1
|
Chang TM, Fang WY, Hsu HP, Chu PY, Jiang SS, Huang KW, Hung WC, Lin HY, Tsai HJ. PCK2 promotes invasion and epithelial-to-mesenchymal transition in triple-negative breast cancer by promoting TGF-β/SMAD3 signaling through inhibiting TRIM67-mediated SMAD3 ubiquitination. Cancer Biol Ther 2025; 26:2478670. [PMID: 40081967 PMCID: PMC11913380 DOI: 10.1080/15384047.2025.2478670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
PCK2, which encodes mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), is upregulated in various cancers. We demonstrated high expression of PEPCK-M in approximately half of triple-negative breast cancers (TNBCs) previously. TNBC is associated with an aggressive phenotype and a high metastasis rate. In this study, we investigated the role of PCK2 in TNBC. PCK2 knockdown suppressed proliferation and mTOR signaling in TNBC cells. In addition, cell invasion/migration ability and the expression of epithelial-to-mesenchymal transition (EMT) markers were positively correlated with PCK2 expression in TNBC cells via regulation of transforming growth factor-β (TGF-β)/SMAD3 signaling. SMAD3 was positively regulated by PCK2 in TNBC cells. Knockdown of SMAD3 in PCK2-overexpressing TNBC cells reduced the expression levels of EMT markers, Snail and Slug, and suppressed cell invasion/migration. In addition, PCK2 knockdown attenuated the stimulatory effect of TGF-β on SMAD3 phosphorylation in TNBC cells. PEPCK-M promotes the protein and mRNA expression of SMAD3 via competitive binding to tripartite motif-containing 67 (TRIM67), an E3 ubiquitin ligase, to reduce SMAD3 ubiquitination, which leads to promoting nuclear translocation of SMAD3 and autoregulation of SMAD3 transcription. Moreover, high PCK2 mRNA expression was significantly associated with poor survival in TNBC patients. In conclusion, our study revealed for the first time that PCK2 activates TGF-β/SMAD3 signaling by regulating the expression and phosphorylation of SMAD3 by inhibiting TRIM67-mediated SMAD3 ubiquitination and promoting the stimulatory effect of TGF-β to promote TNBC invasion. The regulatory effect of PCK2 on mTOR and TGF-β/SMAD3 signaling suggests that PCK2 is a potential therapeutic target for suppressing TNBC progression.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Yu Fang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Yi Chu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Kuo-Wei Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
3
|
Fang X, Ruan Y, Yin X, Wang J, Chen C, Hu Y, Wang H, Pi J, Xu Y. The role of SLC7A11 in arsenite-induced oncogenic phenotypes of human bronchial epithelial cells: A metabolic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126381. [PMID: 40334737 DOI: 10.1016/j.envpol.2025.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Chronic arsenic exposure enhances the probability of lung cancer with the underlying mechanisms remain unknown. Glutamine-driven synthetic metabolism, including nucleotide synthesis, amino acid production, TCA cycle replenishment, glutathione synthesis, and lipid biosynthesis, is crucial for both cancer initiation and progression. This study demonstrated that chronic exposure to 0.1 μM arsenite for as long as 36 weeks induced malignant transformation in human bronchial epithelial cells (BEAS-2B). Metabolomics were used to systematically disclose metabolic characteristics in arsenic-transformed malignant (As-TM) cells. Significantly changed metabolites were enriched in alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, glutathione metabolism, butanoate metabolism, TCA cycle, and arginine and proline metabolism. It is worth noting that glutamate located at the intersection of the enriched metabolism pathways. Glutamine deprivation attenuated the oncogenic phenotypes, including capacity of wound healing and proliferation, in As-TM cells. And the expression levels of mRNA and proteins associated with glutamine metabolism-related transporters and enzymes, including SLC7A11, GCLM, and GCLC, were significantly increased, with SLC7A11 exhibiting the most substantial increase. Moreover, arsenite transformation progressively elevated SLC7A11 mRNA and protein levels over time. The SLC7A11 inhibitor sulfasalazine remarkably attenuated arsenite-induced oncogenic phenotypes. Collectively, our data suggest that chronic arsenite exposure enhances glutamine metabolism through upregulation of SLC7A11, thereby promoting cell proliferation and malignant transformation. These results provide new insights for preventive and therapeutic strategies for lung cancer linked to arsenic exposure.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yihui Ruan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xianhang Yin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Junyi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Chen Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
4
|
Shen K, Hu C, Zhang Y, Cheng X, Xu Z, Pan S. Advances and applications of multiomics technologies in precision diagnosis and treatment for gastric cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189336. [PMID: 40311712 DOI: 10.1016/j.bbcan.2025.189336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Gastric cancer (GC), one of the most prevalent malignancies worldwide, is distinguished by extensive genetic and phenotypic heterogeneity, posing persistent challenges to conventional diagnostic and therapeutic strategies. The significant global burden of GC highlights an urgent need to unravel its complex underlying mechanisms, discover novel diagnostic and prognostic biomarkers, and develop more effective therapeutic interventions. In this context, this review comprehensively examines the transformative roles of cutting-edge technologies, including radiomics, pathomics, genomics, transcriptomics, epigenomics, proteomics, and metabolomics, in advancing precision diagnosis and treatment for GC. Multiomics data analysis not only deepens our understanding of GC pathogenesis and molecular subtypes but also identifies promising biomarkers, facilitating the creation of tailored therapeutic approaches. Additionally, integrating multiomics approaches holds immense potential for elucidating drug resistance mechanisms, predicting patient outcomes, and uncovering novel therapeutic targets, thereby laying a robust foundation for precision medicine in the comprehensive management of GC.
Collapse
Affiliation(s)
- Ke Shen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Siwei Pan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
5
|
Lu L, Tao R. Prognostic implications of glucose metabolism pathways in colon adenocarcinoma: a comprehensive outlook on the molecular landscape and immunotherapy. Biochem Biophys Res Commun 2025; 768:151961. [PMID: 40345006 DOI: 10.1016/j.bbrc.2025.151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common and aggressive cancer characterized by significant metabolic alterations, particularly in glucose metabolism. Identifying key genes and pathways involved in glucose metabolism could provide valuable prognostic biomarkers and therapeutic targets. METHODS Clinical and transcriptomic data for patients with COAD were obtained from TCGA and validated using external datasets (GSE17536 and GSE39582). Seventeen glucose metabolism-related pathways were selected from the MSigDB and analysed using ssGSEA. WGCNA was used to identify key gene modules. Prognostic genes were selected via univariate Cox regression, Lasso-Cox regression, and multivariate Cox regression. Model validation was conducted using independent datasets. Immunotherapy prediction and immune infiltration analyses were also performed. A-NEK9 knockdown cell line was established using SW1116 and SW480 cell lines. The effect of NEK9 on COAD was evaluated in vivo and in vitro. The effects of NEK9 on glucose uptake and lactate production were also assessed. RESULTS A prognostic model based on five glucose metabolism-related genes (NEK9, HS2ST1, AC016394.3, H2BC21, and MIR23A) was developed. The model demonstrated strong predictive value, with high-risk patients showing poorer survival outcomes in both the TCGA and external validation cohorts. Additionally, lower risk scores were associated with better responses to immunotherapy, as indicated by TIDE and SubMap analyses. These findings were further validated through ROC analysis, which revealed robust predictive performance for immunotherapy response across multiple cohorts. NEK9 promoted the proliferation and tumour angiogenesis of SW1116 and SW480 cells, inhibited apoptosis, and enhanced glucose uptake and lactate production in tumour cells. NEK9 knockdown significantly inhibited the tumorigenic ability of COAD in mice. CONCLUSIONS This study highlights the role of glucose metabolism in COAD and presents a novel prognostic model based on glucose metabolism-related genes. The model has potential clinical applications for predicting survival and guiding immunotherapy decisions in patients with COAD.
Collapse
Affiliation(s)
- Ling Lu
- Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Center for Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ran Tao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
6
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Tang M, Song K, Xie D, Yuan X, Wang Y, Li Z, Lu X, Guo L, Zhu X, Xiong L, Zhou W, Lin J. PSAT1 promotes the progression of colorectal cancer by regulating Hippo-YAP/TAZ-ID1 axis via AMOT. Mol Cell Biochem 2025; 480:3647-3668. [PMID: 39739271 PMCID: PMC12095340 DOI: 10.1007/s11010-024-05194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
Colorectal cancer (CRC) ranks third for morbidity and second for mortality among all digestive malignant tumors worldwide, but its pathogenesis remains not entirely clear. Bioinformatic analyses were performed to find out important biomarkers for CRC. For validation, reverse transcription-quantitative PCR, western blotting, and immunohistochemistry were performed. Then, cell transfection, gain- and loss-of-function assays, immunofluorescence, cell line RNA-sequencing and analyses, and in vivo tumorigenesis assay were also performed to further explore the mechanism. We prioritized phosphoserine aminotransferase 1 (PSAT1) as an important biomarker in CRC. PSAT1 expression was gradually up-regulated as the CRC disease progresses and may relate to poor prognosis. PSAT1 promoted the malignant behaviors of CRC cells. Although PSAT1 is an enzyme essential to serine biosynthesis, an exogenous supplement of serine did not completely rescue the malignant behaviors in PSAT1-knockdown CRC cells. Interestingly, PSAT1 inhibited the Hippo tumor-suppressor pathway by promoting the nucleus-localization of YAP/TAZ and increasing the expression of ID1 in CRC cells. Furthermore, AMOT, a vascular-related molecule that molecularly interacts with YAP/TAZ, was up-regulated upon PSAT1 knockdown in CRC cells. Knocking down AMOT partially rescued the inhibition of proliferation and the reduced nuclear localization of YAP/TAZ caused by PSAT1 knockdown in CRC cells. Moreover, PSAT1 was closely related to vascular-related pathways, in which AMOT might act as a mediator. Finally, PSAT1 promoted CRC proliferation by negatively regulating AMOT in vivo. PSAT1 could enhance the progression of colorectal cancer by regulating Hippo-YAP/TAZ-ID1 axis via AMOT, which is independent of the metabolic function of PSAT1.
Collapse
Affiliation(s)
- Minshan Tang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Danning Xie
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xinyu Yuan
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Yaxuan Wang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Zhiyang Li
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Liang Guo
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xiaotong Zhu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Le Xiong
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Wenqian Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
8
|
Kim SM, Park K, Yun HJ, Kim JM, Choi KH, Park KC. Identification of new small molecules for selective inhibition of SERCA 1 in patient-derived metastatic papillary thyroid cancer. Br J Pharmacol 2025; 182:2392-2408. [PMID: 39924143 DOI: 10.1111/bph.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Papillary thyroid cancer (PTC) is a general thyroid cancer subtype; however, PTC is associated with metastasis or recurrence via anti-cancer drug resistance, rendering it practically incurable. Therefore, effective and reliable clinical approaches are urgently required. EXPERIMENTAL APPROACH We demonstrated the coordinated up-regulation of sarco/endoplasmic reticulum (ER) calcium ATPase 1 (SERCA1) in metastatic PTC under treatment with sorafenib or lenvatinib. We screened novel drug candidates in a patient-derived lymph node metastatic PTC and compared outcomes with those in non-metastatic and main mass PTC in an in vitro and in vivo model to propose a new clinical strategy. KEY RESULTS In the current study using patient-derived metastatic PTC cells, SERCA1 was considerably increased under sorafenib- or lenvatinib-treated conditions. SERCA is a critical component in cytosolic free calcium regulation and is regulated by calcium/calmodulin-dependent protein kinase 2 alpha (CaMK2α) via NFκB. However, cardiac dysfunction was inevitable in vivo because of non-specific inhibition of SERCA isoforms by conventional SERCA inhibitors. This study designed a therapeutic approach with decreased cardiac dysfunction via SERCA1 isoform-specific inhibition by novel small molecules, CKP1 and CKP2, under severe ER stress conditions in patient-derived metastatic PTC. These novel SERCA1-specific inhibitors remarkably increased tumour shrinkage in the patient-derived metastatic PTC xenograft tumour model without cardiac dysfunction when used in combination with sorafenib or lenvatinib. CONCLUSION AND IMPLICATIONS These outcomes suggest the potential efficacy of the novel combination strategy that uses targeted therapy to treat malignant cancer cells, such as sorafenib- or lenvatinib-resistant cancer cells.
Collapse
Affiliation(s)
- Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Min Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Wan F, Qian C, Liu X, Zhong Y, Peng W, Zhang L, Zhan X, Huang Y, Zhang C, Wang J, Si Y, Liu Y. Sculponeatin A induces mitochondrial dysfunction in non-small cell lung cancer through WWP2-mediated degradation of mitochondrial STAT3. Br J Pharmacol 2025; 182:2662-2681. [PMID: 39993792 DOI: 10.1111/bph.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND PURPOSE The phosphorylation of signal transducer and activator of transcription 3 (STAT3) monomer at S727 promotes its mitochondrial localisation and regulates mitochondrial function, thus exerting a protective effect on tumour cells. However, no inhibitor drugs targeting mitochondrial STAT3 (mitoSTAT3) or S727-STAT3 phosphorylation have been identified. Here, we report a novel diterpenoid extracted from Isodon sculponeatus, sculponeatin A (sptA), induces mitochondrial dysfunction in non-small cell lung cancer (NSCLC) by targeting mitoSTAT3 degradation. EXPERIMENTAL APPROACH xCELLigence real-time cell analysis assay and high-content analysis were performed to measure cytotoxicity. Mitochondrial function was assessed by transmission electron microscopy, mitochondrial permeability transition pore opening and Seahorse cellular flux assays. The effects of sptA on the upstream signalling pathway of mitochondrial dysfunction were measured by Western blot, gene alterations and other approaches. Immunofluorescence and live cell imaging were performed to visualise the expression and position of mitoSTAT3. Nude mice and zebrafish were modelled with subcutaneous xenografts. Pharmacokinetics of sptA were examined in rats. Drug toxicity was evaluated in zebrafish. KEY RESULTS sptA inhibited mitochondrial respiration in NSCLC cells. sptA induced mitochondrial dysfunction by promoting the degradation of mitoSTAT3. sptA promoted WW domain containing E3 ubiquitin protein ligase 2 (WWP2)-mediated ubiquitination and degradation of mitoSTAT3 through direct binding. sptA inhibited tumour growth in vivo. Evaluation of drug toxicity in zebrafish showed that overdose of sptA may cause heart damage. CONCLUSIONS AND IMPLICATIONS These findings suggest that pharmacological targeting the degradation of mitoSTAT3 by sptA may provide therapeutic benefits against NSCLC.
Collapse
Affiliation(s)
- Fang Wan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Chen Qian
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yifan Zhong
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yongtong Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengyu Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
10
|
Wang B, Shi R, Du W, Guo J, He N, Zhu Y, Yu H, Lu H, Zhong L, Li X, Zhou W, Yang F, Feng X. Prodigiosin inhibits proliferation and induces apoptosis through influencing amino acid metabolism in multiple myeloma. Bioorg Chem 2025; 159:108349. [PMID: 40086187 DOI: 10.1016/j.bioorg.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
The recurrence of drug-resistant and expensive treatment drugs are major causes of the low survival rate of multiple myeloma (MM) patients. Exploring a safe, effective, low-cost and novel drug treatment for MM is a promising strategy to relieve the burden of MM patients. In this study, we found that prodigiosin could inhibit MM cell proliferation and induce MM cell apoptosis, however, it had a lesser cytotoxic effect on normal B cells within the IC50 range of MM cells. In addition, prodigiosin could inhibit the growth of xenograft MM cells in mice. Transcriptomics and targeted amino acid metabolomics confirmed that prodigiosin could regulate amino acid metabolism, and decrease in amino acid utilization by down-regulated aminoacyl tRNA synthetases expression, resulting in slower growth of MM. In conclusion, prodigiosin exerts anticancer effects on MM cells by interfering with the use of amino acids, indicating its potential novel therapeutic application in MM.
Collapse
Affiliation(s)
- Bingjie Wang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Rui Shi
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Wanqing Du
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Nihan He
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yinghong Zhu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Han Yu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Hongyu Lu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Liyuan Zhong
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Xingli Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- School of Public Health, University of South China, Hengyang, Hunan 421001, China; Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410013, China
| | - Xiangling Feng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Furong Laboratory, Xiangya School of Public Health, Central South University, 172# Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Wu B, Yao C, Wang H, Dai H, Tian B, Li D, Xu J, Cheng H, Xu F, Sun D, Wang C. Ellagic acid-protein nano-complex inhibits tumor growth by reducing the intratumor bacteria and inhibiting histamine production. Biomaterials 2025; 317:123078. [PMID: 39753083 DOI: 10.1016/j.biomaterials.2024.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME). Among them, the metabolite histamine that contributes to tumor progression, is significantly reduced in the TME after eP-EA treatment. We show that one possible mechanism by which these microbes promote tumor growth is through the production of histamine. This work suggests that the ellagic acid (EA)-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria and reduce their production of histamine, delineating the potential relationship between intratumor bacteria and their impact on tumors. Our work suggests that the EA-protein nano complex can enhance cancer immunotherapy by targeting the intratumoral bacteria, suggesting the role of bacterial metabolites in contributing to tumor progression.
Collapse
Affiliation(s)
- Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Tian
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Dongxiao Li
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
12
|
Zhang S, Li Z, Li B, Li Z, Peng H, Shen L, Zhu L, Mo T, Peng J, Zhuo L, Wang Z, Jiang W. Novel Carbamate-Based o-aminobenzamide Derivatives as Potent Antigastric Carcinoma Agents via Disrupting NAD + Salvage Synthesis. J Med Chem 2025. [PMID: 40448666 DOI: 10.1021/acs.jmedchem.4c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Blocking NAD+ biosynthesis presents an appealing strategy for antitumor therapies. This study developed a series of o-aminobenzamide derivatives with substantial antitumor efficacy against gastric cancer. Notably, compound 9a demonstrated exceptional antitumor activity against undifferentiated gastric cancer HGC27 cells (IC50 = 0.049 μM), and significant inhibitory effects on cellular proliferation, self-renewal, invasion, and migration. Mechanistic investigations revealed that 9a could damage mitochondria, arrest the cell cycle, promote apoptosis, and alter cellular metabolism. Furthermore, the rate-limiting enzyme NAMPT in the NAD+ salvage synthetic pathway was identified as a primary target of 9a. By inhibiting NAMPT, 9a reduced intracellular levels of NAD+ and ATP, while NMN, a natural product of NAMPT, counteracts its antimetabolic and cytotoxic effects. Overall, this study highlights 9a as a promising NAMPT inhibitor with significant activity against undifferentiated gastric cancer, laying the groundwork for developing novel antigastric cancer agents through inhibiting NAD+ biosynthesis.
Collapse
Affiliation(s)
- Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Bo Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhiyi Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Huiqian Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lixian Shen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Basic Medicine, The First Affiliated Hospital, The Second Affiliated Hospital, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lejing Zhu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tong Mo
- School of Basic Medicine, The First Affiliated Hospital, The Second Affiliated Hospital, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jialiang Peng
- School of Basic Medicine, The First Affiliated Hospital, The Second Affiliated Hospital, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Basic Medicine, The First Affiliated Hospital, The Second Affiliated Hospital, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
13
|
Pan K, Qiu P, Liang H, Wan N, Liu Z, Guo Q. Machine learning identifies SRD5A3 as a propionate-related prognostic biomarker in triple-negative breast cancer. Sci Rep 2025; 15:18911. [PMID: 40442220 PMCID: PMC12122983 DOI: 10.1038/s41598-025-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
The increased risk of recurrence and metastasis are obstacles to treating TNBC. Propionate-related genes play an important role in tumor development and immune cell infiltration. The study was to identify the association between propionate-related genes and the prognosis of TNBC patients. Propionate-related genes were collected and analyzed to establish propionate-related gene characteristics. Then, the survival analysis was performed, and the responses to immunotherapies were evaluated. Furthermore, the drug sensitivity of some traditional chemotherapeutic drugs was evaluated. Finally, the hub genes were discovered and validated by in vitro experiments. Based on the five-propionate-related gene signature, TNBC patients were divided into high and low-risk groups. In addition, DEGs between the different risk groups were enriched in the biological activities associated with immunity. TNBC patients in the high-risk groups were suggested to have worse responses to immunotherapies and a poorer prognosis. SRD5A3 was finally found to be a hub gene, and in vitro experiments revealed that silencing SRD5A3 inhibited tumor cell proliferation, invasion, and migration. The five-propionate-related risk model presented novel insights into the efficacy of immunotherapy. It was found that down-regulation of SRD5A3 inhibited the growth and invasion of tumor cells, thereby affecting the prognosis of TNBC.
Collapse
Affiliation(s)
- Kelun Pan
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengjun Qiu
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huikai Liang
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ningning Wan
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zundong Liu
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Qiaonan Guo
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
14
|
Li Z, Liu Z, Lin M, Pan H, Liu Y, Liu Y, Xie Y, Zhang J, Guan S, Li Y, Zhu M, Fang Y, Shen Z, Deng H. Acetylation-induced degradation of ECHS1 enhances BCAA accumulation and proliferation in KRAS-mutant colorectal cancer. J Exp Clin Cancer Res 2025; 44:164. [PMID: 40437561 PMCID: PMC12117712 DOI: 10.1186/s13046-025-03399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) metabolism is dysregulated in colorectal cancer (CRC), with elevated plasma BCAA levels significantly associated with an increased risk of developing the disease. However, whether BCAAs directly promote CRC progression and their underlying mechanisms remain unclear. METHODS In this study, we investigated the metabolic alterations in KRAS-mutant CRC. We examined the effects of restricting BCAA supply on the proliferation and metastasis of KRAS-mutant CRC cells both in vitro and in vivo. RESULTS We found that in KRAS-mutant CRC, BCAAs and their metabolic products accumulate markedly. Restricting the BCAA supply specifically inhibits the proliferation of KRAS-mutant CRC cells but does not affect metastasis. In these cancer cells, enoyl-CoA hydratase-1 (ECHS1), a key enzyme in BCAA metabolism, is downregulated. Furthermore, BCAAs enhance the acetylation of lysine 204 on ECHS1, impairing its ability to bind enoyl-CoA and reducing its catalytic activity. This modification triggers the ubiquitination of ECHS1 and its subsequent degradation, diminishing BCAA catabolism and leading to its cellular accumulation. This accumulation activates the mTORC1 signaling pathway, which induces the transcriptional activation of downstream target proteins and promotes the malignant progression of CRC. CONCLUSIONS Limiting BCAA intake not only suppresses tumor growth in KRAS-mutant CRC but also enhances the efficacy of the KRAS G12D inhibitor MRTX1133 and the monoclonal antibody bevacizumab. Our findings reveal a previously unknown regulatory mechanism of ECHS1 in CRC and offer new potential therapeutic targets.
Collapse
Affiliation(s)
- Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhengyu Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Mingdao Lin
- Department of Anorectal Surgery, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Huayang Pan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yang Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Jinchao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shenyuan Guan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Mulan Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
15
|
Xie Z, Zhou Z, Chen S, Li Y, He X, Chen G. GLUT1 sensitizes tumor cells to EGFR-TKIs by binding with activated EGFR and regulating its downstream signaling pathways. Cell Commun Signal 2025; 23:247. [PMID: 40437580 PMCID: PMC12121033 DOI: 10.1186/s12964-025-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND We have previously demonstrated that GLUT1 can interact with phosphorylated EGFR and has an oncogenic role in lung cancer. Here, we aim to investigate their binding region and its signaling pathways. METHODS The AlphaFold 3 prediction, Co-immunoprecipitation, and Western blot were used to uncover the interaction conditions of GLUT1 and EGFR. The RNA-seq data was analyzed to evaluate the difference in signaling pathways between wild-type EGFR and activated mutated EGFR. The xenograft tumor model was established to determine the therapy effect of the combination of GLUT1 inhibitor BAY-876 and EGFR TKI Osimertinib. RESULTS We found that the interaction ability of GLUT1 and EGFR depended on the activation of EGFR. GLUT1 interacted with EGFRvIII (loss 2-7 exons) but not with EGFRvI (loss 1-16 exons), so GLUT1 interacts with EGFR in the EGFR extracellular transmembrane region. GLUT1 regulated EGFR downstream signaling pathways. GLUT1 inhibitor BAY-876 can sensitize tumor cells to EGFR TKI Osimertinib. CONCLUSIONS GLUT1 participates in tumor progression by interacting with phosphor-EGFR, suggesting that inhibition of the GLUT1-EGFR axis may be a potential therapeutic strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Zhangrong Xie
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiaoniu He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
16
|
Geng X, Li M, Zhang L, Cai Y, Chen X, Mu X, Wang J, Liu B. P5CS deacetylation mediated by SIRT2 facilitates tumor growth by enhancing mitochondrial respiration in hepatocellular carcinoma. Oncogene 2025:10.1038/s41388-025-03456-3. [PMID: 40425834 DOI: 10.1038/s41388-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Cancer cells typically exhibit enhanced mitochondrial metabolism to fulfill their energy and biosynthetic demands for growth. The mitochondrial response to fluctuations in cellular energy demand is essential for cellular adaptation and proper organ function. The mitochondrial delta-1-pyrroline-5-carboxylate synthase (P5CS) encoded by the ALDH18A1 gene, the key enzyme for proline synthesis, is frequently up-regulated during tumor development. However, the regulatory mechanisms governing P5CS activity in the occurrence and development of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we observe that P5CS is highly expressed in HCC tissues, and elevated levels of P5CS expression are associated with poor prognosis in HCC patients. Notably, the knockdown of P5CS inhibits the proliferation, migratory and invasive capabilities of HCC cells by reducing mitochondrial respiration. Furthermore, we demonstrate that SIRT2 interacts with P5CS and mediates the deacetylation of P5CS at lysines K311 and K347, thereby activating its enzymatic activity. Activated P5CS significantly enhances mitochondrial respiration, which supports the proliferation and tumorigenesis of HCC cells. In addition, SIRT2 knockdown inhibits the proliferation, migratory and invasive capabilities of HCC cells. These observations suggest that SIRT2-mediated P5CS deacetylation is a crucial signaling event through which cancer cells sustain mitochondrial respiration and promote HCC progression. This finding offers the potential for targeting SIRT2-mediated P5CS deacetylation as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiaofang Geng
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Mengyao Li
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Lu Zhang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yihan Cai
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xin Chen
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiayue Mu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Bowen Liu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
17
|
Wei W, Gan Y, Zhang X, Chen Y, Huang Z, Wang S, Xie X, Li Y, Qin P, Jiang L. Exploring the level of metabolic reprogramming and the role of prognostic factor SF3A3 in hepatocellular carcinoma through integrated single-cell landscape analysis. PLoS One 2025; 20:e0323559. [PMID: 40424306 PMCID: PMC12111341 DOI: 10.1371/journal.pone.0323559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 05/29/2025] Open
Abstract
This study aims to investigate metabolic reprogramming heterogeneity in hepatocellular carcinoma (HCC) cells and identify novel therapeutic targets for HCC treatment. Single-cell RNA sequencing data from public databases were used to analyze the TME of HCC and reveal the characteristics of different cell subsets, including mononuclear phagocytes, epithelial cells, endothelial cells, NK/T cells, B cells, and unknown cells. The analysis revealed that these cell subsets play their own unique roles in tumor progression and immune escape. Analysis of copy number variations (CNVs) was performed on tumor-derived epithelial cells, with the epithelial cells in Cluster 3 subgroup showing the highest CNV levels. Gene Ontology (GO) enrichment analysis revealed that these cell subsets were involved in a variety of biological processes such as immune response, cell communication, and metabolic pathways, which were consistent with their functional roles. Pseudotemporal analysis further delineated the malignant trajectory of HCC cells, with Cluster 3 exhibiting enhanced phosphatidylinositol metabolism, suggesting a critical role for metabolic reprogramming in tumor invasion and proliferation. Furthermore, a diagnostic model incorporating metabolic reprogramming-associated gene signatures was established, which effectively distinguished HCC from normal tissues. Among these signatures, splicing factor 3a subunit 3 (SF3A3) was identified as both diagnostic and independent prognostic biomarker. Mechanistically, SF3A3 knockdown in HCC cell lines significantly suppressed proliferation, migration, PI3K/AKT signaling, and EMT marker expression, thereby demonstrating its role in driving HCC aggressiveness. In conclusion, these findings elucidate novel molecular characteristics of HCC based on metabolic reprogramming, while establishing SF3A3 as a promising multi-faceted target for HCC diagnosis, prognostic assessment, and therapeutic intervention.
Collapse
Affiliation(s)
- Wanshuo Wei
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yuan Gan
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Xindan Zhang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yumo Chen
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
| | - Zengfeng Huang
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
| | - Shuhan Wang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Xiaomei Xie
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yongle Li
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Pengtao Qin
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Lihe Jiang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
- Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
- Key Laboratory of Biomarkers and in Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang province, P.R. China.
| |
Collapse
|
18
|
Zhang L, Liu T, Chen M, Gao S, Staley CA, Yang L, Zhu L. Dual inhibition of oxidative phosphorylation and glycolysis using a hyaluronic acid nanoparticle NOX inhibitor enhanced response to radiotherapy in colorectal cancer. Biomaterials 2025; 323:123437. [PMID: 40449083 DOI: 10.1016/j.biomaterials.2025.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/04/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Metabolic reprogramming characterized by mitochondrial dysfunction and increased glycolysis is associated with aggressive tumor biology and poor therapeutic response. The interplays among NADPH oxidase (NOX)-mediated reactive oxygen species, regulation of glycolysis and oxidative phosphorylation (OXPHOS) in cancer cells suggest an opportunity to develop a new cancer therapy. We found that treatment with a hyaluronic acid nanoparticle encapsulated with GKT831 (HANP/GKT831), a NOX1/4 inhibitor, markedly inhibited the proliferation and invasion of cancer cells. Treated tumor cells had reduced levels of mitochondrial ROS, glycolysis, and OXPHOS. The combination of HANP/GKT831 with radiation reduced colony formation and invasion of tumor cells. The combination therapy markedly inhibited the levels of molecules in glycolysis, OXPHOS, and DNA repairing pathways in tumor cells. Systemic administrations of HANP/GKT831 combined with radiotherapy significantly inhibited tumor growth by 84.7 % in a mouse colorectal tumor model. Tumors treated with HANP/GKT831 and radiation had increased DNA damage and apoptotic cell death. Furthermore, the combined therapy increased intratumoral infiltration of activated cytotoxic T cells and M1 macrophages but reduced the levels of immunosuppressive fibroblasts and M2 macrophages. Our results support HANP/GKT831 as a cancer nanotherapeutic agent that induces redox and bioenergy stresses in cancer cells for enhanced therapeutic response to radiotherapy.
Collapse
Affiliation(s)
- Lumeng Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Minglong Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Charles A Staley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| |
Collapse
|
19
|
Zuo X, Lei Y, Ou S, Yuan X, Shi P, Li Q, Xu Y. Integration of cuproptosis-related gene signatures in stomach adenocarcinoma: implications for prognostic prediction and therapeutic strategies in cancer drug resistance. Discov Oncol 2025; 16:885. [PMID: 40410601 PMCID: PMC12102457 DOI: 10.1007/s12672-025-02740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a prevalent and aggressive cancer, often diagnosed at later stages, which poses challenges for effective treatment. Despite advancements in cancer therapies, the phenomenon of tumor drug resistance remains a critical hurdle. Recent studies have highlighted cuproptosis, a copper-dependent regulated cell death process, as a potential mechanism in various cancers, including STAD. This study integrates cuproptosis-related gene signatures with clinical features to better predict prognosis and explore potential therapeutic targets, focusing on the role of cuproptosis in overcoming tumor resistance mechanisms. METHODS Using comprehensive datasets from TCGA-STAD (n = 375 tumor samples, 32 normal samples), GTEx (n = 211 normal gastric tissues), and GEO (GSE84437 and GSE29272), we analyzed the expression of genes associated with cuproptosis. We examined genetic alterations, immune infiltration, and constructed multivariate Cox regression models with clinicopathological covariates (age, gender, TNM stage, histological grade, residual tumor status) to assess the relationship between cuproptosis gene expression and patient survival outcomes, including overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). Drug sensitivity analysis was performed using the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS Our analysis identified significant upregulation of several cuproptosis-related genes, including FDX1, which was correlated with improved prognosis and immune cell infiltration patterns. High expression of FDX1 was associated with better OS and DSS outcomes. Further genetic alterations, notably in CDKN2A, were frequent and linked to poor prognosis, highlighting the complexity of tumor drug resistance in STAD. Prognostic models incorporating FDX1, PDHA1, and LIAS expression stratified patients into distinct risk categories, emphasizing their potential as biomarkers for personalized therapeutic strategies. CONCLUSIONS This study underscores the importance of cuproptosis-related genes, particularly FDX1, in the prognosis and therapeutic response of STAD. By integrating molecular features with clinical data, we offer insights into the potential for overcoming drug resistance in cancer therapy. These findings lay the groundwork for future research into targeted treatments that modulate cuproptosis, offering a novel approach to tackling tumor progression and resistance in STAD.
Collapse
Affiliation(s)
- Xin Zuo
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Youchun Lei
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Shan Ou
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Xiu Yuan
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Peng Shi
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Qian Li
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China
| | - Yun Xu
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, 400060, China.
| |
Collapse
|
20
|
Lopez A, Holbrook JH, Hummon AB. MALDI Imaging and Spatial SILAC Proteomics of Three-Dimensional Multicellular Spheroids Dynamically Dosed with Doxorubicin-Encapsulating Liposomes. Anal Chem 2025. [PMID: 40401535 DOI: 10.1021/acs.analchem.5c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Microphysiological systems, such as multicellular spheroids, hold great promise for drug screening experiments. Spheroids may be dosed statically, where the drug is introduced to the growing chamber at one time point, or dynamically, where the drug is introduced via a fluidic component. Dynamic dosing can generate pharmacokinetic curves that more closely represent those seen in vivo than static dosing. In this work, we demonstrate the dynamic dosing of colorectal cancer spheroids in a 3D printed fluidic device with liposomal doxorubicin. Spheroids are valuable models to evaluate dynamic dosing, as they recapitulate the nutrient, oxygen, and pH gradients of solid tumors. Spheroids feature distinct cellular populations with a necrotic core, quiescent middle layer, and proliferative outer layer. Drug and liposome penetration are tracked with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) and fluorescence imaging, showing that liposomal doxorubicin is stable to fluidic dosing and penetrates spheroids after 48 h. To provide a comprehensive pharmacodynamic profile of the distinct cellular regions within spheroids, we employ spatially stable isotopic labeling by amino acids in cell culture (spatial SILAC) proteomics to isotopically label the core and outer layers. Proteomic analysis reveals 714 upregulated proteins in the core upon treatment and 30 in the outer layers, as well as 103 downregulated proteins in the core and 1276 in the outer layers. Spatial SILAC uncovers the differential regulation of proteins associated with glycolysis, the TCA cycle, and lipid synthesis upon drug treatment between the spheroid core and outer layers. Using MALDI MSI and spatial SILAC proteomics, we interrogate the effects of dynamic dosing with liposomal doxorubicin on spheroid regions that would be overlooked by bulk analysis.
Collapse
Affiliation(s)
- Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Xie G, Okuda S, Gao JY, Wu T, Jeong J, Lu KP, Zhou XZ. The Central Role of Pin1 in Age-Related Cancer Signaling Pathways. Semin Cancer Biol 2025:S1044-579X(25)00072-0. [PMID: 40412492 DOI: 10.1016/j.semcancer.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.
Collapse
Affiliation(s)
- George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Sho Okuda
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jing-Yan Gao
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Chemistry, Western University, London, ON N6A 5C1, Canada
| | - Timothy Wu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada.
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada.
| |
Collapse
|
22
|
Zhang F, Wu Z, Xiang Y, He Q, Li W, Yang K, Yang Y. SOX4 reprograms fatty acid metabolism through the CHREBP to inhibit ferroptosis in hepatocellular carcinoma. Cell Death Discov 2025; 11:246. [PMID: 40399256 PMCID: PMC12095664 DOI: 10.1038/s41420-025-02527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality, characterized by aggressive progression and poor prognosis. Pathological angiogenesis in HCC is closely linked to metabolic reprogramming, particularly concerning fatty acid metabolism. The interplay between fatty acid metabolism and ferroptosis, a type of cell death driven by lipid peroxidation, is emerging as a crucial area of study. The transcription factor SOX4 is known to be overexpressed in various cancers, including HCC, and may play a key role in these processes. We assessed SOX4 expression in HCC using clinical samples and data from online databases. Next-generation RNA sequencing was employed to explore the effects of SOX4 on fatty acid metabolism, focusing on the CHREBP pathway. Functional assays, including lipid peroxidation and angiogenesis studies, were conducted to investigate the role of SOX4 in regulating ferroptosis and angiogenesis in HCC. SOX4 was found to be significantly upregulated in HCC and associated with enhanced angiogenesis. Mechanistically, SOX4 activated the CHREBP/SCD1 pathway, leading to increased production of monounsaturated fatty acids, which in turn inhibited ferroptosis. This suppression of ferroptosis contributed to the promotion of angiogenesis and tumor progression in HCC. In conclusion, SOX4 reprograms fatty acid metabolism via the CHREBP/SCD1 pathway, thereby inhibiting ferroptosis and promoting angiogenesis in HCC. These findings suggest that targeting the SOX4-CHREBP axis could represent a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou, China
| | - Zhiwei Wu
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Xiang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China.
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou, China.
| | - Qing He
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Wanqing Li
- Hunan Occupational Disease Prevention Hospital, Changsha, China
| | - Kaipeng Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou, China
| |
Collapse
|
23
|
Zhao Y, Pu C, Liu K, Liu Z. Targeting LAT1 with JPH203 to reduce TNBC proliferation and reshape suppressive immune microenvironment by blocking essential amino acid uptake. Amino Acids 2025; 57:27. [PMID: 40379991 PMCID: PMC12084285 DOI: 10.1007/s00726-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
The competitive uptake of essential amino acids (EAAs) by breast cancer cells is associated with poor patient prognosis and the development of an immunosuppressive tumor microenvironment. L-type amino acid transporters, LAT1 (SLC7 A5) and LAT2 (SLC7 A8) are major mediators of EAAs transmembrane uptake and are overexpressed in some tumor tissues. However, the distribution and functional roles of these transporters across breast cancer subtypes have not been fully elucidated. This study aims to investigate the therapeutic potential of targeting EAA transporters, particularly LAT1, in triple-negative breast cancer (TNBC) and its role in remodeling the tumor immune microenvironment. The distribution of EAA transporters across breast cancer subtypes was analyzed using multi-omics data. The effects of LAT1 targeting on TNBC cell proliferation and EAA uptake were evaluated using SLC7 A5 knockout and LAT1 inhibitors in vitro experiments. A 4T1-BALB/c tumor-bearing mouse model with normal immune function was constructed to investigate the effects of LAT1 targeting on tumor growth and immune microenvironment remodeling in vivo. TNBC demonstrated a strong dependence on LAT1-mediated EAAs uptake. Targeting LAT1 limited the exogenous supply of EAAs, leading to amino acid starvation, cell cycle arrest, and increased apoptosis in TNBC cells. The in vivo experiments, using a 4T1-BALB/c tumor-bearing mouse model, showed that LAT1 targeting inhibited tumor growth and remodeled the immunosuppressive tumor microenvironment. Targeting LAT1 improved PD-L1-associated immune suppression and improved the efficacy of PD-1 antibody treatment, producing synergistic anti-tumor effects. This study highlights the therapeutic potential of targeting LAT1 in TNBC, particularly in remodeling the tumor immune microenvironment. The findings provide a promising strategy for immune combination therapy in TNBC.
Collapse
Affiliation(s)
- Yajie Zhao
- Department of Breast Disease, Henan Breast Cancer Centre, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Chunrui Pu
- Department of Breast Disease, Henan Breast Cancer Centre, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Centre, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
24
|
Ling L, Li B, Ke B, Hu Y, Zhang K, Li S, Liu T, Liu P, Zhang B. Metabolism-associated marker gene-based predictive model for prognosis, targeted therapy, and immune landscape in ovarian cancer: an integrative analysis of single-cell and bulk RNA sequencing with spatial transcriptomics. BMC Womens Health 2025; 25:233. [PMID: 40382612 PMCID: PMC12084907 DOI: 10.1186/s12905-025-03750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/22/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a formidable gynecological tumor marked with the highest mortality rate. The lack of effective biomarkers and treatment drugs places a substantial proportion of patients with OC at significant risk of mortality, primarily due to metastasis. Glycolysis metabolism, lipid metabolism, choline metabolism, and sphingolipid metabolism are closely intertwined with the occurrence and progression of OC. Thus, it is of utmost significance to identify potent prognostic biomarkers and delve into the exploration of novel therapeutic drugs and targets, in pursuit of advancing the treatment of OC. METHODS Single-cell RNA sequencing (scRNA-seq) data related to OC were analyzed using AUCell scores to identify subpopulations at the single-cell level. The "AddModuleScore" function of the "Seurat" package was adopted to score and select marker genes from four gene sets: glycolysis metabolism, lipid metabolism, choline metabolism, and sphingolipid metabolism. A prognostic model for metabolism-related genes (MRGs) was constructed and validated using OC-related marker genes selected from bulk RNAseq data. The MRG-based prognostic model was further utilized for functional analysis of the model gene set, pan-cancer analysis of genomic variations, spatial transcriptomics analysis, as well as GO and KEGG enrichment analysis. CIBERSORT and ESTIMATE algorithms were utilized for assessing the immune microenvironment of TCGA-ovarian serous cystadenocarcinoma (OV) samples. Furthermore, the Tracking Tumor Immunophenotype (TIP) database was employed to examine the anti-cancer immune response in patients with OC. To gain a more in-depth understanding of the process, the frequency of somatic mutations and different types of mutated genes were visualized through the somatic mutation profile of the TCGA database. Moreover, the benefits of immune checkpoint inhibitor (ICI) therapy in individuals with OC were predicted in the TIDE database. In addition, the CMap database was used to predict small-molecule drugs for the treatment of OC. Furthermore, immunohistochemistry, RT-qPCR, CCK-8, Transwell assay, and in vivo tumor xenograft experiments were conducted to validate the prognostic ability of the MRG Triggering Receptor Expressed on Myeloid Cells-1 (TREM1) in OC. RESULTS Monocytes were selected using AUCell scoring, and two subpopulations of monocytes, marked by the expression of C1QC+ tumor-associated macrophages (TAMs) and FCN1+ resident tissue macrophages (RTMs), were identified as marker genes for OC. Subsequently, a prognostic model consisting of 12 MRGs was constructed and validated. Genomic exploration of the prognostic model unveiled an array of biological functions linked with metabolism. Furthermore, copy number variation (CNV), mRNA expression, single nucleotide variation (SNV), and methylation were significantly different across diverse tumors. Analysis of the TIP database demonstrated that the low-risk group, as determined by the MRG-based prognostic model, exhibited significantly higher anti-cancer immune activity relative to the high-risk group. Furthermore, predictions from the TIDE database revealed that individuals in the high-risk group were more prone to immune evasion when treated with ICIs. The resulting data identified candesartan and PD-123319 as potential therapeutic drugs for OC, possibly acting on the target ATGR2. In vitro and in vivo experiments elucidated that the targeted downregulation of TREM1 effectively inhibited the proliferation and migration of OC cells. CONCLUSION The MRG-based prognostic model constructed through the combined analysis of glycolysis metabolism, lipid metabolism, choline metabolism, and sphingolipid metabolism is potentially effective as a prognostic biomarker. Furthermore, candesartan and PD-123319 may be potential therapeutic drugs for OC, possibly acting on the target ATGR2.
Collapse
Affiliation(s)
- Lele Ling
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingrong Li
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China
| | - Boliang Ke
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yinjie Hu
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China
| | - Kaiyong Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China
| | - Siwen Li
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| | - Peng Liu
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China.
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China.
| |
Collapse
|
25
|
Ma S, Zhu W, Ji X, Liu C, Chen N, Guo D, Song H. Multiplex Methionine Modulating Hydrogel for Cancer Metabolic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420445. [PMID: 40376881 DOI: 10.1002/adma.202420445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/23/2025] [Indexed: 05/18/2025]
Abstract
The reliance on high levels of methionine by tumor cells provides an attractive target for cancer treatment. However, systemic methionine blockade may raise concerns about potential side effects given the broad and essential functions of methionine in cellular metabolism. Here, a combined drug delivery platform for multilayered constraint of methionine within tumor lesions is developed. Small molecule inhibitors PF9366 and adenosine dialdehyde are encapsulated by tumor cell-targeting nanoparticles (NPs) to achieve a cascaded blockage of intracellular methionine metabolism. These NPs are further co-loaded with the extracellular methionine uptake inhibitor JPH203 into a type of reactive oxygen species-sensitive hydrogel, assembling the multiplex methionine modulating hydrogel (3 M Gel). In murine models of triple-negative breast cancer (TNBC), hepatocellular carcinoma, and colorectal cancer, the in situ formed 3 M Gel exhibits superior efficacy in restricting S-adenosyl methionine generation and histone methylation, stimulating immunogenic cell death in tumor cells, thereby eliciting potent innate and adaptive immune responses to restrain tumor progression. Moreover, remodeling of the tumor microenvironment by 3 M Gel overcomes immune checkpoint blockade resistance in TNBC. This study presents a localized triple regulation strategy and paves a new path for amino acid starvation-based cancer therapy.
Collapse
Affiliation(s)
- Siyu Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Zhu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Daoxia Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
26
|
Műzes G, Sipos F. PANoptosis as a Two-Edged Sword in Colorectal Cancer: A Pathogenic Mechanism and Therapeutic Opportunity. Cells 2025; 14:730. [PMID: 40422233 DOI: 10.3390/cells14100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
The examination of PANoptosis in colorectal cancer is particularly important, as many tumor cells can evade apoptotic cell death while continuing to proliferate through inflammatory mediators and creating an immunosuppressive environment. The PANoptosome functions as a regulatory complex that unites proteins governing pyroptotic, apoptotic, and necroptotic pathways, rather than allowing distinct death pathways to compete. The expression and functional status of key molecules within the PANoptosome, such as ZBP1, RIPK1, RIPK3, CASP8, and ASC, may influence tumor viability and immune detection. The tumorigenic impact of PANoptosis is complex and predominantly manifests through chronic inflammation, immune response modulation, and changes in the tumor microenvironment. PANoptosis also aids in the defense against colon cancer by directly eradicating tumor cells and modifying the cellular environment. The expression profile of PANoptosis components may possess prognostic and predictive significance. The therapeutic ramifications of PANoptosis in colorectal cancer are now being investigated through many avenues. It provides an opportunity to develop targeted therapeutic techniques. In contrast, it may also be pertinent in conjunction with immunotherapy, as PANoptosis signifies an immunogenic type of cell death and may consequently enhance the anti-tumor immune response. A thorough comprehension of how these parameters influence PANoptosis is crucial for practical implementation.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
27
|
Hu C, Chen L, Ding Y, Ye M, Tang Q. Metabolic changes in neuroendocrine neoplasms. Cell Mol Life Sci 2025; 82:205. [PMID: 40377669 PMCID: PMC12084448 DOI: 10.1007/s00018-025-05656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 05/18/2025]
Abstract
Neuroendocrine neoplasms (NENs) are a group of highly heterogeneous neoplasms originating from neuroendocrine cells with a gradually increased incidence. Metabolic change is one of the recognized markers of tumor progression, which has been extensively and systematically studied in other malignant tumors. However, metabolic change in NENs has been relatively poorly studied, and systematic reviews are lacking. We reviewed the relationship between metabolic changes and NENs from the aspects of glucose metabolism, lipid metabolism, metabolic syndrome, amino acid metabolism and metabolomics, and discussed the potential therapeutic strategies of metabolic changes for NENs.
Collapse
Affiliation(s)
- Chunhua Hu
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Digestive Disease Research and Clinical Translation Center, Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lingyi Chen
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Mujie Ye
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Qiyun Tang
- Neuroendocrine Tumor Diagnosis and Treatment Center, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Tang S, Wang Q, Wang Z, Cai L, Pan D, Li J, Chen Q, Zhou Y, Shen YQ. NSD1 mutation status determines metabolic inhibitor sensitivity in head and neck squamous cell carcinomas by regulating mitochondrial respiration. J Pathol 2025. [PMID: 40371884 DOI: 10.1002/path.6430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 03/24/2025] [Indexed: 05/16/2025]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the most common malignant tumors in the head and neck region, characterized by a high recurrence rate and early metastasis. Despite advances in treatment, patient outcomes and prognosis remain poor, highlighting the urgent need for new therapeutic strategies. Recent research has increasingly focused on targeting glucose metabolism as a therapeutic strategy for cancer, revealing multiple promising targets and potential drugs. However, the metabolic heterogeneity among tumors leads to variable sensitivity to metabolic inhibitors in different patients, limiting their clinical utility. In this study, we employed bioinformatics analysis, cell experiments, animal models, and multi-omics approaches to reveal differences in glucose metabolism phenotypes among HNSCC patients and elucidated the underlying molecular mechanisms driving these differences. Our findings showed that NSD1 mutation status affects the glucose metabolism phenotype in HNSCC, with NSD1 wild-type HNSCC exhibiting higher mitochondrial respiration and NSD1 mutant HNSCC showing weaker mitochondrial respiration but enhanced glycolysis. We further demonstrated that NSD1 regulates mitochondrial respiration in HNSCC via epigenetic modulation of the TGFB2/PPARGC1A signaling axis. Additionally, we found that NSD1 wild-type HNSCC is more sensitive to mitochondrial respiration inhibitors, whereas NSD1 mutant HNSCC shows increased sensitivity to glycolysis inhibitors. In summary, we found that NSD1 can epigenetically regulate the TGFB2/PPARGC1A axis to modulate mitochondrial respiration and sensitivity to metabolic inhibitors in HNSCC. These findings suggest a novel strategy for selecting metabolic inhibitors for HNSCC based on the NSD1 gene status of patients. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, PR China
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
29
|
Wolska W, Gutowska I, Wszołek A, Żwierełło W. The Role of Intermittent Fasting in the Activation of Autophagy Processes in the Context of Cancer Diseases. Int J Mol Sci 2025; 26:4742. [PMID: 40429883 PMCID: PMC12112746 DOI: 10.3390/ijms26104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Intermittent fasting (IF) is a dietary approach that influences key metabolic pathways, including autophagy-a crucial mechanism in maintaining cellular homeostasis. Autophagy plays a dual role in oncogenesis, acting both as a tumor suppressor and a survival mechanism under metabolic stress. IF has shown potential for reducing cancer risk and enhancing therapeutic efficacy by sensitizing tumor cells to chemotherapy and radiotherapy. However, its effects depend heavily on the type and stage of cancer. Potential risks, such as excessive weight loss and malnutrition, require careful evaluation. Further clinical studies are needed to optimize IF protocols as adjuncts to cancer therapy. This review discusses autophagy mechanisms induced by IF, their therapeutic implications in oncology, and the limitations of this dietary strategy.
Collapse
Affiliation(s)
- Waleria Wolska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gate 1, 7030 Trondheim, Norway
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland;
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| |
Collapse
|
30
|
Jia L, Yu F. Overexpression of MAFG-AS1 in ovarian cancer promotes glucose metabolism reprogramming and malignant biological behavior of ovarian cancer cells by regulating HIF-1α. Discov Oncol 2025; 16:769. [PMID: 40372661 PMCID: PMC12081788 DOI: 10.1007/s12672-025-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE This research explored the involvement of MAFG-AS1 in metabolic reprogramming and potential molecular mechanisms in ovarian cancer (OC). METHODS The ability of MAFG-AS1 silencing to affect the glucose intake, lactate production, ECAR, OCR and ATP concentrations and NAD+/NADH ratios in OC cells was examined. Cell cycle phases and apoptosis were measured by flow cytometry. The influences of MAFG-AS1overexprssion on the above assays were also identified. RESULTS A transient reduction in the number of SKOV3 and HO8910 cells in the MAFG-AS1 knockdown group. MAFG-AS1 knockdown can inhibit cell proliferation, induce apoptosis, and enhance the number of cells in G2 phase. Silencing MAFG-AS1 can inhibit the glucose uptake rate, extracellular lactate production, and ECAR of OC cells, ATP levels, and can promote OCR and NAD+/ NADH ratio oxidative phosphorylation. Silencing MAFG-AS1 can inhibit HIF-1α in OC. CONCLUSION Our study revealed silencing MAFG-AS1 could inhibit the proliferation and induce apoptosis of OC cells by inhibiting the HIF-1α-mediated glycolysis process. Therefore, this study further potentially reveals the machinery of MAFG-AS1 in regulating OC cell proliferation and apoptosis, which is expected to provide a theoretical basis for the study of new targets.
Collapse
Affiliation(s)
- Liu Jia
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang, Hangzhou, 310009, Zhejiang, China.
| | - Fei Yu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
31
|
Shin YZ, Yum YA, Bae ES, Jarhad DB, Aswar VR, Tripathi SK, Kwon EJ, Kim YJ, Kim M, Lee SK, Jeong LS, Cha HJ. Targeting HASPIN in gemcitabine-resistant pancreatic cancer cells by lead optimization of thioadenosine analogue. Biomed Pharmacother 2025; 188:118135. [PMID: 40378773 DOI: 10.1016/j.biopha.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Despite multiple kinase inhibitors having been developed for cancer therapy, mitotic kinases remain difficult to target with small molecules due to severe adverse effects on proliferating normal cells. Recently, HASPIN, a mitotic kinase responsible for histone H3 phosphorylation, has emerged as a promising cancer-specific target. In this study, we synthesized a novel thioadenosine analogue, LJ5157, based on the structure of the previously developed HASPIN inhibitor LJ4827. In silico transcriptome analysis of pancreatic cancer patient data from The Cancer Genome Atlas identified HASPIN as not only a cancer-specific target but also a potential key player in overcoming gemcitabine resistance. To evaluate the therapeutic potential of LJ5157, we tested its efficacy in pancreatic cancer cells, particularly gemcitabine-resistant Panc-1 (GR) cells. The inhibitor exhibited potent anti-cancer activity, effectively suppressing the growth of GR cells, which showed more dysregulated cell cycle progression and greater proportion of polyploid cells compared to wild-type Panc-1 cells. Furthermore, it demonstrated superior efficacy in reducing the mitotic population of polyploid GR cells, which correlated with significant tumor growth inhibition in a GR-cell-derived xenograft model. Further optimization of LJ4827 led to development of LJ5242, an analogue with enhanced selectivity for HASPIN and improved cell cycle inhibitory potency. These findings highlight HASPIN inhibition as a promising strategy for targeting chemoresistant pancreatic cancer and further identify thioadenosine as a valuable pharmacophore for developing clinically viable HASPIN inhibitors.
Collapse
Affiliation(s)
- Yoon-Ze Shin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun A Yum
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dnyandev B Jarhad
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Vikas R Aswar
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Minjae Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Lak-Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Future Medicine Co., Ltd, Seongnam, Gyeonggi-do, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Lin L, Chen L, Lin G, Chen X, Huang L, Yang J, Chen S, Lin R, Yang D, He F, Qian D, Zeng Y, Xu Y. Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma. Oncogene 2025:10.1038/s41388-025-03435-8. [PMID: 40369338 DOI: 10.1038/s41388-025-03435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.
Collapse
Affiliation(s)
- Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Linlin Huang
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Ronghang Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Dongyong Yang
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Fei He
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
33
|
Zhang L, Zhou B, Yang J, Ren C, Luo J, Li Z, Liu Q, Huang Z, Wu Z, Jiang N. MTFR2-Mediated Fission Drives Fatty Acid and Mitochondrial Co-Transfer from Hepatic Stellate Cells to Tumor Cells Fueling Oncogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416419. [PMID: 40365837 DOI: 10.1002/advs.202416419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/17/2025] [Indexed: 05/15/2025]
Abstract
The tumor margin of hepatocellular carcinoma (HCC) is a critical zone where cancer cells invade the surrounding stroma, exhibiting unique and more invasive metabolic and migratory features compared to the tumor center, driving tumor expansion beyond the primary lesion. Studies have shown that at this critical interface, HCC cells primarily rely on fatty acid oxidation to meet their energy demands, although the underlying mechanisms remain unclear. This study demonstrates that activated hepatic stellate cells (HSCs) at the tumor margin play a pivotal role in sustaining the metabolic needs of HCC cells. Specifically, it is discovered that mitochondrial fission regulator 2 (MTFR2) in HSCs interacts with dynamin-related protein 1 (DRP1, a known mitochondrial fission machinery), preventing its lysosomal degradation, which in turn promotes mitochondrial fission. This MTFR2-driven mitochondrial fission enhances the transfer of both fatty acids and mitochondria to HCC cells, supplying essential metabolic substrates and reinforcing the mitochondrial machinery critical for tumor growth. The findings suggest that targeting MTFR2-driven mitochondrial fission may offer a novel therapeutic avenue for interfering with the metabolic crosstalk between tumor cells and the stromal niche.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cong Ren
- Department of Medicinal Chemistry College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Qiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
34
|
Zeng Y, Tao Y, Du G, Huang T, Chen S, Fan L, Zhang N. Advances in the mechanisms of HIF-1α-enhanced tumor glycolysis and its relation to dedifferentiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 197:1-10. [PMID: 40373959 DOI: 10.1016/j.pbiomolbio.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Metabolic reprogramming, a hallmark of malignancy, enables tumor cells to adapt to the harsh and dynamic tumor microenvironment (TME) by altering metabolic pathways. Hypoxia, prevalent in solid tumors, activates hypoxia inducible factor 1α (HIF-1α). HIF-1α drives metabolic reprogramming, enhancing glycolysis primarily through the Warburg effect to reduce oxygen dependence and facilitate tumor cell growth/proliferation. The above process is associated with accelerated tumor cell dedifferentiation and enhanced stemness, generating cancer stem cells (CSCs) which possesses the potential for self-renewal and differentiation that can differentiate into a wide range of subtypes of tumor cells and fuel tumor heterogeneity, metastasis, and recurrence, complicating therapy. This review examines the HIF-1α-glycolysis-dedifferentiation crosstalk mechanisms, expecting that indirect inhibition of HIF-1α by targeting metabolic enzymes, metabolites, or their signaling pathways will offer an effective therapeutic strategy to improve the cancer treatment outcomes.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yonggang Tao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guotu Du
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyu Huang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Longmei Fan
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Neng Zhang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
35
|
Jiang S, Li W, Zhang Y, Lin J, Huang P. Oxygen-regulated enzymatic nanoplatform for synchronous intervention in glycolysis and oxidative phosphorylation to augment antitumor therapy. J Control Release 2025; 381:113594. [PMID: 40024344 DOI: 10.1016/j.jconrel.2025.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Tumor cells typically undergo metabolic reprogramming to obtain substantial energy via glycolysis and oxidative phosphorylation (OXPHOS). Intervening in this reprogramming is expected to have therapeutic effects, but simultaneous intervention in these two metabolic pathways is challenging. Herein, we developed an "open-source and throttling" oxygen (O₂) modulation strategy by which we can simultaneously intervene in these two metabolic pathways. Our O₂ modulation nanoplatform (denoted as OAGO) is fabricated via the self-assembly of glucose oxidase (GOx) and oligomycin A (OA) and is coated with bacterial outer membrane vesicles (OMVs). OAGO elicits simultaneous GOx-mediated inhibition of glycolysis and OA-induced inhibition of OXPHOS. The resulting production of GOx-catalyzed hydrogen peroxide leads to oxidative stress, which exacerbates the inhibition of mitochondrial function. Meanwhile, OA reduces intratumoral O₂ consumption (i.e., the "throttling" strategy), and OMVs increase the tumor blood O₂ level (i.e., the "open-source" strategy). This results in an increase in O₂ levels for GOx catalysis, thereby exacerbating energy consumption. In addition, OMVs increase intratumoral OAGO accumulation and enable photothermal therapy in the 4T1 mouse model, which also raises the tumor blood O₂ level and benefits GOx catalysis. This synchronous intervention in two metabolic pathways alongside O₂ modulation constitutes a promising approach for efficient antitumor therapy.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wanyu Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
36
|
Li S, Yang Z, Lv M, Zong L, Xie Y, Cai Z, Zhang Y, Wang Z, Liu Z, Sang L. Research trends on lactate in cancer: a bibliometric analysis and comprehensive review (2015-2024). Front Immunol 2025; 16:1587867. [PMID: 40416986 PMCID: PMC12098457 DOI: 10.3389/fimmu.2025.1587867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Objective A bibliometric approach was employed to systematically analyze the trends and potential future developments in lactic acid-related cancer research over the past 10 years. Method We conducted a bibliometric analysis of literature on lactic acid in cancer research from 2015 to 2024, using data collected from the Web of Science database. A bibliometric analysis was conducted to identify general research directions and trends in current publications, as well as to determine the most prolific and influential authors, institutions, countries, and keywords in lactate and cancer research. The data were collected and analyzed using VOSviewer (Leiden University, Leiden, Netherlands), Microsoft Excel (Microsoft, Redmond, Washington, USA), CiteSpace, and Biblioshiny, with a focus on analysis and visualization. Results A total of 5,999 publications were analyzed, focusing on various aspects of the relevant literature, including year of publication, country, institution, author, journal, category, keywords, and research frontiers. The analysis of these publications reveals a general upward trend in publication volume from 2015 to 2024, with China and University of California System emerging as the most prolific country and institution, respectively. SCIENTIFIC REPORTS is the most frequently published journal, while Oncotarget is the most cited journal in the field. Zhang Y. was the most prolific author, publishing 100 documents over 10 years, with the highest citation count and an H-index of 28.Keyword analysis revealed five key themes in lactate-cancer research (2013-2023): Metabolic-epigenetic crosstalk, Tumor immunosuppressive microenvironment, Innovative therapies/drug delivery, Lactate-mediated signaling, Metabolic-targeted treatment strategies. Current research emphasizes the application of lactic acid metabolism in metabolic intervention, immune microenvironment regulation, combination of new therapeutic techniques and applications in specific cancer types. Conclusion Research on lactic acid in cancer is growing rapidly, with China at the forefront of this field. Research into lactic acid's role in immune cell regulation, metabolism, and signaling pathways, combined with multi-modal imaging, big data analytics, and innovative drug delivery, is set to become a key trend in future studies, which promises new directions for identifying therapeutic targets, biomarkers, and developing advanced treatments.
Collapse
Affiliation(s)
- Sinong Li
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Ziyi Yang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mutian Lv
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Lin Zong
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yihan Xie
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Zoujuan Cai
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Bi Q, Zhao J, Nie J, Huang F. Metabolic pathway analysis of tumors using stable isotopes. Semin Cancer Biol 2025; 113:9-24. [PMID: 40348000 DOI: 10.1016/j.semcancer.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Metabolic reprogramming is pivotal in malignant transformation and cancer progression. Tumor metabolism is shaped by a complex interplay of both intrinsic and extrinsic factors that are not yet fully elucidated. It is of great value to unravel the complex metabolic activity of tumors in patients. Metabolic flux analysis (MFA) is a versatile technique for investigating tumor metabolism in vivo, it has increasingly been applied to the assessment of metabolic activity in cancer in the past decade. Stable-isotope tracing have shown that human tumors use diverse nutrients to fuel central metabolic pathways, such as the tricarboxylic acid cycle and macromolecule synthesis. Precisely how tumors use different fuels, and the contribution of alternative metabolic pathways in tumor progression, remain areas of intensive investigation. In this review, we systematically summarize the evidence from in vivo stable- isotope tracing in tumors and describe the catabolic and anabolic processes involved in altered tumor metabolism. We also discuss current challenges and future perspectives for MFA of human cancers, which may provide new approaches in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qiufen Bi
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Nie
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
38
|
Ren Y, Fan L, Wang L, Liu Y, Zhang J, Wang B, Chen R, Chen X, Zhuang L, Zhang Y, Sun H, Li J, Shi W, Jin H. SSRP1/SLC3A2 Axis in Arginine Transport: A New Target for Overcoming Immune Evasion and Tumor Progression in Peripheral T-Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415698. [PMID: 40344476 DOI: 10.1002/advs.202415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/13/2025] [Indexed: 05/11/2025]
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of mature T-cell malignancies with poor prognosis. Therefore, improved therapies are urgently required to improve patient outcomes. In this study, metabolic inhibitor drug screening reveals that quinacrine elicits excellent antitumor activity both in vitro and in vivo by downregulating intracellular arginine levels in PTCL. Single-cell transcriptomic analyses reveal aberrant arginine metabolism in patients with PTCL, characterized by excessive solute carrier family 3 member 2 (SLC3A2) mediated arginine uptake preferentially in tumor cells. High SLC3A2 expression predicts poor outcomes in PTCL, as SLC3A2-mediated arginine uptake promotes the malignant behaviors of tumor cells and induces tumor immune escape, thereby fueling tumor progression. Mechanistically, high arginine levels induce global metabolic changes, including enhanced oxidative phosphorylation by promoting nascent RNA synthesis. This work identifies structure-specific recognition protein 1 (SSRP1), which upregulates SLC3A2, as a co-transcription factor with JUNB. Quinacrine disrupts SLC3A2-mediated arginine transport by targeting SSRP1. Combining quinacrine with histone deacetylase inhibitors is a promising therapeutic strategy for PTCL.
Collapse
Affiliation(s)
- Yimin Ren
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Lei Fan
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ling Wang
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Department of Hematology, Affiliated Hospital 2 of Nantong University, Nantong, 226001, China
| | - Yanping Liu
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Boya Wang
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ruize Chen
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xiao Chen
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Lingyu Zhuang
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Handong Sun
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Jianyong Li
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Jin
- Lymphoma Center, Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
39
|
Emami A, Mahdavi Sharif P, Rezaei N. KRAS mutations in colorectal cancer: impacts on tumor microenvironment and therapeutic implications. Expert Opin Ther Targets 2025:1-23. [PMID: 40320681 DOI: 10.1080/14728222.2025.2500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Despite decreasing trends in incidence, colorectal cancer (CRC) is still a major contributor to malignancy-related morbidities and mortalities. Groundbreaking advances in immunotherapies and targeted therapies benefit a subset of CRC patients, with sub-optimal outcomes. Hence, there is an unmet need to design and manufacture novel therapies, especially for advanced/metastatic disease. KRAS, the most highly mutated proto-oncogene across human malignancies, particularly in pancreatic adenocarcinoma, non-small cell lung cancer, and CRC, is an on-off switch and governs several fundamental cell signaling cascades. KRAS mutations not only propel the progression and metastasis of CRC but also critically modulate responses to targeted therapies. AREAS COVERED We discuss the impacts of KRAS mutations on the CRC's tumor microenvironment and describe novel strategies for targeting KRAS and its associated signaling cascades and mechanisms of drug resistance. EXPERT OPINION Drug development against KRAS mutations has been challenging, mainly due to structural properties (offering no appropriate binding site for small molecules), critical functions of the wild-type KRAS in non-cancerous cells, and the complex network of its downstream effector pathways (allowing malignant cells to develop resistance). Pre-clinical and early clinical data offer promises for combining KRAS inhibitors with immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Anita Emami
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Huang F, Wang Y, Zhang X, Gao W, Li J, Yang Y, Mo H, Prince E, Long Y, Hu J, Jiang C, Kang Y, Chen Z, Hu YC, Zeng C, Yang L, Chen CW, Chen J, Huang H, Weng H. m 6A/IGF2BP3-driven serine biosynthesis fuels AML stemness and metabolic vulnerability. Nat Commun 2025; 16:4214. [PMID: 40328743 PMCID: PMC12056023 DOI: 10.1038/s41467-025-58966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic reprogramming of amino acids represents a vulnerability in cancer cells, yet the mechanisms underlying serine metabolism in acute myeloid leukemia (AML) and leukemia stem/initiating cells (LSCs/LICs) remain unclear. Here, we identify RNA N6-methyladenosine (m6A) modification as a key regulator of serine biosynthesis in AML. Using a CRISPR/Cas9 screen, we find that depletion of m6A regulators IGF2BP3 or METTL14 sensitizes AML cells to serine and glycine (SG) deprivation. IGF2BP3 recognizies m6A on mRNAs of key serine synthesis pathway (SSP) genes (e.g., ATF4, PHGDH, PSAT1), stabilizing these transcripts and sustaining serine production to meet the high metabolic demand of AML cells and LSCs/LICs. IGF2BP3 silencing combined with dietary SG restriction potently inhibits AML in vitro and in vivo, while its deletion spares normal hematopoiesis. Our findings reveal the critical role of m6A modification in the serine metabolic vulnerability of AML and highlight the IGF2BP3/m6A/SSP axis as a promising therapeutic target.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Serine/biosynthesis
- Serine/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice
- Cell Line, Tumor
- Glycine/metabolism
- Methyltransferases/metabolism
- Methyltransferases/genetics
- CRISPR-Cas Systems
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Feng Huang
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | | | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Jingwen Li
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Emily Prince
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang Jiang
- Guangzhou National Laboratory, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenhua Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengwu Zeng
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Lu Yang
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology and Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- The Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
41
|
Fu R, Li Z, Liu J, Xu B, Wen X, Zhang L. Potential mechanism of inhibitory effect of "medicine food homology" curcumin and its analogue EF24 on oral squamous cell carcinoma. Clin Transl Oncol 2025:10.1007/s12094-025-03871-8. [PMID: 40314923 DOI: 10.1007/s12094-025-03871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of head and neck with high incidence and poor prognosis. Curcumin, as a drug-food congener, has a broad spectrum of anticancer effects, and based on this property, we further focused on EF24, a small molecule compound using curcumin as a backbone, to study the effects of both in OSCC. METHODS Cell experiments were performed to test the inhibitory effect of curcumin and EF24 on OSCC cells. The potential mechanism was further analyzed by transcriptome sequencing, and the DEGs after drug treatment were determined. PPI networks were created using Cytoscape software. RESULTS Both curcumin and EF24 inhibit the viability, migration, and invasion, and induce apoptosis of OSCC cells and the IC50 of EF24 was much lower than that of curcumin. Analysis of DEGs identified 893 DEGs following curcumin treatment, of which 794 were up-regulated and 99 were down-regulated; 797 DEGs following EF24 treatment were identified, of which 665 were up-regulated and 132 were down-regulated. Curcumin and EF24 were found to down-regulate lipid metabolism by key enzymes that regulate fatty acid and cholesterol synthesis. Furthermore, the number of T cell CD4 + memory is up-regulated and the immune response is enhanced. CONCLUSIONS It is suggested that curcumin and EF24 inhibit the metabolic reprogramming of tumor cells and at the same time regulate TME, and improve the immunotherapy of tumors, which opens the way for the future treatment of OSCC with this approach alone or in conjunction with immune-checkpoint blocking.
Collapse
Affiliation(s)
- Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Ji'an Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Bo Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, People's Republic of China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- National Center for Stomatology, Shanghai, People's Republic of China.
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.
- Kashagar District Second People's Hospital, Xinjiang, People's Republic of China.
| |
Collapse
|
42
|
Marttila P, Meiser J. NAD kinase essentiality in cancer: in real life, it is all about folates. Nat Metab 2025:10.1038/s42255-025-01270-5. [PMID: 40316836 DOI: 10.1038/s42255-025-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Affiliation(s)
- Petra Marttila
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
43
|
Lin Y, Zhang Y, Huang T, Chen J, Li G, Zhang B, Xu L, Wang K, He H, Chen H, Liu D, Guo S, He X, Lan P. Arginine Deprivation Induces Quiescence and Confers Vulnerability to Ferroptosis in Colorectal Cancer. Cancer Res 2025; 85:1663-1679. [PMID: 39992728 PMCID: PMC12046318 DOI: 10.1158/0008-5472.can-24-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/21/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer. Rewiring of amino acid metabolic processes provides the basis for amino acid deprivation therapies. In this study, we found that arginine biosynthesis is limited in colorectal cancer because of the deficiency of ornithine transcarbamylase. Accordingly, colorectal cancer cells met the demand for arginine by increasing external uptake. The addiction to environmental arginine resulted in the susceptibility of colorectal cancer to arginine deprivation, which dramatically decreased proliferation in colorectal cancer cells and promoted these cells to enter a reversible quiescence state. Arginine deprivation induced quiescence by activating the AMPK-p53-p21 pathway. RNA sequencing data indicated that colorectal cancer cells may be vulnerable to ferroptosis during arginine deprivation and the combination of ferroptosis inducers and arginine deprivation strongly impeded tumor growth in vivo. These findings suggest that dietary modification combined with ferroptosis induction could be a potential therapeutic strategy for colorectal cancer. Significance: Colorectal cancer dependency on arginine uptake creates a metabolic vulnerability to arginine deficiency that causes cell cycle arrest and ferroptosis sensitivity, highlighting arginine deprivation plus ferroptosis induction as a promising treatment.
Collapse
Affiliation(s)
- Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianze Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junguo Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanman Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danling Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Guo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
44
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
45
|
Zhang N, Dong L, Liu S, Ning T, Zhu S. MTFR1 phosphorylation-activated adaptive mitochondrial fusion is essential for colon cancer cell survival during glucose deprivation. Neoplasia 2025; 63:101159. [PMID: 40121946 PMCID: PMC11981790 DOI: 10.1016/j.neo.2025.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondrial dynamics are essential for maintaining cellular function under metabolic stress. However, their role in colon cancer's response to glucose deprivation remains poorly understood. METHODS The role of the mitochondrial protein MTFR1 in colon cancer proliferation was evaluated using CCK-8 and colony formation assays. Mass spectrometry identified MTFR1-interacting proteins and phosphorylation sites. Mitochondrial morphology was examined with Mitotracker staining, and mitochondrial function was evaluated using MitoSOX, JC-1 staining, and the Seahorse cell mitochondrial stress test. RESULTS We observed that MTFR1 is highly expressed in colon cancer cells and interacts with NEK1 under glucose deprivation. This interaction induces phosphorylation of MTFR1 at serine 119, which promotes mitochondrial fusion and supports mitochondrial function. Consequently, enhanced oxidative phosphorylation improves cellular tolerance to glucose deprivation. CONCLUSIONS Our findings highlight the importance of MTFR1 in modulating mitochondrial dynamics and its potential impact on colon cancer cell survival under metabolic stress. These results suggest that MTFR1 serine 119 could be a key regulator of colon cancer cell metabolism and a potential therapeutic target for enhancing cancer cell response to metabolic challenges.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Lu Dong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
46
|
Liu W, Hu X, Bao Z, Li Y, Zhang J, Yang S, Huang Y, Wang R, Wu J, Xu X, Sang Q, Di W, Lu H, Yin X, Qian K. Serum metabolic fingerprints encode functional biomarkers for ovarian cancer diagnosis: a large-scale cohort study. EBioMedicine 2025; 115:105706. [PMID: 40273469 PMCID: PMC12051638 DOI: 10.1016/j.ebiom.2025.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) ranks as the most lethal gynaecological malignancy worldwide, with early diagnosis being crucial yet challenging. Current diagnostic methods like transvaginal ultrasound and blood biomarkers show limited sensitivity/specificity. This study aimed to identify and validate serum metabolic biomarkers for OC diagnosis using the largest cohort reported to date. METHODS We constructed a large-scale OC-associated cohort of 1432 subjects, including 662 OC, 563 benign ovarian disease, and 207 healthy control subjects, across retrospective (n = 1073) and set-aside validation (n = 359) cohorts. Serum metabolic fingerprints (SMFs) were recorded using nanoparticle-enhanced laser desorption/ionization mass spectrometry (NELDI-MS). A diagnostic panel was developed through machine learning of SMFs in the discovery cohort and validated in independent verification and set-aside validation cohorts. The identified metabolic biomarkers were further validated using liquid chromatography MS and their biological functions were assessed in OC cell lines. FINDINGS We identified a metabolic biomarker panel including glucose, histidine, pyrrole-2-carboxylic acid, and dihydrothymine. This panel achieved consistent areas under the curve (AUCs) of 0.87-0.89 for distinguishing between malignant and benign ovarian masses across all cohorts, and improved to AUCs of 0.95-0.99 when combined with risk of ovarian malignancy algorithm (ROMA). In vitro validation provided initial biological context for the metabolic alterations observed in our diagnostic panel. INTERPRETATION Our study established a reliable serum metabolic biomarker panel for OC diagnosis with potential clinical translations. The NELDI-MS based approach offers advantages of fast analytical speed (∼30 s/sample) and low cost (∼2-3 dollars/sample), making it suitable for large-scale clinical applications. FUNDING MOST (2021YFA0910100), NSFC (82421001, 823B2050, 824B2059, and 82173077), Medical-Engineering Joint Funds of Shanghai Jiao Tong University (YG2021GD02, YG2024ZD07, and YG2023ZD08), Shanghai Science and Technology Committee Project (23JC1403000), Shanghai Institutions of Higher Learning (2021-01-07-00-02-E00083), Shanghai Jiao Tong University Inner Mongolia Research Institute (2022XYJG0001-01-16), Sichuan Provincial Department of Science and Technology (2024YFHZ0176), Innovation Research Plan by the Shanghai Municipal Education Commission (ZXWF082101), Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20210700), Basic-Clinical Collaborative Innovation Project from Shanghai Immune Therapy Institute, Guangdong Basic and Applied Basic Research Foundation (2024A1515013255).
Collapse
Affiliation(s)
- Wanshan Liu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiaoxiao Hu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Yanyan Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Juxiang Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Shouzhi Yang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yida Huang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Ruimin Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jiao Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiaoyu Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Qi Sang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China.
| | - Huaiwu Lu
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Xia Yin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China.
| | - Kun Qian
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
47
|
Wang S, Zheng H, Zhao J, Xie J. Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). Int J Mol Med 2025; 55:71. [PMID: 40052587 PMCID: PMC11913435 DOI: 10.3892/ijmm.2025.5512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.
Collapse
Affiliation(s)
| | | | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
48
|
Román-Trufero M, Kleijn IT, Blighe K, Zhou J, Saavedra-García P, Gaffar A, Christoforou M, Bellotti A, Abrahams J, Atrih A, Lamont D, Gierlinski M, Jayaprakash P, Michel AM, Aboagye EO, Yuneva M, Masson GR, Shahrezaei V, Auner HW. An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation. Life Sci Alliance 2025; 8:e202403014. [PMID: 40032489 PMCID: PMC11876863 DOI: 10.26508/lsa.202403014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
The integrated stress response (ISR) is a corrective physiological programme to restore cellular homeostasis that is based on the attenuation of global protein synthesis and a resource-enhancing transcriptional programme. GCN2 is the oldest of four kinases that are activated by diverse cellular stresses to trigger the ISR and acts as the primary responder to amino acid shortage and ribosome collisions. Here, using a broad multi-omics approach, we uncover an ISR-independent role of GCN2. GCN2 inhibition or depletion in the absence of discernible stress causes excessive protein synthesis and ribosome biogenesis, perturbs the cellular translatome, and results in a dynamic and broad loss of metabolic homeostasis. Cancer cells that rely on GCN2 to keep protein synthesis in check under conditions of full nutrient availability depend on GCN2 for survival and unrestricted tumour growth. Our observations describe an ISR-independent role of GCN2 in regulating the cellular proteome and translatome and suggest new avenues for cancer therapies based on unleashing excessive mRNA translation.
Collapse
Affiliation(s)
- Mónica Román-Trufero
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Istvan T Kleijn
- Department of Mathematics, Imperial College London, London, UK
| | | | - Jinglin Zhou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Paula Saavedra-García
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Abigail Gaffar
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marilena Christoforou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Axel Bellotti
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Joel Abrahams
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Douglas Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Glenn R Masson
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | | | - Holger W Auner
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Jiang C, Qian Y, Bai X, Li S, Zhang L, Xie Y, Lu Y, Lu Z, Liu B, Jiang BH. SLC7A5/E2F1/PTBP1/PKM2 axis mediates progression and therapy effect of triple-negative breast cancer through the crosstalk of amino acid metabolism and glycolysis pathway. Cancer Lett 2025; 617:217612. [PMID: 40054655 DOI: 10.1016/j.canlet.2025.217612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Triple-negative breast cancer (TNBC) is one of the most challenging malignancies with the highest mortality rates among women. TNBC relies on both amino acid metabolism and glycolysis to fuel its bioenergetic and biosynthetic demands. However, the potential crosstalk between these two metabolic pathways and its impact on TNBC progression remain largely unexplored. In this study, we observed that SLC7A5, a key amino acid transporter, was upregulated in TNBC and strongly associated with poor patient prognosis. We demonstrated that the elevated SLC7A5 expression activated the amino acid pathway and promoted cell proliferation, tumor growth, and therapeutic resistance by inducing the switch from PKM1 to PKM2 expression, thereby mediating the crosstalk between amino acid metabolism and glycolysis. We further identified that the upregulation of SLC7A5 resulted from miR-152 suppression, which regulates TNBC cellular function and tumor growth. In addition, the miR-152/SLC7A5 axis mediated the expression of PTBP1, which maintains the balance between PKM1 and PKM2, linking amino acid signaling with the glycolysis pathway. To further understand the mechanism of PTBP1 upregulation, we identified that E2F1 transcriptionally activated PTBP1 expression through direct binding at the seed site, while E2F1 expression was also induced by SLC7A5 in TNBC. This novel SLC7A5/E2F1/PTBP1 axis plays a crucial role in regulating the crosstalk between amino acid signaling and glycolysis in TNBC and is essential for TNBC progression and therapeutic effectiveness. Our findings offer valuable insights into the molecular mechanisms underlying TNBC metabolic reprogramming and highlight potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Chengfei Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Yingchen Qian
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Shuangya Li
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Liyuan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yunxia Xie
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifan Lu
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China
| | - Bingjie Liu
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Bing-Hua Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
50
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|