1
|
Glavin DP, Dworkin JP, Alexander CMO, Aponte JC, Baczynski AA, Barnes JJ, Bechtel HA, Berger EL, Burton AS, Caselli P, Chung AH, Clemett SJ, Cody GD, Dominguez G, Elsila JE, Farnsworth KK, Foustoukos DI, Freeman KH, Furukawa Y, Gainsforth Z, Graham HV, Grassi T, Giuliano BM, Hamilton VE, Haenecour P, Heck PR, Hofmann AE, House CH, Huang Y, Kaplan HH, Keller LP, Kim B, Koga T, Liss M, McLain HL, Marcus MA, Matney M, McCoy TJ, McIntosh OM, Mojarro A, Naraoka H, Nguyen AN, Nuevo M, Nuth JA, Oba Y, Parker ET, Peretyazhko TS, Sandford SA, Santos E, Schmitt-Kopplin P, Seguin F, Simkus DN, Shahid A, Takano Y, Thomas-Keprta KL, Tripathi H, Weiss G, Zheng Y, Lunning NG, Righter K, Connolly HC, Lauretta DS. Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. NATURE ASTRONOMY 2025; 9:199-210. [PMID: 39990238 PMCID: PMC11842271 DOI: 10.1038/s41550-024-02472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025]
Abstract
Organic matter in meteorites reveals clues about early Solar System chemistry and the origin of molecules important to life, but terrestrial exposure complicates interpretation. Samples returned from the B-type asteroid Bennu by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer mission enabled us to study pristine carbonaceous astromaterial without uncontrolled exposure to Earth's biosphere. Here we show that Bennu samples are volatile rich, with more carbon, nitrogen and ammonia than samples from asteroid Ryugu and most meteorites. Nitrogen-15 isotopic enrichments indicate that ammonia and other N-containing soluble molecules formed in a cold molecular cloud or the outer protoplanetary disk. We detected amino acids (including 14 of the 20 used in terrestrial biology), amines, formaldehyde, carboxylic acids, polycyclic aromatic hydrocarbons and N-heterocycles (including all five nucleobases found in DNA and RNA), along with ~10,000 N-bearing chemical species. All chiral non-protein amino acids were racemic or nearly so, implying that terrestrial life's left-handed chirality may not be due to bias in prebiotic molecules delivered by impacts. The relative abundances of amino acids and other soluble organics suggest formation and alteration by low-temperature reactions, possibly in NH3-rich fluids. Bennu's parent asteroid developed in or accreted ices from a reservoir in the outer Solar System where ammonia ice was stable.
Collapse
Affiliation(s)
- Daniel P. Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Jason P. Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | | | - José C. Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Allison A. Baczynski
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Jessica J. Barnes
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | | | - Eve L. Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
| | | | - Paola Caselli
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Angela H. Chung
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Department of Chemistry, Catholic University of America, Washington, DC USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD USA
| | - Simon J. Clemett
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
- ERC, Inc., JETS/Jacobs, Houston, TX USA
| | - George D. Cody
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC USA
| | | | - Jamie E. Elsila
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Kendra K. Farnsworth
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD USA
- Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD USA
| | | | - Katherine H. Freeman
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | | | - Zack Gainsforth
- Space Science Laboratory, University of California, Berkeley, CA USA
| | - Heather V. Graham
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Tommaso Grassi
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Barbara Michela Giuliano
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | | | - Pierre Haenecour
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Philipp R. Heck
- Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL USA
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL USA
| | - Amy E. Hofmann
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Christopher H. House
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Yongsong Huang
- Department of Earth, Environmental, and Planetary Science, Brown University, Providence, RI USA
| | - Hannah H. Kaplan
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Lindsay P. Keller
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
| | - Bumsoo Kim
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
- Department of Earth, Environmental, and Planetary Science, Brown University, Providence, RI USA
- Amentum, JSC Engineering and Technical Support (JETSII) Contract, NASA Johnson Space Center, Houston, TX USA
| | - Toshiki Koga
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Japan
| | - Michael Liss
- Technical University Munich, Freising, Germany
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, Neuherberg, Germany
| | - Hannah L. McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Department of Chemistry, Catholic University of America, Washington, DC USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD USA
| | | | - Mila Matney
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Timothy J. McCoy
- National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Ophélie M. McIntosh
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Angel Mojarro
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Oak Ridge Associated Universities, Oak Ridge, TN USA
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
| | - Ann N. Nguyen
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
| | - Michel Nuevo
- NASA Ames Research Center, Moffett Field, CA USA
| | - Joseph A. Nuth
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Yasuhiro Oba
- Institute of Low Temperature Science, Hokkaido University, N19W8 Kita-ku, Sapporo, Japan
| | - Eric T. Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
| | - Tanya S. Peretyazhko
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
- Amentum, JSC Engineering and Technical Support (JETSII) Contract, NASA Johnson Space Center, Houston, TX USA
| | | | - Ewerton Santos
- Department of Earth, Environmental, and Planetary Science, Brown University, Providence, RI USA
| | - Philippe Schmitt-Kopplin
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
- Technical University Munich, Freising, Germany
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, Neuherberg, Germany
| | - Frederic Seguin
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD USA
| | - Danielle N. Simkus
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Department of Chemistry, Catholic University of America, Washington, DC USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, MD USA
| | - Anique Shahid
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
- Department of Physics, Technische Universität München, Muenchen, Germany
| | - Yoshinori Takano
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Japan
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Kathie L. Thomas-Keprta
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
- Barrios, JETS/Jacobs, Houston, TX USA
| | - Havishk Tripathi
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Southeastern Universities Research Association, Washington, DC USA
| | - Gabriella Weiss
- Solar System Exploration Division, NASA Goddard Space Flight Center (GSFC), Greenbelt, MD USA
- Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD USA
| | - Yuke Zheng
- Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL USA
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL USA
| | - Nicole G. Lunning
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
| | - Kevin Righter
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY USA
| | - Harold C. Connolly
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
- Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ USA
- Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY USA
| | - Dante S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| |
Collapse
|
2
|
Jones GH, Snodgrass C, Tubiana C, Küppers M, Kawakita H, Lara LM, Agarwal J, André N, Attree N, Auster U, Bagnulo S, Bannister M, Beth A, Bowles N, Coates A, Colangeli L, Corral van Damme C, Da Deppo V, De Keyser J, Della Corte V, Edberg N, El-Maarry MR, Faggi S, Fulle M, Funase R, Galand M, Goetz C, Groussin O, Guilbert-Lepoutre A, Henri P, Kasahara S, Kereszturi A, Kidger M, Knight M, Kokotanekova R, Kolmasova I, Kossacki K, Kührt E, Kwon Y, La Forgia F, Levasseur-Regourd AC, Lippi M, Longobardo A, Marschall R, Morawski M, Muñoz O, Näsilä A, Nilsson H, Opitom C, Pajusalu M, Pommerol A, Prech L, Rando N, Ratti F, Rothkaehl H, Rotundi A, Rubin M, Sakatani N, Sánchez JP, Simon Wedlund C, Stankov A, Thomas N, Toth I, Villanueva G, Vincent JB, Volwerk M, Wurz P, Wielders A, Yoshioka K, Aleksiejuk K, Alvarez F, Amoros C, Aslam S, Atamaniuk B, Baran J, Barciński T, Beck T, Behnke T, Berglund M, Bertini I, Bieda M, Binczyk P, Busch MD, Cacovean A, Capria MT, Carr C, Castro Marín JM, Ceriotti M, Chioetto P, Chuchra-Konrad A, Cocola L, Colin F, Crews C, Cripps V, Cupido E, Dassatti A, Davidsson BJR, De Roche T, Deca J, Del Togno S, et alJones GH, Snodgrass C, Tubiana C, Küppers M, Kawakita H, Lara LM, Agarwal J, André N, Attree N, Auster U, Bagnulo S, Bannister M, Beth A, Bowles N, Coates A, Colangeli L, Corral van Damme C, Da Deppo V, De Keyser J, Della Corte V, Edberg N, El-Maarry MR, Faggi S, Fulle M, Funase R, Galand M, Goetz C, Groussin O, Guilbert-Lepoutre A, Henri P, Kasahara S, Kereszturi A, Kidger M, Knight M, Kokotanekova R, Kolmasova I, Kossacki K, Kührt E, Kwon Y, La Forgia F, Levasseur-Regourd AC, Lippi M, Longobardo A, Marschall R, Morawski M, Muñoz O, Näsilä A, Nilsson H, Opitom C, Pajusalu M, Pommerol A, Prech L, Rando N, Ratti F, Rothkaehl H, Rotundi A, Rubin M, Sakatani N, Sánchez JP, Simon Wedlund C, Stankov A, Thomas N, Toth I, Villanueva G, Vincent JB, Volwerk M, Wurz P, Wielders A, Yoshioka K, Aleksiejuk K, Alvarez F, Amoros C, Aslam S, Atamaniuk B, Baran J, Barciński T, Beck T, Behnke T, Berglund M, Bertini I, Bieda M, Binczyk P, Busch MD, Cacovean A, Capria MT, Carr C, Castro Marín JM, Ceriotti M, Chioetto P, Chuchra-Konrad A, Cocola L, Colin F, Crews C, Cripps V, Cupido E, Dassatti A, Davidsson BJR, De Roche T, Deca J, Del Togno S, Dhooghe F, Donaldson Hanna K, Eriksson A, Fedorov A, Fernández-Valenzuela E, Ferretti S, Floriot J, Frassetto F, Fredriksson J, Garnier P, Gaweł D, Génot V, Gerber T, Glassmeier KH, Granvik M, Grison B, Gunell H, Hachemi T, Hagen C, Hajra R, Harada Y, Hasiba J, Haslebacher N, Herranz De La Revilla ML, Hestroffer D, Hewagama T, Holt C, Hviid S, Iakubivskyi I, Inno L, Irwin P, Ivanovski S, Jansky J, Jernej I, Jeszenszky H, Jimenéz J, Jorda L, Kama M, Kameda S, Kelley MSP, Klepacki K, Kohout T, Kojima H, Kowalski T, Kuwabara M, Ladno M, Laky G, Lammer H, Lan R, Lavraud B, Lazzarin M, Le Duff O, Lee QM, Lesniak C, Lewis Z, Lin ZY, Lister T, Lowry S, Magnes W, Markkanen J, Martinez Navajas I, Martins Z, Matsuoka A, Matyjasiak B, Mazelle C, Mazzotta Epifani E, Meier M, Michaelis H, Micheli M, Migliorini A, Millet AL, Moreno F, Mottola S, Moutounaick B, Muinonen K, Müller DR, Murakami G, Murata N, Myszka K, Nakajima S, Nemeth Z, Nikolajev A, Nordera S, Ohlsson D, Olesk A, Ottacher H, Ozaki N, Oziol C, Patel M, Savio Paul A, Penttilä A, Pernechele C, Peterson J, Petraglio E, Piccirillo AM, Plaschke F, Polak S, Postberg F, Proosa H, Protopapa S, Puccio W, Ranvier S, Raymond S, Richter I, Rieder M, Rigamonti R, Ruiz Rodriguez I, Santolik O, Sasaki T, Schrödter R, Shirley K, Slavinskis A, Sodor B, Soucek J, Stephenson P, Stöckli L, Szewczyk P, Troznai G, Uhlir L, Usami N, Valavanoglou A, Vaverka J, Wang W, Wang XD, Wattieaux G, Wieser M, Wolf S, Yano H, Yoshikawa I, Zakharov V, Zawistowski T, Zuppella P, Rinaldi G, Ji H. The Comet Interceptor Mission. SPACE SCIENCE REVIEWS 2024; 220:9. [PMID: 38282745 PMCID: PMC10808369 DOI: 10.1007/s11214-023-01035-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms - 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
Collapse
Affiliation(s)
- Geraint H. Jones
- Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, UK
- The Centre for Planetary Sciences at UCL/Birkbeck, London, UK
| | | | | | - Michael Küppers
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | - Hideyo Kawakita
- Koyama Astronomical Observatory, Kyoto Sangyo University, Kyoto, Japan
| | - Luisa M. Lara
- Instituto de Astrofisica de Andalucía – CSIC, Granada, Spain
| | - Jessica Agarwal
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicolas André
- IRAP, CNRS, University Toulouse 3, CNES, Toulouse, France
| | - Nicholas Attree
- Instituto de Astrofisica de Andalucía – CSIC, Granada, Spain
| | - Uli Auster
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | - Arnaud Beth
- Department of Physics, Imperial College London, London, UK
| | - Neil Bowles
- Department of Physics, University of Oxford, Oxford, UK
| | - Andrew Coates
- Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, UK
- The Centre for Planetary Sciences at UCL/Birkbeck, London, UK
| | | | | | - Vania Da Deppo
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | - Johan De Keyser
- Royal Belgian Institute of Space Aeronomy, Brussels, Belgium
| | | | - Niklas Edberg
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | - Mohamed Ramy El-Maarry
- Space and Planetary Science Center and Department of Earth Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sara Faggi
- NASA Goddard Space Flight Center, Greenbelt, USA
| | - Marco Fulle
- INAF – Osservatorio Astronomico di Trieste, Trieste, Italy
| | - Ryu Funase
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Marina Galand
- Department of Physics, Imperial College London, London, UK
| | | | - Olivier Groussin
- Laboratoire d’Astrophysique de Marseille, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Pierre Henri
- Laboratoire Lagrange, CNRS, OCA, Université Côte d’Azur, and LPC2E, CNRS, Université d’Orléans, CNES, Orléans, France
| | | | - Akos Kereszturi
- Konkoly Astronomical Institute, Research Centre for Astronomy and Earth Sciences, HUN-REN, Budapest, Hungary
| | - Mark Kidger
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Madrid, Spain
| | | | - Rosita Kokotanekova
- Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivana Kolmasova
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Ekkehard Kührt
- DLR, Institute of Optical Sensor Systems, Berlin, Germany
| | - Yuna Kwon
- Caltech/IPAC, 1200 E California Blvd, MC 100-22 Pasadena, CA 91125, USA
| | | | | | - Manuela Lippi
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Raphael Marschall
- CNRS, Laboratoire J.-L. Lagrange, Observatoire de la Côte d’Azur, Nice, France
| | - Marek Morawski
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | - Olga Muñoz
- Instituto de Astrofisica de Andalucía – CSIC, Granada, Spain
| | - Antti Näsilä
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Hans Nilsson
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | | | | | - Antoine Pommerol
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | | | - Nicola Rando
- European Space Agency, ESTEC, Noordwijk, The Netherlands
| | | | - Hanna Rothkaehl
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | - Alessandra Rotundi
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | - Martin Rubin
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Naoya Sakatani
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Joan Pau Sánchez
- Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse, France
| | | | | | - Nicolas Thomas
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Imre Toth
- Konkoly Astronomical Institute, Research Centre for Astronomy and Earth Sciences, HUN-REN, Budapest, Hungary
| | | | | | - Martin Volwerk
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Peter Wurz
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Arno Wielders
- European Space Agency, ESTEC, Noordwijk, The Netherlands
| | | | - Konrad Aleksiejuk
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Carine Amoros
- IRAP, CNRS, University Toulouse 3, CNES, Toulouse, France
| | - Shahid Aslam
- NASA Goddard Space Flight Center, Greenbelt, USA
| | - Barbara Atamaniuk
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | - Jędrzej Baran
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Barciński
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | - Thomas Beck
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Thomas Behnke
- DLR Institute of Planetary Research, Berlin, Germany
| | | | - Ivano Bertini
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | | | | | - Martin-Diego Busch
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | | | | | - Chris Carr
- Department of Physics, Imperial College London, London, UK
| | | | | | - Paolo Chioetto
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | | | - Lorenzo Cocola
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | - Fabrice Colin
- LPC2E, CNRS, Université d’Orléans, CNES, Orléans, France
| | | | | | | | - Alberto Dassatti
- REDS, School of Management and Engineering Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
| | | | - Thierry De Roche
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Jan Deca
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, USA
| | | | | | | | | | - Andrey Fedorov
- IRAP, CNRS, University Toulouse 3, CNES, Toulouse, France
| | | | - Stefano Ferretti
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | - Johan Floriot
- Laboratoire d’Astrophysique de Marseille, Aix-Marseille Université, CNRS, Marseille, France
| | - Fabio Frassetto
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | | | | | | | - Vincent Génot
- IRAP, CNRS, University Toulouse 3, CNES, Toulouse, France
| | - Thomas Gerber
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Karl-Heinz Glassmeier
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mikael Granvik
- Department of Physics, University of Helsinki, Helsinki, Finland
- Asteroid Engineering Lab, Luleå University of Technology, Kiruna, Sweden
| | - Benjamin Grison
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Christian Hagen
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | | | | | - Johann Hasiba
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Nico Haslebacher
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | | | - Daniel Hestroffer
- IMCCE, Paris Observatory, Université PSL, CNRS, Sorbonne Université, Univ. Lille, Paris, France
| | | | | | - Stubbe Hviid
- DLR Institute of Planetary Research, Berlin, Germany
| | | | - Laura Inno
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | - Patrick Irwin
- Department of Physics, University of Oxford, Oxford, UK
| | | | - Jiri Jansky
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Irmgard Jernej
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Harald Jeszenszky
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Jaime Jimenéz
- Instituto de Astrofisica de Andalucía – CSIC, Granada, Spain
| | - Laurent Jorda
- Laboratoire d’Astrophysique de Marseille, Aix-Marseille Université, CNRS, Marseille, France
| | - Mihkel Kama
- Tartu Observatory, University of Tartu, Tartu, Estonia
- University College London, London, UK
| | | | | | | | - Tomáš Kohout
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Institute of Geology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hirotsugu Kojima
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Tomasz Kowalski
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Gunter Laky
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Helmut Lammer
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Radek Lan
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Benoit Lavraud
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Nouvelle-Aquitaine, France
| | - Monica Lazzarin
- Department of Physics and Astronomy, University of Padova, Padova, Italy
| | | | - Qiu-Mei Lee
- IRAP, CNRS, University Toulouse 3, CNES, Toulouse, France
| | | | - Zoe Lewis
- Department of Physics, Imperial College London, London, UK
| | - Zhong-Yi Lin
- Institute of Astronomy, National Central University, Taoyuan, Taiwan
| | | | | | - Werner Magnes
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Johannes Markkanen
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | - Mirko Meier
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | | | | | | | | | - Fernando Moreno
- Instituto de Astrofisica de Andalucía – CSIC, Granada, Spain
| | | | | | - Karri Muinonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Daniel R. Müller
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Go Murakami
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Naofumi Murata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | | | - Shintaro Nakajima
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Zoltan Nemeth
- Wigner Research Centre for Physics, Budapest, Hungary
| | | | - Simone Nordera
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | - Dan Ohlsson
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | - Aire Olesk
- Tartu Observatory, University of Tartu, Tartu, Estonia
| | - Harald Ottacher
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Naoya Ozaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | | | | | | | - Antti Penttilä
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | | | - Enrico Petraglio
- REDS, School of Management and Engineering Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
| | - Alice Maria Piccirillo
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | - Ferdinand Plaschke
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Szymon Polak
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Herman Proosa
- Tartu Observatory, University of Tartu, Tartu, Estonia
| | | | - Walter Puccio
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | - Sylvain Ranvier
- Royal Belgian Institute of Space Aeronomy, Brussels, Belgium
| | - Sean Raymond
- Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Nouvelle-Aquitaine, France
| | - Ingo Richter
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin Rieder
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Roberto Rigamonti
- REDS, School of Management and Engineering Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Delémont, Switzerland
| | | | - Ondrej Santolik
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Takahiro Sasaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | | | | | | | | | - Jan Soucek
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Linus Stöckli
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Paweł Szewczyk
- Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Ludek Uhlir
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Naoto Usami
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Aris Valavanoglou
- Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | | | - Wei Wang
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Xiao-Dong Wang
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | - Gaëtan Wattieaux
- Laboratoire Plasma et Conversion d’Energie (LAPLACE), CNRS, Université de Toulouse 3, Toulouse, France
| | - Martin Wieser
- Swedish Institute of Space Physics, Uppsala/Kiruna, Sweden
| | - Sebastian Wolf
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | | | - Vladimir Zakharov
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, Paris, France
| | | | - Paola Zuppella
- CNR-Institute for Photonics and Nanotechnologies, Padova, Italy
| | | | - Hantao Ji
- Department of Astrophysical Sciences, Princeton University, Princeton, USA
| |
Collapse
|
3
|
Amano K, Matsuoka M, Nakamura T, Kagawa E, Fujioka Y, Potin SM, Hiroi T, Tatsumi E, Milliken RE, Quirico E, Beck P, Brunetto R, Uesugi M, Takahashi Y, Kawai T, Yamashita S, Enokido Y, Wada T, Furukawa Y, Zolensky ME, Takir D, Domingue DL, Jaramillo-Correa C, Vilas F, Hendrix AR, Kikuiri M, Morita T, Yurimoto H, Noguchi T, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y. Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites. SCIENCE ADVANCES 2023; 9:eadi3789. [PMID: 38055820 DOI: 10.1126/sciadv.adi3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
The carbonaceous asteroid Ryugu has been explored by the Hayabusa2 spacecraft to elucidate the actual nature of hydrous asteroids. Laboratory analyses revealed that the samples from Ryugu are comparable to unheated CI carbonaceous chondrites; however, reflectance spectra of Ryugu samples and CIs do not coincide. Here, we demonstrate that Ryugu sample spectra are reproduced by heating Orgueil CI chondrite at 300°C under reducing conditions, which caused dehydration of terrestrial weathering products and reduction of iron in phyllosilicates. Terrestrial weathering of CIs accounts for the spectral differences between Ryugu sample and CIs, which is more severe than space weathering that likely explains those between asteroid Ryugu and the collected samples. Previous assignments of CI chondrite parent bodies, i.e., chemically most primitive objects in the solar system, are based on the spectra of CI chondrites. This study indicates that actual spectra of CI parent bodies are much darker and flatter at ultraviolet to visible wavelengths than the spectra of CI chondrites.
Collapse
Affiliation(s)
- Kana Amano
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Moe Matsuoka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Eiichi Kagawa
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuri Fujioka
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Sandra M Potin
- Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, Netherlands
| | - Takahiro Hiroi
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Eri Tatsumi
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Eric Quirico
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Pierre Beck
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Rosario Brunetto
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Masayuki Uesugi
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takahiro Kawai
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shohei Yamashita
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba 305-0801, Japan
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Yuma Enokido
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Taiga Wada
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | | | | | - Driss Takir
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | | | - Faith Vilas
- Planetary Science Institute, Tucson, AZ 85179, USA
| | | | - Mizuha Kikuiri
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Tomoyo Morita
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Takaaki Noguchi
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Shogo Tachibana
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Fuyuto Terui
- Department of Mechanical Engineering, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Environmental Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| |
Collapse
|
4
|
Chua BH, Gloesener E, Choukroun M, Vu TH, Melwani Daswani M, Journaux B, Styczinski MJ, Vance SD. Low-Temperature Specific Heat Capacity of Water-Ammonia Mixtures Down to the Eutectic. ACS EARTH & SPACE CHEMISTRY 2023; 7:1971-1979. [PMID: 37876662 PMCID: PMC10591500 DOI: 10.1021/acsearthspacechem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
Robust thermodynamic data are essential for the development of geodynamic and geochemical models of ocean worlds. The water-ammonia system is of interest in the study of ocean worlds due to its purported abundance in the outer solar system, geological implications, and potential importance for origins of life. In support of developing new equations of state, we conducted 1 bar specific heat capacity measurements (Cp) using a differential scanning calorimeter (DSC) at low temperatures (184-314 K) and low mass fractions of ammonia (5.2-26.9 wt %) to provide novel data in the parameter space most relevant for planetary studies. This is the first known set of data with sufficient fidelity to investigate the trend of specific heat capacity with respect to temperature. The obtained Cp in the liquid phase domain above the liquidus generally increases with temperature. Deviations of our data from the currently adopted equation of state by Tillner-Roth and Friend[Tillner-Roth R.; Friend D. G.J. Phys. Chem. Ref. Data1998, 27, 63-96]. are generally negative (ranging from +1 to -10%) and larger at lower temperatures. This result suggests that suppression of the critical behavior of supercooled water (rapid increase in specific heat with decreasing temperature) by ammonia starts at a smaller concentration than that set by Tillner-Roth and Friend.[Tillner-Roth R.; Friend D. G.J. Phys. Chem. Ref. Data1998, 27, 63-96]. Cp measurements of the liquid were also obtained in the partial melting domain between the eutectic and liquidus. This novel data set will be useful in future investigations of conditions where such partial melt may exist, such as the ice shell-ocean boundary or the interiors of ocean worlds that may contain relatively large proportions of dissolved ammonia.
Collapse
Affiliation(s)
- Bing Hong Chua
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
- Asian
School of the Environment, Nanyang Technological
University, 50 Nanyang
Avenue, Singapore 639798, Singapore
| | - Elodie Gloesener
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Mathieu Choukroun
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Tuan H. Vu
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Mohit Melwani Daswani
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Baptiste Journaux
- Department
of Earth and Space Sciences, University
of Washington, 4000 15th Ave NE, Seattle, Washington 98195, United States
| | - Marshall J. Styczinski
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Steven D. Vance
- Jet
Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
5
|
Kelley MSP, Hsieh HH, Bodewits D, Saki M, Villanueva GL, Milam SN, Hammel HB. Spectroscopic identification of water emission from a main-belt comet. Nature 2023; 619:720-723. [PMID: 37187210 PMCID: PMC10371862 DOI: 10.1038/s41586-023-06152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Main-belt comets are small Solar System bodies located in the asteroid belt that repeatedly exhibit comet-like activity (that is, dust comae or tails) during their perihelion passages, strongly indicating ice sublimation1,2. Although the existence of main-belt comets implies the presence of extant water ice in the asteroid belt, no gas has been detected around these objects despite intense scrutiny with the world's largest telescopes3. Here we present James Webb Space Telescope observations that clearly show that main-belt comet 238P/Read has a coma of water vapour, but lacks a significant CO2 gas coma. Our findings demonstrate that the activity of comet Read is driven by water-ice sublimation, and implies that main-belt comets are fundamentally different from the general cometary population. Whether or not comet Read experienced different formation circumstances or evolutionary history, it is unlikely to be a recent asteroid belt interloper from the outer Solar System. On the basis of these results, main-belt comets appear to represent a sample of volatile material that is currently unrepresented in observations of classical comets and the meteoritic record, making them important for understanding the early Solar System's volatile inventory and its subsequent evolution.
Collapse
Affiliation(s)
| | - Henry H Hsieh
- Planetary Science Institute, Tucson, AZ, USA
- Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan
| | - Dennis Bodewits
- Department of Physics, Auburn University, Edmund C. Leach Science Center, Auburn, AL, USA
| | - Mohammad Saki
- Department of Physics, Auburn University, Edmund C. Leach Science Center, Auburn, AL, USA
| | - Geronimo L Villanueva
- Solar System Exploration Division, NASA Goddard Space Flight Center, Code 690, Greenbelt, MD, USA
| | - Stefanie N Milam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Code 690, Greenbelt, MD, USA
| | - Heidi B Hammel
- Association of Universities for Research in Astronomy, Washington, DC, USA
| |
Collapse
|
6
|
Potiszil C, Yamanaka M, Sakaguchi C, Ota T, Kitagawa H, Kunihiro T, Tanaka R, Kobayashi K, Nakamura E. Organic Matter in the Asteroid Ryugu: What We Know So Far. Life (Basel) 2023; 13:1448. [PMID: 37511823 PMCID: PMC10381145 DOI: 10.3390/life13071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The Hayabusa2 mission was tasked with returning samples from the C-complex asteroid Ryugu (1999 JU3), in order to shed light on the formation, evolution and composition of such asteroids. One of the main science objectives was to understand whether such bodies could have supplied the organic matter required for the origin of life on Earth. Here, a review of the studies concerning the organic matter within the Ryugu samples is presented. This review will inform the reader about the Hayabusa2 mission, the nature of the organic matter analyzed and the various interpretations concerning the analytical findings including those concerning the origin and evolution of organic matter from Ryugu. Finally, the review puts the findings and individual interpretations in the context of the current theories surrounding the formation and evolution of Ryugu. Overall, the summary provided here will help to inform those operating in a wide range of interdisciplinary fields, including planetary science, astrobiology, the origin of life and astronomy, about the most recent developments concerning the organic matter in the Ryugu return samples and their relevance to understanding our solar system and beyond. The review also outlines the issues that still remain to be solved and highlights potential areas for future work.
Collapse
Affiliation(s)
- Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Masahiro Yamanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tsutomu Ota
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Hiroshi Kitagawa
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Ryoji Tanaka
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
| |
Collapse
|
7
|
Garcia A, Serra C, Remaury QB, Garcia AD, Righezza M, Meinert C, Poinot P, Danger G. Gas chromatography coupled-to Fourier transform orbitrap mass spectrometer for enantioselective amino acid analyses: Application to pre-cometary organic analog. J Chromatogr A 2023; 1704:464118. [PMID: 37315448 DOI: 10.1016/j.chroma.2023.464118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Gas chromatography (GC) is a separation technique commonly developed for targeted in situ analyses in planetary space missions. It is coupled with low-resolution mass spectrometry to obtain additional structural information and allow compound identification. However, ground-based analyses of extraterrestrial samples have shown the presence of large molecular diversities. For future targeted in situ analyses, it is therefore essential to develop new technologies. High resolution mass spectrometry (HRMS) is currently being spatialized using FT-orbitrap-MS technology. In this contribution, the coupling of gas chromatography with FT-orbitrap-MS is studied for targeted amino acid analyses. The method for enantioselective separation of amino acids was optimized on a standard mixture comprising 47 amino acid enantiomers. Different ionization modes were optimized, chemical ionization with three different reactive gasses (NH3, CH4 and NH3/CH4) and electron impact ionization at different electron energies. Single ion and full scan monitoring modes were compared, and detection and quantification limits were estimated by internal calibration under the optimized conditions. The GC-FT-orbitrap-MS demonstrated its ability to separate 47 amino acid enantiomers with minimal co-elution. Furthermore, due to the high mass resolution and accuracy of FT-orbitrap-MS, with mass extraction, the S/N is close to zero, allowing average LOD values of 10⁻7 M, orders of magnitude lower than conventional GC-MS techniques. Finally, these conditions were tested for enantioselective analysis of amino acids on an analog of a pre-cometary organic material showing similarities to that of extraterrestrial materials.
Collapse
Affiliation(s)
- A Garcia
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France
| | - C Serra
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France; UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Q Blancart Remaury
- UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - A D Garcia
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, F-06108 Nice, France
| | - M Righezza
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France
| | - C Meinert
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, F-06108 Nice, France
| | - P Poinot
- UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - G Danger
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
8
|
Nakamura T, Matsumoto M, Amano K, Enokido Y, Zolensky ME, Mikouchi T, Genda H, Tanaka S, Zolotov MY, Kurosawa K, Wakita S, Hyodo R, Nagano H, Nakashima D, Takahashi Y, Fujioka Y, Kikuiri M, Kagawa E, Matsuoka M, Brearley AJ, Tsuchiyama A, Uesugi M, Matsuno J, Kimura Y, Sato M, Milliken RE, Tatsumi E, Sugita S, Hiroi T, Kitazato K, Brownlee D, Joswiak DJ, Takahashi M, Ninomiya K, Takahashi T, Osawa T, Terada K, Brenker FE, Tkalcec BJ, Vincze L, Brunetto R, Aléon-Toppani A, Chan QHS, Roskosz M, Viennet JC, Beck P, Alp EE, Michikami T, Nagaashi Y, Tsuji T, Ino Y, Martinez J, Han J, Dolocan A, Bodnar RJ, Tanaka M, Yoshida H, Sugiyama K, King AJ, Fukushi K, Suga H, Yamashita S, Kawai T, Inoue K, Nakato A, Noguchi T, Vilas F, Hendrix AR, Jaramillo-Correa C, Domingue DL, Dominguez G, Gainsforth Z, Engrand C, Duprat J, Russell SS, Bonato E, Ma C, Kawamoto T, Wada T, Watanabe S, Endo R, Enju S, Riu L, Rubino S, Tack P, Takeshita S, Takeichi Y, Takeuchi A, Takigawa A, Takir D, Tanigaki T, Taniguchi A, Tsukamoto K, Yagi T, Yamada S, Yamamoto K, Yamashita Y, Yasutake M, Uesugi K, Umegaki I, et alNakamura T, Matsumoto M, Amano K, Enokido Y, Zolensky ME, Mikouchi T, Genda H, Tanaka S, Zolotov MY, Kurosawa K, Wakita S, Hyodo R, Nagano H, Nakashima D, Takahashi Y, Fujioka Y, Kikuiri M, Kagawa E, Matsuoka M, Brearley AJ, Tsuchiyama A, Uesugi M, Matsuno J, Kimura Y, Sato M, Milliken RE, Tatsumi E, Sugita S, Hiroi T, Kitazato K, Brownlee D, Joswiak DJ, Takahashi M, Ninomiya K, Takahashi T, Osawa T, Terada K, Brenker FE, Tkalcec BJ, Vincze L, Brunetto R, Aléon-Toppani A, Chan QHS, Roskosz M, Viennet JC, Beck P, Alp EE, Michikami T, Nagaashi Y, Tsuji T, Ino Y, Martinez J, Han J, Dolocan A, Bodnar RJ, Tanaka M, Yoshida H, Sugiyama K, King AJ, Fukushi K, Suga H, Yamashita S, Kawai T, Inoue K, Nakato A, Noguchi T, Vilas F, Hendrix AR, Jaramillo-Correa C, Domingue DL, Dominguez G, Gainsforth Z, Engrand C, Duprat J, Russell SS, Bonato E, Ma C, Kawamoto T, Wada T, Watanabe S, Endo R, Enju S, Riu L, Rubino S, Tack P, Takeshita S, Takeichi Y, Takeuchi A, Takigawa A, Takir D, Tanigaki T, Taniguchi A, Tsukamoto K, Yagi T, Yamada S, Yamamoto K, Yamashita Y, Yasutake M, Uesugi K, Umegaki I, Chiu I, Ishizaki T, Okumura S, Palomba E, Pilorget C, Potin SM, Alasli A, Anada S, Araki Y, Sakatani N, Schultz C, Sekizawa O, Sitzman SD, Sugiura K, Sun M, Dartois E, De Pauw E, Dionnet Z, Djouadi Z, Falkenberg G, Fujita R, Fukuma T, Gearba IR, Hagiya K, Hu MY, Kato T, Kawamura T, Kimura M, Kubo MK, Langenhorst F, Lantz C, Lavina B, Lindner M, Zhao J, Vekemans B, Baklouti D, Bazi B, Borondics F, Nagasawa S, Nishiyama G, Nitta K, Mathurin J, Matsumoto T, Mitsukawa I, Miura H, Miyake A, Miyake Y, Yurimoto H, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Connolly HC, Lauretta DS, Yoshitake M, Yoshikawa M, Yoshikawa K, Yoshihara K, Yokota Y, Yogata K, Yano H, Yamamoto Y, Yamamoto D, Yamada M, Yamada T, Yada T, Wada K, Usui T, Tsukizaki R, Terui F, Takeuchi H, Takei Y, Iwamae A, Soejima H, Shirai K, Shimaki Y, Senshu H, Sawada H, Saiki T, Ozaki M, Ono G, Okada T, Ogawa N, Ogawa K, Noguchi R, Noda H, Nishimura M, Namiki N, Nakazawa S, Morota T, Miyazaki A, Miura A, Mimasu Y, Matsumoto K, Kumagai K, Kouyama T, Kikuchi S, Kawahara K, Kameda S, Iwata T, Ishihara Y, Ishiguro M, Ikeda H, Hosoda S, Honda R, Honda C, Hitomi Y, Hirata N, Hirata N, Hayashi T, Hayakawa M, Hatakeda K, Furuya S, Fukai R, Fujii A, Cho Y, Arakawa M, Abe M, Watanabe S, Tsuda Y. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples. Science 2023; 379:eabn8671. [PMID: 36137011 DOI: 10.1126/science.abn8671] [Show More Authors] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.
Collapse
Affiliation(s)
- T Nakamura
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - M Matsumoto
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - K Amano
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Y Enokido
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - M E Zolensky
- NASA Johnson Space Center; Houston, TX 77058, USA
| | - T Mikouchi
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | - H Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - S Tanaka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - M Y Zolotov
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - K Kurosawa
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan
| | - S Wakita
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R Hyodo
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - H Nagano
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - D Nakashima
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Y Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan.,Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Y Fujioka
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - M Kikuiri
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - E Kagawa
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - M Matsuoka
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Meudon 92195 France.,Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - A J Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - A Tsuchiyama
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.,Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China.,Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, China
| | - M Uesugi
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - J Matsuno
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Y Kimura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - M Sato
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - R E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - E Tatsumi
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan.,Instituto de Astrofísica de Canarias, University of La Laguna, Tenerife 38205, Spain
| | - S Sugita
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan.,Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Hiroi
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - K Kitazato
- Aizu Research Center for Space Informatics, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan
| | - D Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - D J Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - M Takahashi
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - K Ninomiya
- Institute for Radiation Sciences, Osaka University, Toyonaka 560-0043, Japan
| | - T Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 277-8583, Japan.,Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Osawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| | - K Terada
- Department of Earth and Space Science, Osaka University, Toyonaka 560-0043, Japan
| | - F E Brenker
- Institute of Geoscience, Goethe University, Frankfurt, 60438 Frankfurt am Main, Germany
| | - B J Tkalcec
- Institute of Geoscience, Goethe University, Frankfurt, 60438 Frankfurt am Main, Germany
| | - L Vincze
- Department of Chemistry, Ghent University, Krijgslaan 281 S12, Ghent, Belgium
| | - R Brunetto
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - A Aléon-Toppani
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - Q H S Chan
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - M Roskosz
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique (CNRS), Sorbonne Université, Paris, France
| | - J-C Viennet
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique (CNRS), Sorbonne Université, Paris, France
| | - P Beck
- Institut de Planétologie et d'Astrophysique de Grenoble, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - E E Alp
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - T Michikami
- Faculty of Engineering, Kindai University, Higashi-Hiroshima 739-2116, Japan
| | - Y Nagaashi
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan.,Department of Planetology, Kobe University, Kobe 657-8501, Japan
| | - T Tsuji
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.,School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Y Ino
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Physics, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - J Martinez
- NASA Johnson Space Center; Houston, TX 77058, USA
| | - J Han
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - A Dolocan
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - R J Bodnar
- Department of Geoscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - M Tanaka
- Materials Analysis Station, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - H Yoshida
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K Sugiyama
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - A J King
- Department of Earth Science, Natural History Museum, London SW7 5BD, UK
| | - K Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - H Suga
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - S Yamashita
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan.,Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - T Kawai
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K Inoue
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - A Nakato
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - T Noguchi
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - F Vilas
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - A R Hendrix
- Planetary Science Institute, Tucson, AZ 85719, USA
| | | | - D L Domingue
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - G Dominguez
- Department of Physics, California State University, San Marcos, CA 92096, USA
| | - Z Gainsforth
- Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
| | - C Engrand
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - J Duprat
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique (CNRS), Sorbonne Université, Paris, France
| | - S S Russell
- Department of Earth Science, Natural History Museum, London SW7 5BD, UK
| | - E Bonato
- Institute for Planetary Research, Deutsches Zentrum für Luftund Raumfahrt, Rutherfordstraße 2 12489 Berlin, Germany
| | - C Ma
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, USA
| | - T Kawamoto
- Department of Geosciences, Shizuoka University, Shizuoka 422-8529, Japan
| | - T Wada
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - S Watanabe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 277-8583, Japan
| | - R Endo
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - S Enju
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - L Riu
- European Space Astronomy Centre, 28692 Villanueva de la Cañada, Spain
| | - S Rubino
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - P Tack
- Department of Chemistry, Ghent University, Krijgslaan 281 S12, Ghent, Belgium
| | - S Takeshita
- High Energy Accelerator Research Organization, Tokai 319-1106, Japan
| | - Y Takeichi
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan.,Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Tsukuba 305-0801, Japan.,Department of Applied Physics, Osaka University, Suita 565-0871, Japan
| | - A Takeuchi
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - A Takigawa
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - D Takir
- NASA Johnson Space Center; Houston, TX 77058, USA
| | | | - A Taniguchi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori 590-0494, Japan
| | - K Tsukamoto
- Department of Earth Sciences, Tohoku University, Sendai 980-8578, Japan
| | - T Yagi
- National Metrology Institute of Japan, AIST, Tsukuba 305-8565, Japan
| | - S Yamada
- Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
| | - K Yamamoto
- Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - Y Yamashita
- National Metrology Institute of Japan, AIST, Tsukuba 305-8565, Japan
| | - M Yasutake
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - K Uesugi
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - I Umegaki
- High Energy Accelerator Research Organization, Tokai 319-1106, Japan.,Toyota Central Research and Development Laboratories, Nagakute 480-1192, Japan
| | - I Chiu
- Institute for Radiation Sciences, Osaka University, Toyonaka 560-0043, Japan
| | - T Ishizaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - S Okumura
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - E Palomba
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica, Rome 00133, Italy
| | - C Pilorget
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France.,Institut Universitaire de France, Paris, France
| | - S M Potin
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Observatoire de Paris, Meudon 92195 France.,Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
| | - A Alasli
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - S Anada
- Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - Y Araki
- Department of Physical Sciences, Ritsumeikan University, Shiga 525-0058, Japan
| | - N Sakatani
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
| | - C Schultz
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - O Sekizawa
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - S D Sitzman
- Physical Sciences Laboratory, The Aerospace Corporation, CA 90245, USA
| | - K Sugiura
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - M Sun
- Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China.,Center for Excellence in Deep Earth Science, CAS, Guangzhou 510640, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - E Dartois
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - E De Pauw
- Department of Chemistry, Ghent University, Krijgslaan 281 S12, Ghent, Belgium
| | - Z Dionnet
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - Z Djouadi
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron Photon Science, 22603 Hamburg, Germany
| | - R Fujita
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - T Fukuma
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - I R Gearba
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - K Hagiya
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - M Y Hu
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - T Kato
- Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - T Kawamura
- Institut de Physique du Globe de Paris, Université de Paris, Paris 75205, France
| | - M Kimura
- Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan.,Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - M K Kubo
- Division of Natural Sciences, International Christian University, Mitaka 181-8585, Japan
| | - F Langenhorst
- Institute of Geosciences, Friedrich-Schiller-Universität Jena, 07745 Jena, Germany
| | - C Lantz
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - B Lavina
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - M Lindner
- Institute of Geoscience, Goethe University, Frankfurt, 60438 Frankfurt am Main, Germany
| | - J Zhao
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - B Vekemans
- Department of Chemistry, Ghent University, Krijgslaan 281 S12, Ghent, Belgium
| | - D Baklouti
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay 91405, France
| | - B Bazi
- Department of Chemistry, Ghent University, Krijgslaan 281 S12, Ghent, Belgium
| | - F Borondics
- Optimized Light Source of Intermediate Energy to LURE (SOLEIL) L'Orme des Merisiers, Gif sur Yvette F-91192, France
| | - S Nagasawa
- Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 277-8583, Japan.,Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - G Nishiyama
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K Nitta
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| | - J Mathurin
- Institut Chimie Physique, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - T Matsumoto
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - I Mitsukawa
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - H Miura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - A Miyake
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Y Miyake
- High Energy Accelerator Research Organization, Tokai 319-1106, Japan
| | - H Yurimoto
- Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - R Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - H Yabuta
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - H Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - K Sakamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - S Tachibana
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - H C Connolly
- Department of Geology, Rowan University, Glassboro, NJ 08028, USA
| | - D S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - M Yoshitake
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - M Yoshikawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - K Yoshikawa
- Research and Development Directorate, JAXA, Sagamihara 252-5210, Japan
| | - K Yoshihara
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Y Yokota
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - K Yogata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - H Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - Y Yamamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - D Yamamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - M Yamada
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan
| | - T Yamada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - T Yada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - K Wada
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan
| | - T Usui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - R Tsukizaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - F Terui
- Department of Mechanical Engineering, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - H Takeuchi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - Y Takei
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - A Iwamae
- Marine Works Japan, Yokosuka 237-0063, Japan
| | - H Soejima
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Marine Works Japan, Yokosuka 237-0063, Japan
| | - K Shirai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Y Shimaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - H Senshu
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan
| | - H Sawada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - T Saiki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - M Ozaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - G Ono
- Research and Development Directorate, JAXA, Sagamihara 252-5210, Japan
| | - T Okada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - N Ogawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - K Ogawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - R Noguchi
- Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - H Noda
- National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
| | - M Nishimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - N Namiki
- Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan.,National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
| | - S Nakazawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - T Morota
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - A Miyazaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - A Miura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Y Mimasu
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - K Matsumoto
- Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan.,National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
| | - K Kumagai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Marine Works Japan, Yokosuka 237-0063, Japan
| | - T Kouyama
- Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - S Kikuchi
- Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan.,National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
| | - K Kawahara
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - S Kameda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
| | - T Iwata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - Y Ishihara
- JAXA Space Exploration Center, JAXA, Sagamihara 252-5210, Japan
| | - M Ishiguro
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - H Ikeda
- Research and Development Directorate, JAXA, Sagamihara 252-5210, Japan
| | - S Hosoda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - R Honda
- Department of Information Science, Kochi University, Kochi 780-8520, Japan.,Center for Data Science, Ehime University, Matsuyama 790-8577, Japan
| | - C Honda
- Aizu Research Center for Space Informatics, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan
| | - Y Hitomi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Marine Works Japan, Yokosuka 237-0063, Japan
| | - N Hirata
- Department of Planetology, Kobe University, Kobe 657-8501, Japan
| | - N Hirata
- Aizu Research Center for Space Informatics, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan
| | - T Hayashi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - M Hayakawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - K Hatakeda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Marine Works Japan, Yokosuka 237-0063, Japan
| | - S Furuya
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - R Fukai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - A Fujii
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| | - Y Cho
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - M Arakawa
- Department of Planetology, Kobe University, Kobe 657-8501, Japan
| | - M Abe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan.,Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan
| | - S Watanabe
- Department of Earth and Environmental Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Tsuda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan
| |
Collapse
|
9
|
Todd ZR. Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life (Basel) 2022; 12:1268. [PMID: 36013447 PMCID: PMC9410288 DOI: 10.3390/life12081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.g., ammonia, nitrite, nitrate), accessible forms of phosphorus (e.g., phosphate, phosphite, etc.), and sources of sulfur (e.g., sulfide, sulfite) may have been necessary for the origins of life, given the biochemistry seen in Earth life today. This review describes potential sources of nitrogen-, sulfur-, and phosphorus-containing molecules in the context of planetary environments. For the early Earth, such considerations may be able to aid in the understanding of our own origins. Additionally, as we learn more about potential environments on other planets (for example, with upcoming next-generation telescope observations or new missions to explore other bodies in our Solar System), evaluating potential sources for elements necessary for life (as we know it) can help constrain the potential habitability of these worlds.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Hänni N, Altwegg K, Combi M, Fuselier SA, De Keyser J, Rubin M, Wampfler SF. Identification and characterization of a new ensemble of cometary organic molecules. Nat Commun 2022; 13:3639. [PMID: 35752637 PMCID: PMC9233696 DOI: 10.1038/s41467-022-31346-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
In-situ study of comet 1P/Halley during its 1986 apparition revealed a surprising abundance of organic coma species. It remained unclear, whether or not these species originated from polymeric matter. Now, high-resolution mass-spectrometric data collected at comet 67P/Churyumov-Gerasimenko by ESA’s Rosetta mission unveil the chemical structure of complex cometary organics. Here, we identify an ensemble of individual molecules with masses up to 140 Da while demonstrating inconsistency of the data with relevant amounts of polymeric matter. The ensemble has an average composition of C1H1.56O0.134N0.046S0.017, identical to meteoritic soluble organic matter, and includes a plethora of chain-based, cyclic, and aromatic hydrocarbons at an approximate ratio of 6:3:1. Its compositional and structural properties, except for the H/C ratio, resemble those of other Solar System reservoirs of organics—from organic material in the Saturnian ring rain to meteoritic soluble and insoluble organic matter –, which is compatible with a shared prestellar history. A new analysis of Rosetta mass spectra reveals an ensemble of complex organic molecules with striking similarities to other organic reservoirs in the Solar System, including Saturn’s ring rain material, pointing at a likely joint prestellar history.
Collapse
Affiliation(s)
- N Hänni
- Physics Institute, Space Research & Planetary Sciences, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.
| | - K Altwegg
- Physics Institute, Space Research & Planetary Sciences, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - M Combi
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - S A Fuselier
- Space Science Directorate, Southwest Research Institute, San Antonio, TX, USA.,Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, USA
| | - J De Keyser
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
| | - M Rubin
- Physics Institute, Space Research & Planetary Sciences, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - S F Wampfler
- Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Wildner M, Zakharov BA, Bogdanov NE, Talla D, Boldyreva EV, Miletich R. Crystallography relevant to Mars and Galilean icy moons: crystal behavior of kieserite-type monohydrate sulfates at extraterrestrial conditions down to 15 K. IUCRJ 2022; 9:194-203. [PMID: 35371501 PMCID: PMC8895014 DOI: 10.1107/s2052252521012720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Monohydrate sulfate kieserites (M 2+SO4·H2O) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives (M 2+ = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1 bar and temperatures down to 15 K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic b axis and a pronounced anisotropic expansion perpendicular to it. The lattice changes down to 15 K correspond to an 'inverse thermal pressure' of approximately 0.7 GPa, which is far below the critical pressures of transition under hydro-static compression (Pc ≥ 2.40 GPa). Consequently, no equivalent structural phase transition was observed for any compound, and neither dehydration nor rearrangements of the hydrogen bonding schemes have been observed. The M 2+SO4·H2O (M 2+ = Mg, Fe, Co, Ni) end-member phases preserve the kieserite-type C2/c symmetry; hydrogen bonds and other structural details were found to vary smoothly down to the lowest experimental temperature. These findings serve as an important basis for the assignment of sulfate-related signals in remote-sensing data obtained from orbiters at celestial bodies, as well as for thermodynamic considerations and modeling of properties of kieserite-type sulfate monohydrates relevant to extraterrestrial sulfate associations at very low temperatures.
Collapse
Affiliation(s)
- Manfred Wildner
- Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, A-1090 Wien, Austria
| | - Boris A Zakharov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Lavrentieva Avenue 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation
| | - Nikita E Bogdanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Lavrentieva Avenue 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation
| | - Dominik Talla
- Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, A-1090 Wien, Austria
| | - Elena V Boldyreva
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Lavrentieva Avenue 5, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation
| | - Ronald Miletich
- Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, A-1090 Wien, Austria
| |
Collapse
|
12
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
13
|
Singh SK, Bergantini A, Zhu C, Ferrari M, De Sanctis MC, De Angelis S, Kaiser RI. Origin of ammoniated phyllosilicates on dwarf planet Ceres and asteroids. Nat Commun 2021; 12:2690. [PMID: 33976207 PMCID: PMC8113531 DOI: 10.1038/s41467-021-23011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
The surface mineralogy of dwarf planet Ceres is rich in ammonium (NH4+) bearing phyllosilicates. However, the origin and formation mechanisms of ammoniated phyllosilicates on Ceres’s surface are still elusive. Here we report on laboratory simulation experiments under astrophysical conditions mimicking Ceres’ physical and chemical environments with the goal to better understand the source of ammoniated minerals on Ceres’ surface. We observe that thermally driven proton exchange reactions between phyllosilicates and ammonia (NH3) could trigger at low temperature leading to the genesis of ammoniated-minerals. Our study revealed the thermal (300 K) and radiation stability of ammoniated-phyllosilicates over a timescale of at least some 500 million years. The present experimental investigations corroborate the possibility that Ceres formed at a location where ammonia ices on the surface would have been stable. However, the possibility of Ceres’ origin near to its current location by accreting ammonia-rich material cannot be excluded. The authors here propose a chemical reaction that forms ammoniated phyllosilicates on Ceres. This process could trigger at a very low temperature, suggesting Ceres evolution in a region different from its current location.
Collapse
Affiliation(s)
- Santosh K Singh
- Department of Chemistry, University of Hawaii, Honolulu, HI, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI, USA
| | - Alexandre Bergantini
- Department of Chemistry, University of Hawaii, Honolulu, HI, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI, USA.,Federal Center for Technological Education Celso Suckow da Fonseca, Rio de Janeiro, Brazil
| | - Cheng Zhu
- Department of Chemistry, University of Hawaii, Honolulu, HI, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI, USA
| | - Marco Ferrari
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Roma, Italy
| | | | | | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, HI, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
14
|
McKay AJ, Roth NX. Organic Matter in Cometary Environments. Life (Basel) 2021; 11:37. [PMID: 33430031 PMCID: PMC7826631 DOI: 10.3390/life11010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
Comets contain primitive material leftover from the formation of the Solar System, making studies of their composition important for understanding the formation of volatile material in the early Solar System. This includes organic molecules, which, for the purpose of this review, we define as compounds with C-H and/or C-C bonds. In this review, we discuss the history and recent breakthroughs of the study of organic matter in comets, from simple organic molecules and photodissociation fragments to large macromolecular structures. We summarize results both from Earth-based studies as well as spacecraft missions to comets, highlighted by the Rosetta mission, which orbited comet 67P/Churyumov-Gerasimenko for two years, providing unprecedented insights into the nature of comets. We conclude with future prospects for the study of organic matter in comets.
Collapse
Affiliation(s)
- Adam J. McKay
- Department of Physics, American University, Washington, DC 20016, USA
- Planetary Systems Laboratory Code 693, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Nathan X. Roth
- Astrochemistry Laboratory Code 691, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA;
- Universities Space Research Association, Columbia, MD 21046, USA
| |
Collapse
|
15
|
Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition. MINERALS 2020. [DOI: 10.3390/min10100902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent discoveries have demonstrated that the surfaces of Mars, Ceres and other celestial bodies, as well as asteroids and comets, are characterized by the presence of ammonium-bearing minerals. A careful study of remote data compared with the analyses of more accurate laboratory data might allow a better remote characterization of planetary bodies. In this paper, the reflectance spectra of some ammoniated hydrous and anhydrous salts, namely sal-ammoniac NH4Cl, larderellite (NH4)B5O7(OH)2·H2O, mascagnite (NH4)SO4, struvite (NH4)MgPO4·6H2O and tschermigite (NH4)Al(SO4)2·12H2O, were collected at 293 and at 193 K. The aim is to detect how the NH4 vibrational features are affected by the chemical and structural environment. All samples were recovered after cooling cycles and were characterized by X-ray powder diffraction. Reflectance spectra of the studied minerals show absorption features around 1.3, 1.6, 2.06, 2.14, 3.23, 5.8 and 7.27 μm, related to the ammonium group. Between them, the 2ν3 at ~1.56 μm and the ν3 + ν4 at ~2.13 μm are the most affected modes by crystal structure type, with their position being strictly related to both anionic group and the strength of the hydrogen bonds. The reflectance spectra of water-rich samples [struvite (NH4)MgPO4·6(H2O) and tschermigite (NH4)Al(SO4)2·12(H2O)] show only H2O fundamental absorption features in the area from 2 to 2.8 μm and a band from hygroscopic water at 3 μm. Thermal analyses (TA), thermal gravimetry (TG) and differential scanning calorimetry (DSC) allowed to evaluate the dehydration temperatures and the occurring phase transitions and decompositions in the analyzed samples. In almost all samples, endothermic peaks at distinct temperatures were registered associated to loss of water molecules, differently linked to the structures. Moreover, an endothermic peak at 465 K in sal-ammoniac was associated to the phase transition from CsCl to NaCl structure type.
Collapse
|
16
|
Infrared and Raman Spectroscopy of Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18. MINERALS 2020. [DOI: 10.3390/min10090781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, is a complex hydrated sulphate of the voltaite group that has been recently discovered on the surface of the Severo-Kambalny geothermal field (Kamchatka, Russia). Vibrational spectroscopy has been applied for characterization of the mineral. Both infrared and Raman spectra of ammoniovoltaite are characterized by an abundance of bands, which corresponds to the diversity of structural fragments and variations of their local symmetry. The infrared spectrum of ammoniovoltaite is similar to that of other voltaite-related compounds. The specific feature related to the dominance of the NH4 group is its ν4 mode observed at 1432 cm−1 with a shoulder at 1510 cm−1 appearing due to NH4 disorder. The Raman spectrum of ammoniovoltaite is basically different from that of voltaite by the appearance of an intensive band centered at 3194 cm−1 and attributed to the ν3 mode of NH4. The latter can serve as a distinctive feature of ammonium in voltaite-group minerals in resemblance to recently reported results for another NH4-mineral—tschermigite, where ν3 of NH4 occurs at 3163 cm−1. The values calculated from wavenumbers of infrared bands at 3585 cm−1, 3467 cm−1 and 3400 cm−1 for hydrogen bond distances: d(O···H) and d(O···O) correspond to bonding involving H1 and H2 atoms of Fe2+X6 (X = O, OH) octahedra. The infrared bands observed at 3242 cm−1 and 2483 cm−1 are due to stronger hydrogen bonding, that may refer to non-localized H atoms of Al(H2O)6 or NH4.
Collapse
|
17
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020; 216:102. [PMID: 32801398 PMCID: PMC7392949 DOI: 10.1007/s11214-020-00718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/03/2020] [Indexed: 06/02/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
18
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020. [PMID: 32801398 DOI: 10.1007/s11214-019-0625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|