boys and left V GMV and SA in girls; peer problems disrupt CT growth and SA expansion, resulting in delayed GMV development, with bilateral IV, right X CT in boys and right Crus I GMV, left V SA in girls; and prosocial behavior problems impede the expansion of the SA and lead to excessive CT growth, with bilateral IV, V, right VI CT, left cerebellum SA in boys and right Crus I GMV in girls. CONCLUSIONS This study maps the developmental trajectories of GMV, CT, and SA in cerebellar subregions from childhood to adolescence. In addition, we provide the first evidence for how emotional and behavioral problems affect the dynamic development of GMV, CT, and SA in the cerebellum, which provides an important basis and guidance for the prevention and intervention of cognitive and emotional behavioral problems in the future.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan HospitalPeking UniversityBeijingChina
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
8
|
Zheng R, Xu FX, Zhou L, Xu J, Shen Y, Hao K, Wang XT, Deng J. Ablation of KIF2C in Purkinje cells impairs metabotropic glutamate receptor trafficking and motor coordination in male mice. J Physiol 2023; 601:3905-3920. [PMID: 37431690 DOI: 10.1113/jp284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.
Collapse
Affiliation(s)
- Rui Zheng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Fang-Xiao Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin-Tai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Monteverdi A, Di Domenico D, D'Angelo E, Mapelli L. Anisotropy and Frequency Dependence of Signal Propagation in the Cerebellar Circuit Revealed by High-Density Multielectrode Array Recordings. Biomedicines 2023; 11:biomedicines11051475. [PMID: 37239146 DOI: 10.3390/biomedicines11051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The cerebellum is one of the most connected structures of the central nervous system and receives inputs over an extended frequency range. Nevertheless, the frequency dependence of cerebellar cortical processing remains elusive. In this work, we characterized cerebellar cortex responsiveness to mossy fibers activation at different frequencies and reconstructed the spread of activity in the sagittal and coronal planes of acute mouse cerebellar slices using a high-throughput high-density multielectrode array (HD-MEA). The enhanced spatiotemporal resolution of HD-MEA revealed the frequency dependence and spatial anisotropy of cerebellar activation. Mossy fiber inputs reached the Purkinje cell layer even at the lowest frequencies, but the efficiency of transmission increased at higher frequencies. These properties, which are likely to descend from the topographic organization of local inhibition, intrinsic electroresponsiveness, and short-term synaptic plasticity, are critical elements that have to be taken into consideration to define the computational properties of the cerebellar cortex and its pathological alterations.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Danila Di Domenico
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Yang X, Cheng B, Yang J, Cheng S, Pan C, Zhao Y, Zhang H, Liu L, Meng P, Zhang J, Zhang Z, Li C, Chen Y, He D, Wen Y, Jia Y, Liu H, Zhang F. Assessing the interaction effects of brain structure longitudinal changes and life environmental factors on depression and anxiety. Hum Brain Mapp 2023; 44:1227-1238. [PMID: 36416531 PMCID: PMC9875931 DOI: 10.1002/hbm.26153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Disrupted brain structures and several life environmental factors have been shown to influence depression and anxiety, but their interactions with anxiety and depression remain elusive. Genome-wide association study datasets of 15 brain structure longitudinal changes (N = 15,640) were obtained from the published study. Genotype and phenotype-related data of depression, anxiety, and life environmental factors (including smoking, alcohol drinking, coffee intake, maternal smoking, physical activity, vitamin D, insomnia, sleep duration, and family satisfaction) were collected from UK Biobank. We calculated the polygenic risk scores (PRS) of 15 brain structure changes and then conducted linear regression analyses to explore the interactions of brain structure changes and life environmental factors on depression and anxiety using 15 brain structure change-related PRS, life environmental factors and interactions of them as instrumental variables, and depression score or anxiety score as outcomes. Sex stratification in all analyses was performed to reveal sex-specific differences in the interactions. We found 14 shared interactions related to both depression and anxiety in total sample, such as alcohol drinking × cerebellum white matter 3 (WM; beta = -.003, p = .018 for depression; beta = -003, p = .008 for anxiety) and maternal smoking × nucleus accumbens 2 (beta = .088, p = .002 for depression; beta = .070, p = .008 for anxiety). We also observed sex-specific differences in the interactions, for instance, alcohol drinking × cerebellum WM 3 was negatively associated with depression and anxiety in males (beta = -.004, p = .020 for depression; beta = -.005, p = .002 for anxiety). Our study results reveal the important interactions between brain structure changes and several life environmental factors on depression and anxiety, which may help to explore the pathogenesis of depression and anxiety.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jian Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Chen F, Wang X, Jang SK, Quach BC, Weissenkampen JD, Khunsriraksakul C, Yang L, Sauteraud R, Albert CM, Allred NDD, Arnett DK, Ashley-Koch AE, Barnes KC, Barr RG, Becker DM, Bielak LF, Bis JC, Blangero J, Boorgula MP, Chasman DI, Chavan S, Chen YDI, Chuang LM, Correa A, Curran JE, David SP, de las Fuentes L, Deka R, Duggirala R, Faul JD, Garrett ME, Gharib SA, Guo X, Hall ME, Hawley NL, He J, Hobbs BD, Hokanson JE, Hsiung CA, Hwang SJ, Hyde TM, Irvin MR, Jaffe AE, Johnson EO, Kaplan R, Kardia SLR, Kaufman JD, Kelly TN, Kleinman JE, Kooperberg C, Lee IT, Levy D, Lutz SM, Manichaikul AW, Martin LW, Marx O, McGarvey ST, Minster RL, Moll M, Moussa KA, Naseri T, North KE, Oelsner EC, Peralta JM, Peyser PA, Psaty BM, Rafaels N, Raffield LM, Reupena MS, Rich SS, Rotter JI, Schwartz DA, Shadyab AH, Sheu WHH, Sims M, Smith JA, Sun X, Taylor KD, Telen MJ, Watson H, Weeks DE, Weir DR, Yanek LR, Young KA, Young KL, Zhao W, Hancock DB, Jiang B, Vrieze S, Liu DJ. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat Genet 2023; 55:291-300. [PMID: 36702996 PMCID: PMC9925385 DOI: 10.1038/s41588-022-01282-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.
Collapse
Affiliation(s)
- Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - J Dylan Weissenkampen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Penn State College of Medicine, Hershey, PA, USA
| | | | - Lina Yang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Renan Sauteraud
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christine M Albert
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
| | - Kathleen C Barnes
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Meher Preethi Boorgula
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sameer Chavan
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Yii-Der I Chen
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanne E Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Sean P David
- University of Chicago, Chicago, IL, USA
- NorthShore University Health System, Evanston, IL, USA
| | - Lisa de las Fuentes
- Department of Medicine, Division of Biostatistics and Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ravindranath Duggirala
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Sina A Gharib
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nicola L Hawley
- Department of Epidemiology (Chronic Disease), School of Public Health, Yale University, New Haven, CT, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Brian D Hobbs
- Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Jen Hwang
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Human Genetics and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, The Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington Seattle, Seattle, WA, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - I-Te Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Daniel Levy
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care, Boston, MA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lisa W Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Olivia Marx
- Department of Biomedical Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen T McGarvey
- Department of Epidemiology, International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Ryan L Minster
- Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karine A Moussa
- Penn State Huck Institutes of Life Sciences, Penn State College of Medicine, University Park, PA, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Juan M Peralta
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | | | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Kent D Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Harold Watson
- Faculty of Medical Sciences, University of the West Indies, Cave Hill Campus, Barbados
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
12
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
13
|
Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM, D’Angelo E. Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases. Front Aging Neurosci 2022; 14:868342. [PMID: 35992607 PMCID: PMC9391060 DOI: 10.3389/fnagi.2022.868342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Brain pathologies are characterized by microscopic changes in neurons and synapses that reverberate into large scale networks altering brain dynamics and functional states. An important yet unresolved issue concerns the impact of patients' excitation/inhibition profiles on neurodegenerative diseases including Alzheimer's Disease, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. In this work, we used The Virtual Brain (TVB) simulation platform to simulate brain dynamics in healthy and neurodegenerative conditions and to extract information about the excitatory/inhibitory balance in single subjects. The brain structural and functional connectomes were extracted from 3T-MRI (Magnetic Resonance Imaging) scans and TVB nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of the excitatory/inhibitory balance. Simulations were performed including both cerebral and cerebellar nodes and their structural connections to explore cerebellar impact on brain dynamics generation. The potential for clinical translation of TVB derived biophysical parameters was assessed by exploring their association with patients' cognitive performance and testing their discriminative power between clinical conditions. Our results showed that TVB biophysical parameters differed between clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer's Disease and stronger N-methyl-D-aspartate (NMDA) receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These physio-pathological parameters allowed us to perform an advanced analysis of patients' conditions. In backward regressions, TVB-derived parameters significantly contributed to explain the variation of neuropsychological scores and, in discriminant analysis, the combination of TVB parameters and neuropsychological scores significantly improved the discriminative power between clinical conditions. Moreover, cluster analysis provided a unique description of the excitatory/inhibitory balance in individual patients. Importantly, the integration of cerebro-cerebellar loops in simulations improved TVB predictive power, i.e., the correlation between experimental and simulated functional connectivity in all pathological conditions supporting the cerebellar role in brain function disrupted by neurodegeneration. Overall, TVB simulations reveal differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Vitali
- Department of Radiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Radiomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bernini
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, INSERM, INS, Aix-Marseille University, Marseille, France
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Wang W, Zhang X, Bai X, Zhang Y, Yuan Z, Tang H, Li Z, Hu Z, Zhang Y, Yu X, Sui B, Wang Y. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray with episodic and chronic migraine: a proton magnetic resonance spectroscopy study. J Headache Pain 2022; 23:83. [PMID: 35840907 PMCID: PMC9287958 DOI: 10.1186/s10194-022-01452-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background The pathogenesis of migraine chronification remains unclear. Functional and structural magnetic resonance imaging studies have shown impaired functional and structural alterations in the brains of patients with chronic migraine. The cerebellum and periaqueductal gray (PAG) play pivotal roles in the neural circuits of pain conduction and analgesia in migraine. However, few neurotransmitter metabolism studies of these migraine-associated regions have been performed. To explore the pathogenesis of migraine chronification, we measured gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels in the dentate nucleus (DN) and PAG of patients with episodic and chronic migraine and healthy subjects. Methods Using the MEGA-PRESS sequence and a 3-Tesla magnetic resonance scanner (Signa Premier; GE Healthcare, Chicago, IL, USA), we obtained DN and PAG metabolite concentrations from patients with episodic migraine (n = 25), those with chronic migraine (n = 24), and age-matched and sex-matched healthy subjects (n = 16). Patients with chronic migraine were further divided into those with (n = 12) and without (n = 12) medication overuse headache. All scans were performed at the Beijing Tiantan Hospital, Capital Medical University. Results We found that patients with chronic migraine had significantly lower levels of GABA/water (p = 0.011) and GABA/creatine (Cr) (p = 0.026) in the DN and higher levels of Glx/water (p = 0.049) in the PAG than healthy controls. In all patients with migraine, higher GABA levels in the PAG were significantly associated with poorer sleep quality (GABA/water: r = 0.515, p = 0.017, n = 21; GABA/Cr: r = 0.522, p = 0.015, n = 21). Additionally, a lower Glx/Cr ratio in the DN may be associated with more severe migraine disability (r = -0.425, p = 0.055, n = 20), and lower GABA/water (r = -0.424, p = 0.062, n = 20) and Glx/Water (r = -0.452, p = 0.045, n = 20) may be associated with poorer sleep quality. Conclusions Neurochemical levels in the DN and PAG may provide evidence of the pathological mechanisms of migraine chronification. Correlations between migraine characteristics and neurochemical levels revealed the pathological mechanisms of the relevant characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01452-6.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan Province, 450000, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhangxuan Hu
- GE Healthcare, No.1 Tongji Nan Road, Beijing Economic Technological Development Area, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
15
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
16
|
Cerebellum and Emotion Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:53-73. [DOI: 10.1007/978-3-030-99550-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Zhang YJ, Pu CC, Wang YM, Zhang RT, Cai XL, Zhou SZ, Ma YT, Wang Y, Cheung EFC, Lui SSY, Yu X, Chan RCK. Social brain network correlates with real-life social network in individuals with schizophrenia and social anhedonia. Schizophr Res 2021; 232:77-84. [PMID: 34044349 DOI: 10.1016/j.schres.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Social behaviour requires the brain to efficiently integrate multiple social processes, but it is not clear what neural substrates underlie general social behaviour. While psychosis patients and individuals with subclinical symptoms are characterized by social dysfunction, the neural mechanisms underlying social dysfunctions in schizophrenia spectrum disorders remains unclear. We first constructed a general social brain network (SBN) using resting-state functional connectivity (FC) with regions of interest based on the automatic meta-analysis results from NeuroSynth. We then examined the general SBN and its relationship with social network (SN) characteristics in 30 individuals with schizophrenia (SCZ) and 33 individuals with social anhedonia (SA). We found that patients with SCZ exhibited deficits in their SN, while SA individuals did not. SCZ patients showed decreased segregation and functional connectivity in their SBN, while SA individuals showed a reversed pattern with increased segregation and functional connectivity of their SBN. Sparse canonical correlation analysis showed that both SCZ patients and SA individuals exhibited reduced correlation between SBN and SN characteristics compared with their corresponding healthy control groups. These preliminary findings suggest that both SCZ and SA participants exhibit abnormality in segregation and functional connectivity within the general SBN and reduced correlation with SN characteristics. These findings could guide the development of non-pharmacological interventions for social dysfunction in SCZ spectrum disorders.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish Center for Education and Research, Beijing, China
| | - Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish Center for Education and Research, Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan-Tao Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China; Sino-Danish Center for Education and Research, Beijing, China.
| |
Collapse
|
19
|
Calcium Channel-Dependent Induction of Long-Term Synaptic Plasticity at Excitatory Golgi Cell Synapses of Cerebellum. J Neurosci 2021; 41:3307-3319. [PMID: 33500277 DOI: 10.1523/jneurosci.3013-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.
Collapse
|
20
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
21
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
22
|
Gatti D, Van Vugt F, Vecchi T. A causal role for the cerebellum in semantic integration: a transcranial magnetic stimulation study. Sci Rep 2020; 10:18139. [PMID: 33097802 PMCID: PMC7584601 DOI: 10.1038/s41598-020-75287-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence suggests that the cerebellum, a structure previously linked to motor function, is also involved in a wide range of non-motor processes. It has been proposed that the cerebellum performs the same computational processes in both motor and non-motor domains. Within motor functions, the cerebellum is involved in the integration of signals from multiple systems. Here we hypothesized that cerebellum may be involved in integration within semantic memory as well. Specifically, understanding a noun-adjective combination (e.g. red apple) requires combining the meaning of the adjective (red) with the meaning of the noun (apple). In two experiments, participants were asked to judge whether noun-adjective word-pairs were semantically related (e.g., red apple) or not (e.g., lucky milk) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site (vertex in Experiment 1 and visual cortex in Experiment 2). Cerebellar TMS caused a decrease in participants’ accuracy for related word-pairs while accuracy for unrelated stimuli was not affected. A third experiment using a control task where subjects compared pairs of random letters showed no effect of TMS. Taken together these results indicate that the right cerebellum is involved specifically in the processing of semantically related stimuli. These results are consistent with theories that proposed the existence of a unified cerebellar function within motor and non-motor domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive cognition.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy
| | - Floris Van Vugt
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy.,Psychology Department, University of Montreal, Montreal, H3A1G1, Canada
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100, Pavia, Italy. .,IRCCS Mondino Foundation, 27100, Pavia, Italy.
| |
Collapse
|
23
|
Palesi F, Lorenzi RM, Casellato C, Ritter P, Jirsa V, Gandini Wheeler-Kingshott CA, D’Angelo E. The Importance of Cerebellar Connectivity on Simulated Brain Dynamics. Front Cell Neurosci 2020; 14:240. [PMID: 32848628 PMCID: PMC7411185 DOI: 10.3389/fncel.2020.00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 11/14/2022] Open
Abstract
The brain shows a complex multiscale organization that prevents a direct understanding of how structure, function and dynamics are correlated. To date, advances in neural modeling offer a unique opportunity for simulating global brain dynamics by embedding empirical data on different scales in a mathematical framework. The Virtual Brain (TVB) is an advanced data-driven model allowing to simulate brain dynamics starting from individual subjects' structural and functional connectivity obtained, for example, from magnetic resonance imaging (MRI). The use of TVB has been limited so far to cerebral connectivity but here, for the first time, we have introduced cerebellar nodes and interconnecting tracts to demonstrate the impact of cerebro-cerebellar loops on brain dynamics. Indeed, the matching between the empirical and simulated functional connectome was significantly improved when including the cerebro-cerebellar loops. This positive result should be considered as a first step, since issues remain open about the best strategy to reconstruct effective structural connectivity and the nature of the neural mass or mean-field models generating local activity in the nodes. For example, signal processing is known to differ remarkably between cortical and cerebellar microcircuits. Tackling these challenges is expected to further improve the predictive power of functional brain activity simulations, using TVB or other similar tools, in explaining not just global brain dynamics but also the role of cerebellum in determining brain states in physiological conditions and in the numerous pathologies affecting the cerebro-cerebellar loops.
Collapse
Affiliation(s)
- Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes – Inserm UMR1106, Aix-Marseille Université, Marseille, France
| | - Claudia A.M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
24
|
The Optogenetic Revolution in Cerebellar Investigations. Int J Mol Sci 2020; 21:ijms21072494. [PMID: 32260234 PMCID: PMC7212757 DOI: 10.3390/ijms21072494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is most renowned for its role in sensorimotor control and coordination, but a growing number of anatomical and physiological studies are demonstrating its deep involvement in cognitive and emotional functions. Recently, the development and refinement of optogenetic techniques boosted research in the cerebellar field and, impressively, revolutionized the methodological approach and endowed the investigations with entirely new capabilities. This translated into a significant improvement in the data acquired for sensorimotor tests, allowing one to correlate single-cell activity with motor behavior to the extent of determining the role of single neuronal types and single connection pathways in controlling precise aspects of movement kinematics. These levels of specificity in correlating neuronal activity to behavior could not be achieved in the past, when electrical and pharmacological stimulations were the only available experimental tools. The application of optogenetics to the investigation of the cerebellar role in higher-order and cognitive functions, which involves a high degree of connectivity with multiple brain areas, has been even more significant. It is possible that, in this field, optogenetics has changed the game, and the number of investigations using optogenetics to study the cerebellar role in non-sensorimotor functions in awake animals is growing. The main issues addressed by these studies are the cerebellar role in epilepsy (through connections to the hippocampus and the temporal lobe), schizophrenia and cognition, working memory for decision making, and social behavior. It is also worth noting that optogenetics opened a new perspective for cerebellar neurostimulation in patients (e.g., for epilepsy treatment and stroke rehabilitation), promising unprecedented specificity in the targeted pathways that could be either activated or inhibited.
Collapse
|
25
|
Prestori F, Moccia F, D’Angelo E. Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). Int J Mol Sci 2019; 21:ijms21010216. [PMID: 31892274 PMCID: PMC6981692 DOI: 10.3390/ijms21010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
26
|
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Front Comput Neurosci 2019; 13:68. [PMID: 31632258 PMCID: PMC6779816 DOI: 10.3389/fncom.2019.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Sensorimotor signals are integrated and processed by the cerebellar circuit to predict accurate control of actions. In order to investigate how single neuron dynamics and geometrical modular connectivity affect cerebellar processing, we have built an olivocerebellar Spiking Neural Network (SNN) based on a novel simplification algorithm for single point models (Extended Generalized Leaky Integrate and Fire, EGLIF) capturing essential non-linear neuronal dynamics (e.g., pacemaking, bursting, adaptation, oscillation and resonance). EGLIF models specifically tuned for each neuron type were embedded into an olivocerebellar scaffold reproducing realistic spatial organization and physiological convergence and divergence ratios of connections. In order to emulate the circuit involved in an eye blink response to two associated stimuli, we modeled two adjacent olivocerebellar microcomplexes with a common mossy fiber input but different climbing fiber inputs (either on or off). EGLIF-SNN model simulations revealed the emergence of fundamental response properties in Purkinje cells (burst-pause) and deep nuclei cells (pause-burst) similar to those reported in vivo. The expression of these properties depended on the specific activation of climbing fibers in the microcomplexes and did not emerge with scaffold models using simplified point neurons. This result supports the importance of embedding SNNs with realistic neuronal dynamics and appropriate connectivity and anticipates the scale-up of EGLIF-SNN and the embedding of plasticity rules required to investigate cerebellar functioning at multiple scales.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandra Pedrocchi
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|