1
|
Galili N, Somlyay A, Aquila G, Wijker R, Gautschi P, Wacker L, Hemingway JD. High-Precision Oxygen-Isotope Analysis of Iron (Oxyhydr)oxides Using High-Temperature Conversion Isotope Ratio Mass Spectrometry. Anal Chem 2025; 97:7002-7009. [PMID: 40152308 PMCID: PMC11983365 DOI: 10.1021/acs.analchem.4c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
We introduce a novel high-precision method for oxygen-isotope analysis of iron (oxyhydr)oxides using high-temperature conversion isotope ratio mass spectrometry (HTC-IRMS). In this approach, a finely ground mixture of iron (oxyhydr)oxide and graphite is heated at 1450 °C in a helium flow environment, converting oxygen to CO gas with nearly 100% yield. Continuous-flow IRMS analysis of the liberated CO yields a precision of ±0.15‰ (1σ, n = 28) and shows excellent agreement with (and improved precision over) traditional fluorination methods. This practical and safe technique expands access to oxygen-isotope measurements of iron oxides, thereby enhancing their utility in Earth and environmental sciences.
Collapse
Affiliation(s)
- Nir Galili
- Geological
Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Somlyay
- Geological
Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Giorgia Aquila
- Geological
Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Reto Wijker
- Geological
Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Philip Gautschi
- Laboratory
of Ion Beam Physics, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Wacker
- Laboratory
of Ion Beam Physics, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Jordon D. Hemingway
- Geological
Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
2
|
Yu F, Fei J, Jia Y, Wang T, Martin WF, Li J. Chemiosmotic ATP synthesis by minimal protocells. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102461. [PMID: 40123866 PMCID: PMC11922820 DOI: 10.1016/j.xcrp.2025.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Energy conservation is crucial to life's origin and evolution. The common ancestor of all cells used ATP synthase to convert proton gradients into ATP. However, pumps generating proton gradients and lipids maintaining proton gradients are not universally conserved across all lineages. A solution to this paradox is that ancestral ATP synthase could harness naturally formed geochemical ion gradients with simpler environmentally provided precursors preceding both proton pumps and biogenic membranes. This runs counter to traditional views that phospholipid bilayers are required to maintain proton gradients. Here, we show that fatty acid membranes can maintain sufficient proton gradients to synthesize ATP by ATP synthase under the steep pH and temperature gradients observed in hydrothermal vent systems. These findings shed substantial light on early membrane bioenergetics, uncovering a functional intermediate in the evolution of chemiosmotic ATP synthesis during protocellular stages postdating the ATP synthase's origin but preceding the advent of enzymatically synthesized cell membranes.
Collapse
Affiliation(s)
- Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hohl SV, Lv Y, Lin YB, Zhang Y, Jiang Y, Wei GY, Viehmann S. Mesoarchean Microbial Cd, Ba, and Ni Cycling: Evidence for Photosynthesis in Pongola Group Stromatolites through Novel Stable Isotopes and High-Resolution Trace Element Maps. ASTROBIOLOGY 2024; 24:1196-1207. [PMID: 39611626 DOI: 10.1089/ast.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Nontraditional stable isotopes of bioactive metals emerged as novel proxies for reconstructing the biogeochemical cycling of metals, which serve as cofactors in major metabolic pathways. The fractionation of metal isotopes between ambient fluid and microorganisms is ultimately recorded in authigenic minerals, such as carbonates, which makes them potentially more reliable than standard biomarkers in organic matter. Stromatolitic carbonates are geochemical archives that allow for the study of the long-term interplay of the biosphere, atmosphere, and hydrosphere through deep time, with the unique potential to investigate early life environments and the evolution of the metallome. The present study uses stromatolites from the ∼2.95-billion-year-old Pongola Supergroup (S. Africa) as a field laboratory for combined in situ trace metal mapping and layer-specific, novel stable metal isotope compositions to infer early Earth microbial metal cycling via phototrophic and chemo-litho-autotrophic metabolisms. Quantitative in situ trace element maps reveal intrinsic biosedimentary enrichments of nickel (Ni), cadmium (Cd), phosphorus (P), iron (Fe), and manganese (Mn) in stromatolitic laminae. In contrast, barium (Ba) shows a more homogeneous distribution. Authigenic carbonates from pristine stromatolite laminae show distinct δ138Ba and δ112Cd fractionation above detrital background and bulk silicate Earth values, but opposing correlation with trace metal concentrations. Authigenic δ60Ni values overlap with Mesoarchean diamictite compositions. Nickel isotopic compositions in authigenic stromatolitic carbonates, potentially a new proxy for methanogenic metal uptake, do not show any proof of the presence of this metabolism in the samples of this study. Meanwhile, Cd isotopic compositions in authigenic carbonates follow typical Rayleigh-type isotope fractionation; that is, the isotopic composition of Cd evolves to heavy values close to modern surface compositions. Correlations of δ112Cd with the micronutrients copper (Cu), molybdenum (Mo), and P, at positively fractionated carbon (C) isotopes (δ13C ∼+2‰), argue for active photosynthesis in the Pongola microbial habitat. We show that Ba isotopes can be used to infer carbonate precipitation rates similar to modern microbial carbonates. Thus, the combination of Cd and Ni isotopes has the unique potential as novel isotope biomarkers for the biochemical sedimentary record of early Earth where traditional lipid biomarkers are not applicable due to the incomplete preservation of organic matter.
Collapse
Affiliation(s)
- Simon V Hohl
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, P.R. China
| | - Yiwen Lv
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, P.R. China
| | - Yi-Bo Lin
- State Key Laboratory of Minerals Resources Research, Nanjing University, Nanjing, P.R. China
| | - Yinggang Zhang
- Nanjing Institute of Geology and Paleontology, China Academy of Sciences, Nanjing, P.R. China
| | - Yuxiang Jiang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, P.R. China
| | - Guang-Yi Wei
- State Key Laboratory of Minerals Resources Research, Nanjing University, Nanjing, P.R. China
| | | |
Collapse
|
4
|
Wang X, He Y, Liu L, Song D, Kovarik L, Bowden ME, Engelhard M, Li X, Du Y, Miller QR, Wang C, De Yoreo JJ, Rosso KM, Zhang X. Uncovering the Size-Dependent Thermal Solid Transformation of Akaganéite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402717. [PMID: 39148218 DOI: 10.1002/smll.202402717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/06/2024] [Indexed: 08/17/2024]
Abstract
Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.
Collapse
Affiliation(s)
- Xiang Wang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Yang He
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 10083, China
| | - Lili Liu
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Duo Song
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Libor Kovarik
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Mark E Bowden
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Mark Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Xiaoxu Li
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Yingge Du
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Quin Rs Miller
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - James J De Yoreo
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195, United States
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| |
Collapse
|
5
|
Mills BJW. Hot and cold Earth through time. Science 2024; 385:1276-1278. [PMID: 39298610 DOI: 10.1126/science.ads1526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Reconstructing ancient Earth's temperature reveals a global climate regulation system.
Collapse
|
6
|
Isson T, Rauzi S. Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history. Science 2024; 383:666-670. [PMID: 38330122 DOI: 10.1126/science.adg1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Earth's persistent habitability since the Archean remains poorly understood. Using an oxygen isotope ensemble approach-comprising shale, iron oxide, carbonate, silica, and phosphate records-we reconcile a multibillion-year history of seawater δ18O, temperature, and marine and terrestrial clay abundance. Our results reveal a rise in seawater δ18O and a temperate Proterozoic climate distinct to interpretations of a hot early Earth, indicating a strongly buffered climate system. Precambrian sediments are enriched in marine authigenic clay, with prominent reductions occurring in concert with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants. These findings support the notion that shifts in the locus and extent of clay formation contributed to seawater 18O enrichment, clement early Earth conditions, major climate transitions, and climate stability through the reverse weathering feedback.
Collapse
Affiliation(s)
- Terry Isson
- Te Aka Mātuatua, University of Waikato (Tauranga), Bay of Plenty, Tauranga, New Zealand
| | - Sofia Rauzi
- Te Aka Mātuatua, University of Waikato (Tauranga), Bay of Plenty, Tauranga, New Zealand
| |
Collapse
|
7
|
Hoefs J, Harmon RS. Isotopic history of seawater: the stable isotope character of the global ocean at present and in the geological past. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2023; 59:349-411. [PMID: 37877261 DOI: 10.1080/10256016.2023.2271127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
After the atmosphere, the ocean is the most well-mixed and homogeneous global geochemical reservoir. Both physical and biological processes generate elemental and isotope variations in seawater. Contrasting geochemical behaviors cause elements to be susceptible to different fractionation mechanisms, with their isotopes providing unique insights into the composition and evolution of the ocean over the course of geological history. Supplementing the traditional stable isotopes (H, C, O, N, S) that provide information about ocean processes and past environmental conditions, radiogenic isotope (Sr, Nd, Os, Pb, U) systems can be used as time markers, indicators of terrestrial weathering, and ocean water mass mixing. Recent instrumentation advances have made possible the measurement of natural stable isotope variations produced by both mass-dependent and mass-independent fractionation for an ever-increasing number of metal elements (e.g. Li, B, Mg, Si, Ca, V, Cr, Fe, Ni, Cu, Zn, Se, Mo, Cd, Tl, U). The major emphasis in this review is on the isotopic composition of the light elements based on a comparatively large literature. Unlike O, H and S, the stable isotopes of C, N and Si do not have a constant isotopic composition in the modern ocean. The major cations Ca, Mg, and Sr fixed in carbonate shells provide the best proxies for reconstruction of the composition of the ocean in the past. Exhibiting large isotope enrichments in ocean water, B and Li are suitable for the investigation of water/rock interactions and can act as monitors of former oceanic pH. The bioessential elements Zn, Cd, and Ni are indicators of paleoproductivity in the ocean. Characteristic isotope enrichments or depletions of the multivalent elements V, Cr, Fe, Se, Mo, and U record the past redox state of the ocean/atmosphere system. Case studies describe how isotopes have been used to define the seawater composition in the geological past.
Collapse
Affiliation(s)
- Jochen Hoefs
- Geowissenschaftliches Zentrum, Universität Göttingen, Göttingen, Germany
| | - Russell S Harmon
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
The triple oxygen isotope composition of marine sulfate and 130 million years of microbial control. Proc Natl Acad Sci U S A 2022; 119:e2202018119. [PMID: 35881806 PMCID: PMC9351482 DOI: 10.1073/pnas.2202018119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The triple oxygen isotope composition (Δ'17O) of sulfate minerals is widely used to constrain ancient atmospheric pO2/pCO2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the [Formula: see text]O and Δ'17O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ'17O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably.
Collapse
|
9
|
Abstract
The oxygen isotope compositions of carbonate and phosphatic fossils hold the key to understanding Earth-system evolution during the last 500 million years. Unfortunately, the validity and interpretation of this record remain unsettled. Our comprehensive compilation of Phanerozoic δ18O data for carbonate and phosphate fossils and microfossils (totaling 22,332 and 4615 analyses, respectively) shows rapid shifts best explained by temperature change. In calculating paleotemperatures, we apply a constant hydrosphere δ18O, correct seawater δ18O for ice volume and paleolatitude, and correct belemnite δ18O values for 18O enrichment. Similar paleotemperature trends for carbonates and phosphates confirm retention of original isotopic signatures. Average low-latitude (30° S–30° N) paleotemperatures for shallow environments decline from 42.0 ± 3.1 °C in the Early-to-Middle Ordovician to 35.6 ± 2.4 °C for the Late Ordovician through the Devonian, then fluctuate around 25.1 ± 3.5 °C from the Mississippian to today. The Early Triassic and Middle Cretaceous stand out as hothouse intervals. Correlations between atmospheric CO2 forcing and paleotemperature support CO2’s role as a climate driver in the Paleozoic.
Collapse
|
10
|
Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report provides oxygen isotopes from apatite of late Middle and Late Ordovician conodonts from the southern Holy Cross Mountains in south-eastern Poland. It was a unique time interval characterised by a significant change in the Ordovician climate, tectonic, and ocean chemistry. In the Middle and early Late Ordovician, the Holy Cross Mountains were located in the mid-latitude climatic zone at the southwestern periphery of Baltica; therefore, the δ18Oapatite values from this region provide new data on the 18O/16O budget in the Ordovician seawater reconstructed mainly from the tropical and subtropical realms. Oxygen isotopes from mixed conodont samples were measured using the SHRIMP IIe/MC ion microprobe in the Polish Geological Institute in Warsaw. The δ18Oapatite values range from 16.75‰VSMOW to 20.66‰VSMOW with an average of 18.48‰VSMOW. The oxygen isotopes from bioapatite of the studied section display an increasing trend, suggesting a progressive decrease in sea-surface temperature roughly consistent with an overall cooling of the Ordovician climate. Two distinctive positive excursions of δ18Oapatite have been reported in the upper Sandbian and middle Katian of the studied section and correlated with cooling events recognised in Baltica. They are interpreted as an isotope temperature proxy of climate changes triggered by a growing continental polar ice cap, but increased δ18Oapatite in the late Sandbian contradicts recently postulated climate warming during that time in subtropical Laurentia.
Collapse
|
11
|
Jakub Z, Meier M, Kraushofer F, Balajka J, Pavelec J, Schmid M, Franchini C, Diebold U, Parkinson GS. Rapid oxygen exchange between hematite and water vapor. Nat Commun 2021; 12:6488. [PMID: 34759277 PMCID: PMC8580966 DOI: 10.1038/s41467-021-26601-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.
Collapse
Affiliation(s)
- Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Central European Institute of Technology (CEITEC), Brno University of Technology, Brno, Czech Republic
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, Austria
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria
| | | | - Jan Balajka
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Jiri Pavelec
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | - Cesare Franchini
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria
- Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | | | |
Collapse
|
12
|
Was There Land on the Early Earth? Life (Basel) 2021; 11:life11111142. [PMID: 34833018 PMCID: PMC8623345 DOI: 10.3390/life11111142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day–night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth’s surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question.
Collapse
|
13
|
Oxygen isotopes of fuel pellets from the fifth collaborative materials exercise and uranium oxides reference materials determined by continuous flow laser fluorination mass spectrometry for nuclear forensic applications. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Kalderon-Asael B, Katchinoff JAR, Planavsky NJ, Hood AVS, Dellinger M, Bellefroid EJ, Jones DS, Hofmann A, Ossa FO, Macdonald FA, Wang C, Isson TT, Murphy JG, Higgins JA, West AJ, Wallace MW, Asael D, Pogge von Strandmann PAE. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 2021; 595:394-398. [PMID: 34262211 DOI: 10.1038/s41586-021-03612-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.
Collapse
Affiliation(s)
| | | | - Noah J Planavsky
- Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
| | - Ashleigh V S Hood
- The University of Melbourne, School of Earth Sciences, Parkville, Victoria, Australia
| | | | | | - David S Jones
- Amherst College Geology Department, Amherst, MA, USA
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Frantz Ossa Ossa
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.,Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Francis A Macdonald
- Department of Earth Sciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chunjiang Wang
- China University of Petroleum, College of Geosciences, Beijing, China
| | - Terry T Isson
- Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Te Aka Mātuatua, University of Waikato, Tauranga, New Zealand
| | - Jack G Murphy
- Department of Geoscience, Princeton University, Princeton, NJ, USA
| | - John A Higgins
- Department of Geoscience, Princeton University, Princeton, NJ, USA
| | - A Joshua West
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Malcolm W Wallace
- The University of Melbourne, School of Earth Sciences, Parkville, Victoria, Australia
| | - Dan Asael
- Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | - Philip A E Pogge von Strandmann
- London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London, UK. .,Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Abstract
The spatial coverage and temporal resolution of the Early Paleozoic paleoclimate record are limited, primarily due to the paucity of well-preserved skeletal material commonly used for oxygen-isotope paleothermometry. Bulk-rock [Formula: see text] datasets can provide broader coverage and higher resolution, but are prone to burial alteration. We assess the diagenetic character of two thick Cambro-Ordovician carbonate platforms with minimal to moderate burial by pairing clumped and bulk isotope analyses of micritic carbonates. Despite resetting of the clumped-isotope thermometer at both sites, our samples indicate relatively little change to their bulk [Formula: see text] due to low fluid exchange. Consequently, both sequences preserve temporal trends in [Formula: see text] Motivated by this result, we compile a global suite of bulk rock [Formula: see text] data, stacking overlapping regional records to minimize diagenetic influences on overall trends. We find good agreement of bulk rock [Formula: see text] with brachiopod and conodont [Formula: see text] trends through time. Given evidence that the [Formula: see text] value of seawater has not evolved substantially through the Phanerozoic, we interpret this record as primarily reflecting changes in tropical, nearshore seawater temperatures and only moderately modified by diagenesis. Focusing on the samples with the most enriched, and thus likely least-altered, [Formula: see text] values, we reconstruct Late Cambrian warming, Early Ordovician extreme warmth, and cooling around the Early-Middle Ordovician boundary. Our record is consistent with models linking the Great Ordovician Biodiversification Event to cooling of previously very warm tropical oceans. In addition, our high-temporal-resolution record suggests previously unresolved transient warming and climate instability potentially associated with Late Ordovician tectonic events.
Collapse
|
16
|
A CO 2 greenhouse efficiently warmed the early Earth and decreased seawater 18O/ 16O before the onset of plate tectonics. Proc Natl Acad Sci U S A 2021; 118:2023617118. [PMID: 34074764 DOI: 10.1073/pnas.2023617118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The low 18O/16O stable isotope ratios (δ18O) of ancient chemical sediments imply ∼70 °C Archean oceans if the oxygen isotopic composition of seawater (sw) was similar to modern values. Models suggesting lower δ18Osw of Archean seawater due to intense continental weathering and/or low degrees of hydrothermal alteration are inconsistent with the triple oxygen isotope composition (Δ'17O) of Precambrian cherts. We show that high CO2 sequestration fluxes into the oceanic crust, associated with extensive silicification, lowered the δ18Osw of seawater on the early Earth without affecting the Δ'17O. Hence, the controversial long-term trend of increasing δ18O in chemical sediments over Earth's history partly reflects increasing δ18Osw due to decreasing atmospheric pCO2 We suggest that δ18Osw increased from about -5‰ at 3.2 Ga to a new steady-state value close to -2‰ at 2.6 Ga, coinciding with a profound drop in pCO2 that has been suggested for this time interval. Using the moderately low δ18Osw values, a warm but not hot climate can be inferred from the δ18O of the most pristine chemical sediments. Our results are most consistent with a model in which the "faint young Sun" was efficiently counterbalanced by a high-pCO2 greenhouse atmosphere before 3 Ga.
Collapse
|
17
|
Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere. Sci Rep 2020; 10:18186. [PMID: 33097795 PMCID: PMC7585424 DOI: 10.1038/s41598-020-75100-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 11/08/2022] Open
Abstract
The Proterozoic Era records two periods of abundant positive carbon isotope excursions (CIEs), conventionally interpreted as resulting from increased organic carbon burial and leading to Earth’s surface oxygenation. As strong spatial variations in the amplitude and duration of these excursions are uncovered, this interpretation is challenged. Here, by studying the carbon cycle in the Dziani Dzaha Lake, we propose that they could be due to regionally variable methane emissions to the atmosphere. This lake presents carbon isotope signatures deviated by ~ + 12‰ compared to the modern ocean and shares a unique combination of analogies with putative Proterozoic lakes, interior seas or restricted epireic seas. A simple box model of its Carbon cycle demonstrates that its current isotopic signatures are due to high primary productivity, efficiently mineralized by methanogenesis, and to subsequent methane emissions to the atmosphere. By analogy, these results might allow the reinterpretation of some positive CIEs as at least partly due to regionally large methane emissions. This supports the view that methane may have been a major greenhouse gas during the Proterozoic Era, keeping the Earth from major glaciations, especially during periods of positive CIEs, when increased organic carbon burial would have drowned down atmospheric CO2.
Collapse
|
18
|
A seawater throttle on H 2 production in Precambrian serpentinizing systems. Proc Natl Acad Sci U S A 2020; 117:14756-14763. [PMID: 32546521 DOI: 10.1073/pnas.1921042117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the initial discovery of low-temperature alkaline hydrothermal vents off the Mid-Atlantic Ridge axis nearly 20 y ago, the observation that serpentinizing systems produce abundant H2 has strongly influenced models of atmospheric evolution and geological scenarios for the origin of life. Nevertheless, the principal mechanisms that generate H2 in these systems, and how secular changes in seawater composition may have modified serpentinization-driven H2 fluxes, remain poorly constrained. Here, we demonstrate that the dominant mechanism for H2 production during low-temperature serpentinization is directly related to a Si deficiency in the serpentine structure, which itself is caused by low SiO2(aq) concentrations in serpentinizing fluids derived from modern seawater. Geochemical calculations explicitly incorporating this mechanism illustrate that H2 production is directly proportional to both the SiO2(aq) concentration and temperature of serpentinization. These results imply that, before the emergence of silica-secreting organisms, elevated SiO2(aq) concentrations in Precambrian seawater would have generated serpentinites that produced up to two orders of magnitude less H2 than their modern counterparts, consistent with Fe-oxidation states measured on ancient igneous rocks. A mechanistic link between the marine Si cycle and off-axis H2 production requires a reevaluation of the processes that supplied H2 to prebiotic and early microbial systems, as well as those that balanced ocean-atmosphere redox through time.
Collapse
|
19
|
Catling DC, Zahnle KJ. The Archean atmosphere. SCIENCE ADVANCES 2020; 6:eaax1420. [PMID: 32133393 PMCID: PMC7043912 DOI: 10.1126/sciadv.aax1420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 05/05/2023]
Abstract
The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.
Collapse
Affiliation(s)
- David C. Catling
- Department of Earth and Space Sciences and cross-campus Astrobiology Program, Box 351310, University of Washington, Seattle, WA 98195, USA
| | - Kevin J. Zahnle
- Space Sciences Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
| |
Collapse
|
20
|
Killingsworth BA, Sansjofre P, Philippot P, Cartigny P, Thomazo C, Lalonde SV. Constraining the rise of oxygen with oxygen isotopes. Nat Commun 2019; 10:4924. [PMID: 31664027 PMCID: PMC6820740 DOI: 10.1038/s41467-019-12883-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/08/2019] [Indexed: 11/25/2022] Open
Abstract
After permanent atmospheric oxygenation, anomalous sulfur isotope compositions were lost from sedimentary rocks, demonstrating that atmospheric chemistry ceded its control of Earth’s surficial sulfur cycle to weathering. However, mixed signals of anoxia and oxygenation in the sulfur isotope record between 2.5 to 2.3 billion years (Ga) ago require independent clarification, for example via oxygen isotopes in sulfate. Here we show <2.31 Ga sedimentary barium sulfates (barites) from the Turee Creek Basin, W. Australia with positive sulfur isotope anomalies of ∆33S up to + 1.55‰ and low δ18O down to −19.5‰. The unequivocal origin of this combination of signals is sulfide oxidation in meteoric water. Geochemical and sedimentary evidence suggests that these S-isotope anomalies were transferred from the paleo-continent under an oxygenated atmosphere. Our findings indicate that incipient oxidative continental weathering, ca. 2.8–2.5 Ga or earlier, may be diagnosed with such a combination of low δ18O and high ∆33S in sulfates. The loss of anomalous sulfur isotope compositions from sedimentary rocks has been considered a symptom of permanent atmospheric oxygenation. Here the authors show sulfur and oxygen isotope evidence from < 2.31 Ga sedimentary barium sulphates (barites) from the Turee Creek Basin, W. Australia, demonstrating the influence of local non-atmospheric processes on anomalous sulfur isotope signals.
Collapse
Affiliation(s)
- B A Killingsworth
- CNRS-UMR6538 Laboratoire Géosciences Océan, European Institute for Marine Studies, Université de Bretagne Occidentale, 29280, Plouzané, France. .,Institut de Physique du Globe de Paris, Sorbonne-Paris Cité, UMR 7154, CNRS-Université Paris Diderot, 75005, Paris Cedex 05, France.
| | - P Sansjofre
- CNRS-UMR6538 Laboratoire Géosciences Océan, European Institute for Marine Studies, Université de Bretagne Occidentale, 29280, Plouzané, France.,Muséum d'Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75005, Paris, France
| | - P Philippot
- Géosciences Montpellier, CNRS-UMR 5243, Université de Montpellier, Montpellier Cedex 5, France.,Institut de Physique du Globe de Paris, Sorbonne-Paris Cité, UMR 7154, CNRS-Université Paris Diderot, 75005, Paris Cedex 05, France
| | - P Cartigny
- Institut de Physique du Globe de Paris, Sorbonne-Paris Cité, UMR 7154, CNRS-Université Paris Diderot, 75005, Paris Cedex 05, France
| | - C Thomazo
- UMR CNRS/uB 6282 Laboratoire Biogéosciences, Université de Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - S V Lalonde
- CNRS-UMR6538 Laboratoire Géosciences Océan, European Institute for Marine Studies, Université de Bretagne Occidentale, 29280, Plouzané, France
| |
Collapse
|