1
|
Wang Z, He Y, Mao HK, Kim DY. Superionicity of oxygen-deficient davemaoite and its impact on the deep-Earth oxidation cycle. SCIENCE ADVANCES 2025; 11:eadu8401. [PMID: 40446050 PMCID: PMC12124389 DOI: 10.1126/sciadv.adu8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Davemaoite (CaSiO3 perovskite) is an essential mineral in Earth's lower mantle, thought to be solidified directly from an early magma ocean. Despite its abundance, the impact of defects, particularly oxygen vacancies, on davemaoite's properties under mantle conditions has not been thoroughly investigated. Here, we use machine learning molecular dynamic simulations to examine the behavior of oxygen-deficient davemaoite structures under high pressures and temperatures. Our simulations reveal its superionic transition driven by oxygen's diffusion, enhancing electrical conductivities. Our predicted phase diagrams demonstrate that higher oxygen vacancy concentrations expand the superionic phase region. This superionic behavior implies that defective davemaoite could play a critical role in early mantle oxidation and deep-Earth oxygen cycling, providing a potential major source of mobile oxygen in the deep mantle. These findings offer fresh insights into the geodynamic processes in Earth's early mantle and suggest that oxygen-deficient davemaoite could primarily contribute to the electrical conductivity and oxidation state of the deep lower mantle.
Collapse
Affiliation(s)
- Zifan Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P.R. China
| | - Yu He
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P.R. China
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, P.R. China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Institute for Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, P.R. China
| | - Duck Young Kim
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Institute for Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, P.R. China
| |
Collapse
|
2
|
Bizzarro M, Johansen A, Dorn C. The cosmochemistry of planetary systems. Nat Rev Chem 2025:10.1038/s41570-025-00711-9. [PMID: 40295893 DOI: 10.1038/s41570-025-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Planets form and obtain their compositions from the leftover material present in protoplanetary disks of dust and gas surrounding young stars. The chemical make-up of a disk influences every aspect of planetary composition, including their overall chemical properties, volatile content, atmospheric composition and potential for habitability. This Review discusses our knowledge of the chemical and isotopic composition of Solar System materials and how this information can be used to place constraints on the formation pathways of terrestrial planets. We conclude that planetesimal formation by the streaming instability followed by rapid accretion of drifting pebbles within the protoplanetary disk lifetime reproduces most of the chemical and isotopic observables in the Solar System. This finding has important implications for planetary habitability beyond the Solar System because in pebble accretion, volatiles important for life are accreted during the main growth phase of rocky planets as opposed to the late stage. Finally, we explore how bulk chemical inventories and masses of planetary bodies control the composition of their primordial atmospheres and their potential to develop habitable conditions.
Collapse
Affiliation(s)
- Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France.
| | - Anders Johansen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Caroline Dorn
- ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
| |
Collapse
|
3
|
Korenaga J. Tectonics and Surface Environments on Early Earth. ASTROBIOLOGY 2025. [PMID: 40138191 DOI: 10.1089/ast.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The mode of tectonics that governed early Earth is controversial. This makes it challenging to infer surface environments relevant to the origin of life. The majority of the literature published in the past two decades was inclined to favor the appearance of plate tectonics sometime around the mid-Archean (∼3 Ga), with the operation of stagnant lid convection (or its variants) dominant in the earlier part of Earth's history. However, the available and increasing geological record from early Earth is actually equivocal, and there is no theoretical basis to prefer stagnant lid convection over plate tectonics. In fact, such a delayed onset of plate tectonics would inhibit the emergence of life in the Archean, let alone in the Hadean. On the contrary, rapid plate tectonics in the early Hadean, enabled by the fractional crystallization of a magma ocean, could quickly transform inclement young Earth into a habitable planet, with formation of multiple surface environments potentially conducive to abiogenesis.
Collapse
Affiliation(s)
- Jun Korenaga
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Zhou X, Bienvenu B, Wu Y, Kwiatkowski da Silva A, Ophus C, Raabe D. Complexions at the iron-magnetite interface. Nat Commun 2025; 16:2705. [PMID: 40108141 PMCID: PMC11923288 DOI: 10.1038/s41467-025-58022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Synthesizing distinct phases and controlling crystalline defects are key concepts in materials design. These approaches are often decoupled, with the former grounded in equilibrium thermodynamics and the latter in nonequilibrium kinetics. By unifying them through defect phase diagrams, we can apply phase equilibrium models to thermodynamically evaluate defects-including dislocations, grain boundaries, and phase boundaries-establishing a theoretical framework linking material imperfections to properties. Using scanning transmission electron microscopy (STEM) with differential phase contrast (DPC) imaging, we achieve the simultaneous imaging of heavy Fe and light O atoms, precisely mapping the atomic structure and chemical composition at the iron-magnetite (Fe/Fe3O4) interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/Fe3O4[001] interface. Using density-functional theory (DFT), we explain the observed complexion and map out various interface-stabilized phases as a function of the O chemical potential. The formation of complexions increases interface adhesion by 20% and alters charge transfer between adjacent materials, impacting transport properties. Our findings highlight the potential of tunable defect-stabilized phase states as a degree of freedom in materials design, enabling optimized corrosion protection, catalysis, and redox-driven phase transitions, with applications in materials sustainability, efficient energy conversion, and green steel production.
Collapse
Affiliation(s)
- Xuyang Zhou
- Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany.
| | - Baptiste Bienvenu
- Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany.
| | - Yuxiang Wu
- Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany
| | - Alisson Kwiatkowski da Silva
- Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany
| | - Colin Ophus
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Dierk Raabe
- Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany.
| |
Collapse
|
5
|
Zhang HL, Hirschmann MM, Lord OT, Rosenthal A, Yaroslavtsev S, Cottrell E, Chumakov AI, Walter MJ. Ferric iron stabilization at deep magma ocean conditions. SCIENCE ADVANCES 2024; 10:eadp1752. [PMID: 39413199 PMCID: PMC11482334 DOI: 10.1126/sciadv.adp1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Fe2O3 produced in a deep magma ocean in equilibrium with core-destined alloy sets the early redox budget and atmospheric composition of terrestrial planets. Previous experiments (≤28 gigapascals) and first-principles calculations indicate that a deep terrestrial magma ocean produces appreciable Fe3+ but predict Fe3+/ΣFe ratios that conflict by an order of magnitude. We present Fe3+/ΣFe of glasses quenched from melts equilibrated with Fe alloy at 38 to 71 gigapascals, 3600 to 4400 kelvin, analyzed by synchrotron Mössbauer spectroscopy. These indicate Fe3+/ΣFe of 0.056 to 0.112 in a terrestrial magma ocean with mean alloy-silicate equilibration pressures of 28 to 53 gigapascals, producing sufficient Fe2O3 to account for the modern bulk silicate Earth redox budget and surficial conditions near or more oxidizing than the iron-wüstite buffer, which would stabilize a primitive CO- and H2O-rich atmosphere.
Collapse
Affiliation(s)
- Hongluo L. Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
| | - Marc M. Hirschmann
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oliver T. Lord
- School of Earth Sciences, University of Bristol, Bristol BS81RJ, UK
| | - Anja Rosenthal
- ESRF–The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | | | - Elizabeth Cottrell
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | | | - Michael J. Walter
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| |
Collapse
|
6
|
Krissansen-Totton J, Wogan N, Thompson M, Fortney JJ. The erosion of large primary atmospheres typically leaves behind substantial secondary atmospheres on temperate rocky planets. Nat Commun 2024; 15:8374. [PMID: 39333519 PMCID: PMC11437211 DOI: 10.1038/s41467-024-52642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Exoplanet exploration has revealed that many-perhaps most-terrestrial exoplanets formed with substantial H2-rich envelopes, seemingly in contrast to solar system terrestrials, for which there is scant evidence of long-lived primary atmospheres. It is not known how a long-lived primary atmosphere might affect the subsequent habitability prospects of terrestrial exoplanets. Here, we present a new, self-consistent evolutionary model of the transition from primary to secondary atmospheres. The model incorporates all Fe-C-O-H-bearing species and simulates magma ocean solidification, radiative-convective climate, thermal escape, and mantle redox evolution. For our illustrative example TRAPPIST-1, our model strongly favors atmosphere retention for the habitable zone planet TRAPPIST-1e. In contrast, the same model predicts a comparatively thin atmosphere for the Venus-analog TRAPPIST-1b, which would be vulnerable to complete erosion via non-thermal escape and is consistent with JWST observations. More broadly, we conclude that the erosion of primary atmospheres typically does not preclude surface habitability, and frequently results in large surface water inventories due to the reduction of FeO by H2.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, 98195, USA.
- NASA NExSS Virtual Planetary Laboratory, University of Washington, Seattle, WA, 98195, USA.
| | - Nicholas Wogan
- NASA NExSS Virtual Planetary Laboratory, University of Washington, Seattle, WA, 98195, USA
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Maggie Thompson
- Department of Earth and Planetary Sciences, ETH Zurich, Zürich, Switzerland
- NASA Hubble Fellowship Program Sagan Fellow, Earth and Planets Laboratory, Carnegie Institution for Science, Washington DC, 20015, USA
| | - Jonathan J Fortney
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
7
|
Zhang H, Yang W, Zhang D, Tian H, Ruan R, Hu S, Chen Y, Hui H, Lin Y, Mitchell RN, Zhang D, Wu S, Jia L, Gu L, Lin Y, Li X, Wu F. Long-term reduced lunar mantle revealed by Chang'e-5 basalt. Nat Commun 2024; 15:8328. [PMID: 39333517 PMCID: PMC11437062 DOI: 10.1038/s41467-024-52710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (fO2) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang'e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average fO2 of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6-3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.
Collapse
Affiliation(s)
- Huijuan Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Wei Yang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Di Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hengci Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Renhao Ruan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Sen Hu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yi Chen
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hejiu Hui
- School of the Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanhao Lin
- Center for High Pressure Science &Technology Advanced Research, Beijing, 100193, China
| | - Ross N Mitchell
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Zhang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Shitou Wu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lihui Jia
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lixin Gu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yangting Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - XianHua Li
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Fuyuan Wu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
8
|
Johansen A, Camprubi E, van Kooten E, Hoeijmakers HJ. Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life. ASTROBIOLOGY 2024; 24:856-880. [PMID: 39344975 DOI: 10.1089/ast.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rocky planets may acquire a primordial atmosphere by the outgassing of volatiles from their magma ocean. The distribution of O between H2O, CO, and CO2 in chemical equilibrium subsequently changes significantly with decreasing temperature. We consider here two chemical models: one where CH4 and NH3 are assumed to be irrevocably destroyed by photolysis and second where these molecules persist. In the first case, we show that CO cannot coexist with H2O, since CO oxidizes at low temperatures to form CO2 and H2. In both cases, H escapes from the thermosphere within a few 10 million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process, whereby rocky planet atmospheres become dominated by CO2 and H2O regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Oxidizing atmospheres are inefficient at producing HCN by lightning. Alternatively, we have demonstrated that lightning-produced NO, which dissolves as nitrate in oceans, and interplanetary dust particles may be the main sources of fixed nitrogen in emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO2, rather than from HCN and CO.
Collapse
Affiliation(s)
- Anders Johansen
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Lund Observatory, Department of Physics, Lund University, Lund, Sweden
| | - Eloi Camprubi
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Elishevah van Kooten
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Ozawa K, Sakamoto N, Tsutsumi Y, Hirose K, Iizuka T, Yurimoto H. Trace element partitioning in a deep magma ocean and the origin of the Hf-Nd mantle array. SCIENCE ADVANCES 2024; 10:eadp0021. [PMID: 39151010 PMCID: PMC11332654 DOI: 10.1126/sciadv.adp0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Crystallization in Earth's deep magma ocean could have caused trace element fractionation in the lower mantle that might be inherited to the isotopic compositions of the present-day mantle. However, the trace element partitioning has been experimentally investigated only up to the uppermost lower-mantle pressures. Here, we determined the bridgmanite/melt partition coefficients D of La, Nd, Sm, Lu, and Hf from 24 to 115 gigapascals, covering the wide pressure range of the lower mantle. Results demonstrate substantial reductions in DLu and DHf from >1 to ≪1 with increasing pressure to 91 gigapascals. We also found DLu/DHf > 1 and DSm/DNd < 1 under deep lower-mantle conditions, evolving melts toward low Lu/Hf and high Sm/Nd ratios by crystallizing bridgmanite. If residual melts form a dense hidden reservoir in the lowermost mantle, the complementary accessible mantle has the Hf and Nd isotopic compositions matching the observed terrestrial mantle array that deviates from the bulk silicate Earth reference.
Collapse
Affiliation(s)
- Keisuke Ozawa
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoya Sakamoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yutaro Tsutsumi
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kei Hirose
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 150-8550, Japan
| | - Tsuyoshi Iizuka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Yurimoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
10
|
Zhang F, Stagno V, Zhang L, Chen C, Liu H, Li C, Sun W. The constant oxidation state of Earth's mantle since the Hadean. Nat Commun 2024; 15:6521. [PMID: 39127717 DOI: 10.1038/s41467-024-50778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Determining the evolutionary history of mantle oxygen fugacity (fo2) is crucial, as it controls the fo2 of mantle-derived melts and regulates atmospheric composition through volcanic outgassing. However, the evolution of mantle fo2 remains controversial. Here, we present a comprehensive dataset of plume-derived komatiites, picrites, and ambient mantle-derived (meta)basalts, spanning from ~3.8 Ga to the present, to investigate mantle thermal and redox states evolution. Our results indicate that fo2 of both mantle plume-derived and ambient mantle-derived melts was lower during the Archean compared to the post-Archean period. This increase in the fo2 of mantle-derived melts over time correlates with decreases in mantle potential temperature and melting depth. By normalizing fo2 to a constant reference pressure (potential oxygen fugacity), we show that the fo2 of both the mantle plume and ambient upper mantle has remained constant since the Hadean. These findings suggest that secular mantle cooling reduced melting depth, increasing the fo2 of mantle-derived melts and contributing to atmospheric oxygenation.
Collapse
Affiliation(s)
- Fangyi Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Vincenzo Stagno
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Lipeng Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Chen Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haiyang Liu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Congying Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Weidong Sun
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laoshan Laboratory, Qingdao, 266237, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Paschek K, Lee M, Semenov DA, Henning TK. Prebiotic Vitamin B 3 Synthesis in Carbonaceous Planetesimals. Chempluschem 2024; 89:e202300508. [PMID: 37847591 DOI: 10.1002/cplu.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Mijin Lee
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, House F, D-81377, Munich, Germany
| | - Thomas K Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| |
Collapse
|
12
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
14
|
Holycross M, Cottrell E. Garnet crystallization does not drive oxidation at arcs. Science 2023; 380:506-509. [PMID: 37141374 DOI: 10.1126/science.ade3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arc magmas, the building blocks of continental crust, are depleted in total iron (Fe), have higher ratios of oxidized Fe to total Fe (Fe3+/∑Fe), and record higher oxygen fugacities (fO2's) compared with magmas erupted at mid-ocean ridges. Garnet crystallization could explain these observations if garnet removes substantial amounts of Fe2+, but not Fe3+, from magma, yet this model for continental crust generation has never been tested experimentally. Analysis of garnets and melts in laboratory experiments show that the compatibilities of Fe2+ and Fe3+ in garnet are of similar magnitudes. Our results indicate that fractional crystallization of garnet-bearing cumulates will remove 20% of total Fe from primary arc basalts but negligibly alter the Fe3+/∑Fe ratio and fO2 of the melt. Garnet crystallization is unlikely to be responsible for the relatively oxidized nature of basaltic arc magmas or the Fe-depletion trend observed in continental crust.
Collapse
Affiliation(s)
- Megan Holycross
- Cornell University, Ithaca, NY 14853, USA
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Elizabeth Cottrell
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
15
|
Reconstructing Earth's atmospheric oxygenation history using machine learning. Nat Commun 2022; 13:5862. [PMID: 36195593 PMCID: PMC9532422 DOI: 10.1038/s41467-022-33388-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Reconstructing historical atmospheric oxygen (O2) levels at finer temporal resolution is a top priority for exploring the evolution of life on Earth. This goal, however, is challenged by gaps in traditionally employed sediment-hosted geochemical proxy data. Here, we propose an independent strategy-machine learning with global mafic igneous geochemistry big data to explore atmospheric oxygenation over the last 4.0 billion years. We observe an overall two-step rise of atmospheric O2 similar to the published curves derived from independent sediment-hosted paleo-oxybarometers but with a more detailed fabric of O2 fluctuations superimposed. These additional, shorter-term fluctuations are also consistent with previous but less well-established suggestions of O2 variability. We conclude from this agreement that Earth's oxygenated atmosphere may therefore be at least partly a natural consequence of mantle cooling and specifically that evolving mantle melts collectively have helped modulate the balance of early O2 sources and sinks.
Collapse
|
16
|
Thompson S, Sugimura-Komabayashi E, Komabayashi T, McGuire C, Breton H, Suehiro S, Ohishi Y. High-pressure melting experiments of Fe 3S and a thermodynamic model of the Fe-S liquids for the Earth's core. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:394003. [PMID: 35853447 DOI: 10.1088/1361-648x/ac8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Melting experiments on Fe3S were conducted to 75 GPa and 2800 K in laser-heated and internally resistive-heated diamond anvil cells within-situx-ray diffraction and/or post-mortem textural observation. From the constrained melting curve, we assessed the thermal equation of state for Fe3S liquid. Then we constructed a thermodynamic model of melting of the system Fe-Fe3S including the eutectic relation under high pressures based on our new experimental data. The mixing properties of Fe-S liquids under high pressures were evaluated in order to account for existing experimental data on eutectic temperature. The results demonstrate that the mixing of Fe and S liquids are nonideal at any core pressure. The calculated sulphur content in eutectic point decreases with increasing pressure to 120 GPa and is fairly constant of 8 wt% at greater pressures. From the Gibbs free energy, we derived the parameters to calculate the crystallising point of an Fe-S core and its isentrope, and then we calculated the density and the longitudinal seismic wave velocity (Vp) of these liquids along each isentrope. While Fe3S liquid can account for the seismologically constrained density andVpprofiles over the outer core, the density of the precipitating phase is too low for the inner core. On the other hand, a hypothetical Fe-S liquid core with a bulk composition on the Fe-rich side of the eutectic point cannot represent the density andVpprofiles of the Earth's outer core. Therefore, Earth's core cannot be approximated by the system Fe-S and it should include another light element.
Collapse
Affiliation(s)
- Samuel Thompson
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Emiko Sugimura-Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Tetsuya Komabayashi
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Chris McGuire
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Helene Breton
- School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3FE, United Kingdom
| | - Sho Suehiro
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yasuo Ohishi
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
17
|
Müller UF, Elsila J, Trail D, DasGupta S, Giese CC, Walton CR, Cohen ZR, Stolar T, Krishnamurthy R, Lyons TW, Rogers KL, Williams LD. Frontiers in Prebiotic Chemistry and Early Earth Environments. ORIGINS LIFE EVOL B 2022; 52:165-181. [PMID: 35796897 PMCID: PMC9261198 DOI: 10.1007/s11084-022-09622-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
The Prebiotic Chemistry and Early Earth Environments (PCE3) Consortium is a community of researchers seeking to understand the origins of life on Earth and in the universe. PCE3 is one of five Research Coordination Networks (RCNs) within NASA’s Astrobiology Program. Here we report on the inaugural PCE3 workshop, intended to cross-pollinate, transfer information, promote cooperation, break down disciplinary barriers, identify new directions, and foster collaborations. This workshop, entitled, “Building a New Foundation”, was designed to propagate current knowledge, identify possibilities for multidisciplinary collaboration, and ultimately define paths for future collaborations. Presentations addressed the likely conditions on early Earth in ways that could be incorporated into prebiotic chemistry experiments and conceptual models to improve their plausibility and accuracy. Additionally, the discussions that followed among workshop participants helped to identify within each subdiscipline particularly impactful new research directions. At its core, the foundational knowledge base presented in this workshop should underpin future workshops and enable collaborations that bridge the many disciplines that are part of PCE3.
Collapse
Affiliation(s)
| | - Jamie Elsila
- NASA/Goddard Space Flight Center, Greenbelt, United States
| | - Dustin Trail
- University of Rochester, Rochester, United States
| | | | - Claudia-Corina Giese
- Leiden University, Leiden, The Netherlands.,Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Oxygen controls on magmatism in rocky exoplanets. Proc Natl Acad Sci U S A 2021; 118:2110427118. [PMID: 34725159 PMCID: PMC8609297 DOI: 10.1073/pnas.2110427118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Refractory oxygen bound to cations is a key component of the interior of rocky exoplanets. Its abundance controls planetary properties including metallic core fraction, core composition, and mantle and crust mineralogy. Interior oxygen abundance, quantified with the oxygen fugacity (fO2), also determines the speciation of volatile species during planetary outgassing, affecting the composition of the atmosphere. Although melting drives planetary differentiation into core, mantle, crust, and atmosphere, the effect of fO2 on rock melting has not been studied directly to date, with prior efforts focusing on fO2-induced changes in the valence ratio of transition metals (particularly iron) in minerals and magma. Here, melting experiments were performed using a synthetic iron-free basalt at oxygen levels representing reducing (log fO2 = -11.5 and -7) and oxidizing (log fO2 = -0.7) interior conditions observed in our solar system. Results show that the liquidus of iron-free basalt at a pressure of 1 atm is lowered by 105 ± 10 °C over an 11 log fO2 units increase in oxygen abundance. This effect is comparable in size to the well-known enhanced melting of rocks by the addition of H2O or CO2 This implies that refractory oxygen abundance can directly control exoplanetary differentiation dynamics by affecting the conditions under which magmatism occurs, even in the absence of iron or volatiles. Exoplanets with a high refractory oxygen abundance exhibit more extensive and longer duration magmatic activity, leading to more efficient and more massive volcanic outgassing of more oxidized gas species than comparable exoplanets with a lower rock fO2.
Collapse
|
19
|
Barth P, Carone L, Barnes R, Noack L, Mollière P, Henning T. Magma Ocean Evolution of the TRAPPIST-1 Planets. ASTROBIOLOGY 2021; 21:1325-1349. [PMID: 34314604 DOI: 10.1089/ast.2020.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of weight percent of water, even though the host star's activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. To understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma-ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma-ocean evolution model, validated against the rocky super-Earth GJ 1132b and early Earth. We simulate the coupled magma-ocean atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.
Collapse
Affiliation(s)
- Patrick Barth
- Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Virtual Planetary Laboratory Lead Team, USA
| | - Lena Noack
- Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - Paul Mollière
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | |
Collapse
|
20
|
Sakuraba H, Kurokawa H, Genda H, Ohta K. Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion. Sci Rep 2021; 11:20894. [PMID: 34686749 PMCID: PMC8536732 DOI: 10.1038/s41598-021-99240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}log10fO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gtrsim$$\end{document}≳\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{IW}}$$\end{document}IW\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-2$$\end{document}-2, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 is the oxygen fugacity, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{IW}$$\end{document}IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}log10fO2IW, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}fO2IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
Collapse
Affiliation(s)
- Haruka Sakuraba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Ohta
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
21
|
Nabiei F, Badro J, Boukaré C, Hébert C, Cantoni M, Borensztajn S, Wehr N, Gillet P. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL092446. [PMID: 34219835 PMCID: PMC8244043 DOI: 10.1029/2021gl092446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 05/09/2023]
Abstract
We carried out a series of silicate fractional crystallization experiments at lower mantle pressures using the laser-heated diamond anvil cell. Phase relations and the compositional evolution of the cotectic melt and equilibrium solids along the liquid line of descent were determined and used to assemble the melting phase diagram. In a pyrolitic magma ocean, the first mineral to crystallize in the deep mantle is iron-depleted calcium-bearing bridgmanite. From the phase diagram, we estimate that the initial 33%-36% of the magma ocean will crystallize to form such a buoyant bridgmanite. Substantial calcium solubility in bridgmanite is observed up to 129 GPa, and significantly delays the crystallization of the calcium silicate perovskite phase during magma ocean solidification. Residual melts are strongly iron-enriched as crystallization proceeds, making them denser than any of the coexisting solids at deep mantle conditions, thus supporting the terrestrial basal magma ocean hypothesis (Labrosse et al., 2007).
Collapse
Affiliation(s)
- Farhang Nabiei
- Earth and Planetary Science LaboratoryEPFLLausanneSwitzerland
- Electron Spectrometry and Microscopy LaboratoryEPFLLausanneSwitzerland
| | - James Badro
- Earth and Planetary Science LaboratoryEPFLLausanneSwitzerland
- Université de ParisInstitut de Physique du Globe de ParisCNRSParisFrance
| | - Charles‐Édouard Boukaré
- Earth and Planetary Science LaboratoryEPFLLausanneSwitzerland
- Université de ParisInstitut de Physique du Globe de ParisCNRSParisFrance
| | - Cécile Hébert
- Electron Spectrometry and Microscopy LaboratoryEPFLLausanneSwitzerland
| | - Marco Cantoni
- Interdisciplinary Centre for Electron MicroscopyEPFLLausanneSwitzerland
| | | | - Nicolas Wehr
- Université de ParisInstitut de Physique du Globe de ParisCNRSParisFrance
| | - Philippe Gillet
- Earth and Planetary Science LaboratoryEPFLLausanneSwitzerland
| |
Collapse
|
22
|
Desmarais JK, Bi W, Zhao J, Hu MH, Alp E, Tse JS. 57Fe Mössbauer isomer shift of pure iron and iron oxides at high pressure-An experimental and theoretical study. J Chem Phys 2021; 154:214104. [PMID: 34240999 DOI: 10.1063/5.0048141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 57Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals. However, the best numerical agreement is obtained with the B1WC hybrid functional. Extension of the calculations to 350 GPa, a pressure corresponding to the Earth's inner core, predicted the IS range of 0.00 to -0.85 mm/s, covering the span from Fe(0) to Fe(VI) compounds measured at ambient pressure. The calculations also reproduced the pressure trend from polymorphs of prototypical iron oxide minerals, FeO and Fe2O3. Analysis of the electronic structure shows a strong donation of electrons from oxygen to iron at high pressure. The assignment of formal oxidation to the Fe atom becomes ambiguous under this condition.
Collapse
Affiliation(s)
- Jacques K Desmarais
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Wenli Bi
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Michael H Hu
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Esen Alp
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - John S Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
23
|
Suer TA, Siebert J, Remusat L, Day JMD, Borensztajn S, Doisneau B, Fiquet G. Reconciling metal-silicate partitioning and late accretion in the Earth. Nat Commun 2021; 12:2913. [PMID: 34006864 PMCID: PMC8131616 DOI: 10.1038/s41467-021-23137-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Highly siderophile elements (HSE), including platinum, provide powerful geochemical tools for studying planet formation. Late accretion of chondritic components to Earth after core formation has been invoked as the main source of mantle HSE. However, core formation could also have contributed to the mantle's HSE content. Here we present measurements of platinum metal-silicate partitioning coefficients, obtained from laser-heated diamond anvil cell experiments, which demonstrate that platinum partitioning into metal is lower at high pressures and temperatures. Consequently, the mantle was likely enriched in platinum immediately following core-mantle differentiation. Core formation models that incorporate these results and simultaneously account for collateral geochemical constraints, lead to excess platinum in the mantle. A subsequent process such as iron exsolution or sulfide segregation is therefore required to remove excess platinum and to explain the mantle's modern HSE signature. A vestige of this platinum-enriched mantle can potentially account for 186Os-enriched ocean island basalt lavas.
Collapse
Affiliation(s)
- Terry-Ann Suer
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France. .,Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.
| | - Julien Siebert
- Institut de Physique du Globe de Paris, UMR CNRS 7154, Paris, France.,Institut Universitaire de France, Paris, France
| | - Laurent Remusat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - James M D Day
- Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | - Beatrice Doisneau
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Guillaume Fiquet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| |
Collapse
|
24
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
25
|
Wang W, Liu J, Zhu F, Li M, Dorfman SM, Li J, Wu Z. Formation of large low shear velocity provinces through the decomposition of oxidized mantle. Nat Commun 2021; 12:1911. [PMID: 33771990 PMCID: PMC7997914 DOI: 10.1038/s41467-021-22185-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3-10 mol% Fe2O3 system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higher VP/VS ratio than MgSiO3 bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes.
Collapse
Affiliation(s)
- Wenzhong Wang
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.83440.3b0000000121901201Department of Earth Sciences, University College London, London, UK
| | - Jiachao Liu
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Feng Zhu
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Mingming Li
- grid.215654.10000 0001 2151 2636School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Susannah M. Dorfman
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Jie Li
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Zhongqing Wu
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui China
| |
Collapse
|
26
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
27
|
Sossi PA, Burnham AD, Badro J, Lanzirotti A, Newville M, O'Neill HSC. Redox state of Earth's magma ocean and its Venus-like early atmosphere. SCIENCE ADVANCES 2020; 6:6/48/eabd1387. [PMID: 33239296 PMCID: PMC7688334 DOI: 10.1126/sciadv.abd1387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Exchange between a magma ocean and vapor produced Earth's earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth's atmosphere and those of her planetary neighbors result from Earth's heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.
Collapse
Affiliation(s)
- Paolo A Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
| | - Antony D Burnham
- Research School of Earth Sciences, Australian National University, 61 Mills Rd, 2601 Canberra, Australia
| | - James Badro
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Matt Newville
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Hugh St C O'Neill
- Research School of Earth Sciences, Australian National University, 61 Mills Rd, 2601 Canberra, Australia
| |
Collapse
|
28
|
Deng J, Du Z, Karki BB, Ghosh DB, Lee KKM. A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat Commun 2020; 11:2007. [PMID: 32332725 PMCID: PMC7181735 DOI: 10.1038/s41467-020-15757-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/20/2020] [Indexed: 11/25/2022] Open
Abstract
Magma oceans were once ubiquitous in the early solar system, setting up the initial conditions for different evolutionary paths of planetary bodies. In particular, the redox conditions of magma oceans may have profound influence on the redox state of subsequently formed mantles and the overlying atmospheres. The relevant redox buffering reactions, however, remain poorly constrained. Using first-principles simulations combined with thermodynamic modeling, we show that magma oceans of Earth, Mars, and the Moon are likely characterized with a vertical gradient in oxygen fugacity with deeper magma oceans invoking more oxidizing surface conditions. This redox zonation may be the major cause for the Earth's upper mantle being more oxidized than Mars' and the Moon's. These contrasting redox profiles also suggest that Earth's early atmosphere was dominated by CO2 and H2O, in contrast to those enriched in H2O and H2 for Mars, and H2 and CO for the Moon.
Collapse
Affiliation(s)
- Jie Deng
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA.
- Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Zhixue Du
- State key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China.
| | - Bijaya B Karki
- School of Electrical Engineering and Computer Science, Department of Geology and Geophysics, and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dipta B Ghosh
- School of Electrical Engineering and Computer Science, Department of Geology and Geophysics, and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kanani K M Lee
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
29
|
Catling DC, Zahnle KJ. The Archean atmosphere. SCIENCE ADVANCES 2020; 6:eaax1420. [PMID: 32133393 PMCID: PMC7043912 DOI: 10.1126/sciadv.aax1420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 05/05/2023]
Abstract
The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.
Collapse
Affiliation(s)
- David C. Catling
- Department of Earth and Space Sciences and cross-campus Astrobiology Program, Box 351310, University of Washington, Seattle, WA 98195, USA
| | - Kevin J. Zahnle
- Space Sciences Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
| |
Collapse
|