1
|
Long Z, Ge C, Zhao Y, Liu Y, Zeng Q, Tang Q, Dong Z, He G. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. Neural Regen Res 2025; 20:2633-2644. [PMID: 38993141 PMCID: PMC11801289 DOI: 10.4103/nrr.nrr-d-23-01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Chuanhua Ge
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qinghua Zeng
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qing Tang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Liu Y, Li B, Yang R, Shang C, Bai Y, Zheng B, Zhao L. Ultrasound-triggered lysosomal alkalinization to block autophagy in tumor therapy. Biomaterials 2025; 320:123250. [PMID: 40081223 DOI: 10.1016/j.biomaterials.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Lysosomes play a crucial role in regulating cancer progression and drug resistance. However, there is a pressing need for the development of drugs that can safely and effectively modulate the pH of cancerous lysosomes in a controlled manner. In this study, we propose a novel strategy for lysosomal alkalinization triggered by piezoelectricity. Our findings indicate that the electrons generated by (BaTiO3/Zr/Ca) BCZT under sonication effectively alkalinize the lysosomes. Molecular dynamics simulations further demonstrate that alterations in lysosomal pH lead to modifications in the conformation of V-ATPase (proton pump), enhancing its interaction with sodium ions while partially excluding hydrogen ions from entering the lysosomes. This mechanism helps maintain lysosomal alkalization, resulting in reduced hydrolase activity and preventing the degradation of proteins and damaged organelles. The accumulation of nanoparticles within the lysosomes causes swelling and gradual destruction of the lysosomal membrane. Consequently, this lysosomal dysfunction hampers the fusion with autophagosomes, inhibiting autophagy in tumor cells and promoting apoptosis in various tumor types. Our strategy significantly inhibited tumor volume growth in mice during animal studies. In conclusion, our piezoelectric-triggered lysosomal alkalinization strategy holds promise for innovative breakthroughs in the treatment of multiple cancers.
Collapse
Affiliation(s)
- Yong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Run Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chenxu Shang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Stomatology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China; FANGZHOU Biotechnology (Tianjin) Co. Ltd (FZBio), Building 5, Tianjin Science and Technology Square, East Research Road, Nankai District, Tianjin, 300192, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121000, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
3
|
Song C, Dong Q, Yao Y, Cui Y, Zhang C, Lin L, Zhu L, Hu Y, Liu H, Jin Y, Li P, Liu X, Cao C. Nonreceptor tyrosine kinase ABL1 regulates lysosomal acidification by phosphorylating the ATP6V1B2 subunit of the vacuolar-type H +-ATPase. Autophagy 2025; 21:1192-1211. [PMID: 39757940 PMCID: PMC12087662 DOI: 10.1080/15548627.2024.2448913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. Its activity and assembly are tightly controlled by multiple pathways, of which phosphorylation-mediated regulation is poorly understood. In this report, we show that in response to starvation stimuli, the nonreceptor tyrosine kinase ABL1 directly interacts with ATP6V1B2, a subunit of the V1 domain of the V-ATPase, and phosphorylates ATP6V1B2 at Y68. Y68 phosphorylation in ATP6V1B2 facilitates the recruitment of the ATP6V1D subunit into the V1 subcomplex of V-ATPase, therefore potentiating the assembly of the V1 subcomplex with the membrane-embedded V0 subcomplex to form the integrated functional V-ATPase. ABL1 inhibition or depletion impairs V-ATPase assembly and lysosomal acidification, resulting in an increased lysosomal pH, a decreased lysosomal hydrolase activity, and consequently, the suppressed degradation of lumenal cargo during macroautophagy/autophagy. Consistently, the efficient removal of damaged mitochondrial residues during mitophagy is also impeded by ABL1 deficiency. Our findings suggest that ABL1 is a crucial autophagy regulator that maintains the adequate lysosomal acidification required for both physiological conditions and stress responses.Abbreviation: ANOVA: analysis of variance; Baf A1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CRK: CRK proto-oncogene, adaptor protein; CTSD: cathepsin D; DMSO: dimethylsulfoxide; EBSS: Earle's balanced salt solution; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GST: glutathione S-transferase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PD: Parkinson disease; PLA: proximity ligation assay; RFP: red fluorescent protein; WT: wild-type.
Collapse
Affiliation(s)
- Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Han Y, Ge L, Feng J, Zhang M, Zhang H, Shi L, Wu D, Zhang X, Guo L, Qi T, Tang H, Qiao X, Xing C, Wu J. The chimeric gene orf610a reduces cotton pollen fertility by impairing the assembly of ATP synthase. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333481 DOI: 10.1111/pbi.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Cytoplasmic male sterility (CMS) serves as a pivotal tool for exploiting hybrid vigour and studying nuclear-cytoplasmic interactions. Despite its long-standing use in cotton breeding, the underlying mechanisms of the CMS-D2 system remain elusive. Our study unravelled the role of the mitochondrial chimeric gene orf610a in reducing fertility in cotton through its interaction with ATP synthase subunit D (atpQ). Using yeast two-hybrid, bimolecular luciferase complementation, and transgenic overexpression studies, we identified a unique interaction between orf610a and atpQ, which disturbs the assembly of ATP synthase. This interaction leads to a decrease in ATP levels, an increase in H2O2 production, and mitochondrial dysfunctions, which are associated with pollen abortion. Transcriptomic and biochemical analyses of three independent overexpression lines identified 1711 differentially expressed genes (DEGs), among which 10 were related to reactive oxygen species (ROS) and ATP production. Phenotypic analysis confirmed that orf610a expression causes abnormal anther development and reduced pollen viability, contributing to sterility. Notably, SEM and TEM analyses highlighted structural anomalies in the pollen of orf610a-overexpressing lines, supporting the detrimental impacts of altered ATP synthase function. Our findings suggest that orf610a's interaction with ATP synthase components disrupts normal mitochondrial function and energy production, leading to male sterility in cotton. Understanding the molecular interactions involved in CMS can aid in developing strategies to manipulate sterility for crop improvement, offering insights into mitochondrial-nuclear interactions that could impact future breeding programmes.
Collapse
Affiliation(s)
- Yang Han
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Lishuang Ge
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Hexuan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Di Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| |
Collapse
|
5
|
Zhang X, Wu J, Min Z, Wang J, Hong X, Pei X, Rao Z, Xu X. Structure of ATP synthase from an early photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci U S A 2025; 122:e2425824122. [PMID: 40131952 PMCID: PMC12002316 DOI: 10.1073/pnas.2425824122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
F-type ATP synthase (F1FO) catalyzes proton motive force-driven ATP synthesis in mitochondria, chloroplasts, and bacteria. Different from the mitochondrial and bacterial enzymes, F1FO from photosynthetic organisms have evolved diverse structural and mechanistic details to adapt to the light-dependent reactions. Although complete structure of chloroplast F1FO has been reported, no high-resolution structure of an F1FO from photosynthetic bacteria has been available. Here, we report cryo-EM structures of an intact and functionally competent F1FO from Chloroflexus aurantiacus (CaF1FO), a filamentous anoxygenic phototrophic bacterium from the earliest branch of photosynthetic organisms. The structures of CaF1FO in its ADP-free and ADP-bound forms for three rotational states reveal a previously unrecognized architecture of ATP synthases. A pair of peripheral stalks connect to the CaF1 head through a dimer of δ-subunits, and associate with two membrane-embedded a-subunits that are asymmetrically positioned outside and clamp CaFO's c10-ring. The two a-subunits constitute two proton inlets on the periplasmic side and two proton outlets on the cytoplasmic side, endowing CaF1FO with unique proton translocation pathways that allow more protons being translocated relative to single a-subunit F1FO. Our findings deepen understanding of the architecture and proton translocation mechanisms of F1FO synthases and suggest innovative strategies for modulating their activities by altering the number of a-subunit.
Collapse
Affiliation(s)
- Xin Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Jingyi Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Zhenzhen Min
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Jiamao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xin Hong
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xinkai Pei
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaoling Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
6
|
Liu X, Roberts DS, Bingman CA, Jin S, Ge Y, Gellman SH. Rational design of a foldon-derived heterotrimer guided by quantitative native mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645370. [PMID: 40196687 PMCID: PMC11974886 DOI: 10.1101/2025.03.25.645370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Designing stable hetero-oligomeric protein complexes with defined inter-subunit stoichiometries remains a significant challenge. In this study, we report the design of a highly selective heterotrimeric assembly derived from the well-known foldon homotrimer. We generated an aab heterotrimer by introducing the Q11E modification to destabilize the homotrimer and a compensatory modification, either V14A or V14L, to stabilize the hydrophobic core of the heterotrimer. Native mass spectrometry (MS) was essential for guiding the design process, enabling precise characterization of oligomeric states and their equilibrium distributions. The heterotrimer structure was validated by x-ray crystallography. Our findings highlight the effectiveness of combining rational design with native MS to develop specific hetero-oligomeric assemblies.
Collapse
|
7
|
Chivatá-Ávila JA, Rojas-Estevez P, Muñoz-Suarez AM, Caro-Morales E, Rengifo AC, Torres-Fernández O, Lozano JM, Álvarez-Díaz DA. Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways. Viruses 2025; 17:405. [PMID: 40143332 PMCID: PMC11946058 DOI: 10.3390/v17030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The Zika virus (ZIKV) is an arbovirus linked to "Congenital Zika Syndrome" and a range of neurodevelopmental disorders (NDDs), with microcephaly as the most severe manifestation. Milder NDDs, such as autism spectrum disorders and delays in neuropsychomotor and language development, often go unnoticed in neonates, resulting in long-term social and academic difficulties. Murine models of ZIKV infection can be used to mimic part of the spectrum of motor and cognitive deficits observed in humans. These can be evaluated through behavioral tests, enabling comparison with gene expression profiles and aiding in the characterization of ZIKV-induced NDDs. OBJECTIVES This study aimed to identify genes associated with behavioral changes following a subtle ZIKV infection in juvenile BALB/c mice. METHODS Neonatal mice were subcutaneously inoculated with ZIKV (MH544701.2) on postnatal day 1 (DPN) at a dose of 6.8 × 103 PFU. Viral presence in the cerebellum and cortex was quantified at 10- and 30-days post-infection (DPI) using RT-qPCR. Neurobehavioral deficits were assessed at 30 DPI through T-maze, rotarod, and open field tests. Next-Generation Sequencing (NGS) was performed to identify differentially expressed genes (DEGs), which were analyzed through Gene Ontology (GO) and KEGG enrichment. Gene interaction networks were then constructed to explore gene interactions in the most enriched biological categories. RESULTS A ZIKV infection model was successfully established, enabling brain infection while allowing survival beyond 30 DPI. The infection induced mild cognitive behavioral changes, though motor and motivational functions remained unaffected. These cognitive changes were linked to the functional repression of synaptic vesicles and alterations in neuronal structure, suggesting potential disruptions in neuronal plasticity. CONCLUSIONS Moderate ZIKV infection with circulating strains from the 2016 epidemic may cause dysregulation of genes related to immune response, alterations in cytoskeletal organization, and modifications in cellular transport mediated by vesicles. Despite viral control, neurocognitive effects persisted, including memory deficits and anxiety-like behaviors, highlighting the long-term neurological consequences of ZIKV infection in models that show no apparent malformations.
Collapse
Affiliation(s)
- Jaime Alexander Chivatá-Ávila
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
| | - Paola Rojas-Estevez
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
| | - Alejandra M. Muñoz-Suarez
- Grupo de Animales de Laboratorio, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.M.M.-S.); (E.C.-M.)
| | - Esthefanny Caro-Morales
- Grupo de Animales de Laboratorio, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.M.M.-S.); (E.C.-M.)
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.C.R.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.C.R.); (O.T.-F.)
| | - Jose Manuel Lozano
- Grupo Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11001, Colombia;
| | - Diego A. Álvarez-Díaz
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
- Grupo de Investigación y Desarrollo en Vacunas y Biológicos Estratégicos en Salud Pública, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia
| |
Collapse
|
8
|
Cocchiararo I, Castets P. Recent advances in the clinical spectrum and pathomechanisms associated with X-linked myopathy with excessive autophagy and other VMA21-related disorders. J Neuromuscul Dis 2025:22143602251314767. [PMID: 40033998 DOI: 10.1177/22143602251314767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
X-linked myopathy with excessive autophagy (XMEA) is a rare neuromuscular disorder caused by mutations in the VMA21 gene, encoding a chaperone protein present in the endoplasmic reticulum (ER). In yeast and human, VMA21 has been shown to chaperone the assembly of the vacuolar (v)-ATPase proton pump required for the acidification of lysosomes and other organelles. In line with this, VMA21 deficiency in XMEA impairs autophagic degradation steps, which would be key in XMEA pathogenesis. Recent years have witnessed a surge of interest in VMA21, with the identification of novel mutations causing a congenital disorder of glycosylation (CDG) with liver affection, and its potent implication in cancer predisposition. With this, VMA21 deficiency has been further linked to defective glycosylation, lipid metabolism dysregulation and ER stress. Moreover, the identification of two VMA21 isoforms, namely VMA21-101 and VMA21-120, has opened novel avenues regarding the pathomechanisms leading to XMEA and VMA21-CDG. In this review, we discuss recent advances on the clinical spectrum associated with VMA21 deficiency and on the pathophysiological roles of VMA21.
Collapse
Affiliation(s)
- Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Suzuki K, Goto Y, Otomo A, Shimizu K, Abe S, Moriyama K, Yasuda S, Hashimoto Y, Kurushima J, Mikuriya S, Imai FL, Adachi N, Kawasaki M, Sato Y, Ogasawara S, Iwata S, Senda T, Ikeguchi M, Tomita H, Iino R, Moriya T, Murata T. Na +-V-ATPase inhibitor curbs VRE growth and unveils Na + pathway structure. Nat Struct Mol Biol 2025; 32:450-458. [PMID: 39572733 DOI: 10.1038/s41594-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/03/2024] [Indexed: 03/20/2025]
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) is a major cause of nosocomial infections, particularly endocarditis and sepsis. With the diminishing effectiveness of antibiotics against VRE, new antimicrobial agents are urgently needed. Our previous research demonstrated the crucial role of Na+-transporting V-ATPase in Enterococcus hirae for growth under alkaline conditions. In this study, we identified a compound, V-161, from 70,600 compounds, which markedly inhibits E. hirae V-ATPase activity. V-161 not only inhibits VRE growth in alkaline conditions but also significantly suppresses VRE colonization in the mouse small intestine. Furthermore, we unveiled the high-resolution structure of the membrane VO part due to V-161 binding. V-161 binds to the interface of the c-ring and a-subunit, constituting the Na+ transport pathway in the membrane, thereby halting its rotation. This structural insight presents potential avenues for developing therapeutic agents for VRE treatment and elucidates the Na+ transport pathway and mechanism.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yoshiyuki Goto
- Membrane Protein Research Center, Chiba University, Chiba, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Kouki Shimizu
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Shohei Abe
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Sho Mikuriya
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fabiana L Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan.
- Membrane Protein Research Center, Chiba University, Chiba, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
10
|
Wu Y, Liu X, Luo G, Li Q, Guo B, Li L, Nie J. DNLA Delayed the Appearance of Learning and Memory Impairment of APP/PS1 Mice: Involvement of mTOR/TFEB/v-ATPase Signaling Pathway. CNS Neurosci Ther 2025; 31:e70300. [PMID: 40047153 PMCID: PMC11883424 DOI: 10.1111/cns.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is incurable. There is existing evidence to suggest that vacuolar adenosine triphosphatase (v-ATPase) is one of the early key driving factors in the pathological process of AD. Thus, early intervention of v-ATPase may be a viable strategy. AIMS Observing whether early intervention with DNLA can delay learning and memory impairment in mice, and further exploring the mechanism of DNLA delaying AD in vitro based on v-ATPase. METHODS Four-month-old APP/PS1 transgenic mice were treated with alkaloids from Dendrobium nobile Lindl (DNLA) 20 and 40 mg/kg/day for 5 months. The Morris water maze test and nest test showed that DNLA administration significantly delayed the appearance of cognitive deficits in APP/PS1 mice. We further investigated the mechanism of DNLA promoting lysosome acidification in vitro by using PC12 cells. RESULTS We found that DNLA increases the degradation of β-amyloid (Aβ) contained in the autophagic lysosomes and alleviates the aging of neurons by promoting lysosome acidification and improving autophagy flow. In PC12 cells, DDB could promote the separation of mTOR and lysosome, promote the nuclear translocation of transcription factor EB (TFEB), and then promote lysosome biogenesis and lysosome acidification by targeting ATP6V1A. CONCLUSION These results unraveled that preventive administration of DNLA may delay the impairment of learning and memory in APP/PS1 mice. The molecular mechanism may be related to promoting the mTOR-TFEB-v-ATPase pathway.
Collapse
Affiliation(s)
- Yajuan Wu
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Guohui Luo
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| |
Collapse
|
11
|
Liu X, Liang X, Shi X, Zhang J. Vacuolar (H +)-ATPase Genes Are Essential for Cuticle and Wing Development in Locusta migratoria. Genes (Basel) 2025; 16:145. [PMID: 40004474 PMCID: PMC11854941 DOI: 10.3390/genes16020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vacuolar (H+)-ATPases (V-ATPases) are crucial in several significant biological processes, including intracellular transport, endocytosis, autophagy and protein degradation. However, their role in the growth and development of insects remains largely unknown. This study aimed to explore the molecular and functional properties of V-ATPases in Locusta migratoria. METHODS LmV-ATPase genes were identified based on the locust transcriptome database and bioinformatics analysis. Quantitative reverse-transcription polymerase chain reaction was used to assess the relative expression of LmV-ATPases in different tissues and developmental stages. RNA interference combined with hematoxylin-eosin staining and transmission electron microscopy was used to explore the functions of LmV-ATPases. RESULTS Ten V-ATPase genes were identified in L. migratoria and were named LmV-ATPase A, B, C, D, E, F, G, c″, d and e, respectively. These genes were highly expressed in the head, integument, gastric caecum, midgut, hindgut, fat body, trachea and ovary. The transcripts of LmV-ATPases were expressed in the developmental stages examined (from the 3rd to 5th instar nymphs). The injection of double-stranded RNA (dsRNA) against each LmV-ATPase induced high silencing efficiency in the 3rd instar nymphs. Knockdown of LmV-ATPases resulted in lethal phenotypes, with visible defects of the wing and cuticle. We further demonstrated that the deformation was caused by the defects of epidermal cells and fewer new cuticles. CONCLUSIONS These findings suggest that LmV-ATPases are required for the wing and cuticle development of L. migratoria, which could be potential targets for the control of locusts.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xiaoyu Liang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xuekai Shi
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Pepe S, Aprile D, Castroflorio E, Marte A, Giubbolini S, Hopestone S, Parsons A, Soares T, Benfenati F, Oliver PL, Fassio A. TBC1D24 interacts with the v-ATPase and regulates intraorganellar pH in neurons. iScience 2025; 28:111515. [PMID: 39758816 PMCID: PMC11699390 DOI: 10.1016/j.isci.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V1) and proton transport (V0) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions. Here, we reveal that TBC1D24 interacts with the v-ATPase in the brain. Using a constitutive Tbc1d24 knockout mouse model, we observed accumulation of lysosomes and non-degraded lipid materials in neuronal tissue. In Tbc1d24 knockout neurons, we detected V1 mis-localization with increased pH at endo-lysosomal compartments and autophagy impairment. Furthermore, synaptic vesicles endocytosis and reacidification were impaired. Thus, we demonstrate that TBC1D24 is a positive regulator of v-ATPase activity in neurons suggesting that alteration of pH homeostasis could underlie disorders associated with TBC1D24 and the v-ATPase.
Collapse
Affiliation(s)
- Sara Pepe
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Enrico Castroflorio
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Simone Giubbolini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Samir Hopestone
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Parsons
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Tânia Soares
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Peter L. Oliver
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
13
|
Knight K, Park JB, Oot RA, Khan MM, Roh SH, Wilkens S. Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H +-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632502. [PMID: 39829782 PMCID: PMC11741422 DOI: 10.1101/2025.01.10.632502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The vacuolar ATPase (V-ATPase; V1Vo) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase Vo proton channel subcomplex. Here, we present an in-depth characterization of three anti-Vo Nbs using biochemical and biophysical in vitro experiments. We find that the Nbs bind Vo with high affinity, with one Nb inhibiting holoenzyme activity and another one preventing enzyme assembly. Using cryoEM, we find that two of the Nbs bind the c subunit ring of the Vo on the lumen side of the complex. Additionally, we show that one of the Nbs raised against yeast Vo can pull down human V-ATPase (HsV1Vo). Our research demonstrates Nb versatility to target and modulate the activity of the V-ATPase, and highlights the potential for future therapeutic Nb development.
Collapse
Affiliation(s)
- Kassidy Knight
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jun Bae Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Present address: Department of Cancer Biology, Lerner research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Present address: Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soung-Hun Roh
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
14
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2025; 33:51-61.e3. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Wu D, Tang H, Qiu X, Song S, Chen S, Robinson CV. Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters. Nat Protoc 2025; 20:1-25. [PMID: 39174660 DOI: 10.1038/s41596-024-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 08/24/2024]
Abstract
The mammalian membrane is composed of various eukaryotic lipids interacting with extensively post-translationally modified proteins. Probing interactions between these mammalian membrane proteins and their diverse and heterogeneous lipid cohort remains challenging. Recently, native mass spectrometry (MS) combined with bottom-up 'omics' approaches has provided valuable information to relate structural and functional lipids to membrane protein assemblies in eukaryotic membranes. Here we provide a step-by-step protocol to identify and provide relative quantification for endogenous lipids bound to mammalian membrane proteins and their complexes. Using native MS to guide our lipidomics strategies, we describe the necessary sample preparation steps, followed by native MS data acquisition, tailored lipidomics and data interpretation. We also highlight considerations for the integration of different levels of information from native MS and lipidomics and how to deal with the various challenges that arise during the experiments. This protocol begins with the preparation of membrane proteins from mammalian cells and tissues for native MS. The results enable not only direct assessment of copurified endogenous lipids but also determination of the apparent affinities of specific lipids. Detailed sample preparation for lipidomics analysis is also covered, along with comprehensive settings for liquid chromatography-MS analysis. This protocol is suitable for the identification and quantification of endogenous lipids, including fatty acids, sterols, glycerolipids, phospholipids and glycolipids and can be used to interrogate proteins from recombinant sources to native membranes.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Xingyu Qiu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyuan Song
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Kopp J, Jahn D, Vogt G, Psoma A, Ratto E, Morelle W, Stelzer N, Hausser I, Hoffmann A, de Los Santos MR, Koch LA, Fischer-Zirnsak B, Thiel C, Palm W, Meierhofer D, van den Bogaart G, Foulquier F, Meinhardt A, Kornak U. Golgi pH elevation due to loss of V-ATPase subunit V0a2 function correlates with tissue-specific glycosylation changes and globozoospermia. Cell Mol Life Sci 2024; 82:4. [PMID: 39680136 DOI: 10.1007/s00018-024-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/01/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2-/-) and knock-in (Atp6v0a2RQ/RQ) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS. A hitherto unrecognized male infertility due to globozoospermia was evident in both mouse lines with impaired Golgi-derived acrosome formation and abolished mucin-type O-glycosylation in spermatids. Atp6v0a2-/- mutants showed enhanced fucosylation and glycosaminoglycan modification, but reduced levels of glycanated decorin and sialylation in skin and/or fibroblasts, which were absent or milder in Atp6v0a2RQ/RQ. Atp6v0a2RQ/RQ mutants displayed more abnormal migration of cortical neurons, correlating with seizures and a reduced O-mannosylation of α-dystroglycan. While anterograde transport within the secretory pathway was similarly delayed in both mutants the brefeldin A-induced retrograde fusion of Golgi membranes with the endoplasmic reticulum was less impaired in Atp6v0a2RQ/RQ. Measurement of the pH in the trans Golgi compartment revealed a shift from 5.80 in wildtype to 6.52 in Atp6v0a2-/- and 6.25 in Atp6v0a2RQ/RQ. Our findings suggest that altered O-glycosylation is more relevant for the WSS pathomechanism than N-glycosylation and leads to a secondary dystroglycanopathy. Most phenotypic and cellular properties correlate with the different degrees of trans Golgi pH elevation in both mutants underlining the fundamental relevance of pH regulation in the secretory pathway.
Collapse
Affiliation(s)
- Johannes Kopp
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Denise Jahn
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Guido Vogt
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Anthi Psoma
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - Edoardo Ratto
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Nina Stelzer
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Anne Hoffmann
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Miguel Rodriguez de Los Santos
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leonard A Koch
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, 69115, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass-Spectrometry Facility, 14195, Berlin, Germany
| | - Geert van den Bogaart
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus-Liebig-Universität Gießen, 35385, Gießen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
| |
Collapse
|
17
|
Wang H, Tarsio M, Kane PM, Rubinstein JL. Structure of yeast RAVE bound to a partial V 1 complex. Proc Natl Acad Sci U S A 2024; 121:e2414511121. [PMID: 39625975 DOI: 10.1073/pnas.2414511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
Abstract
Vacuolar-type ATPases (V-ATPases) are membrane-embedded proton pumps that acidify intracellular compartments in almost all eukaryotic cells. Homologous with ATP synthases, these multisubunit enzymes consist of a soluble catalytic V1 subcomplex and a membrane-embedded proton-translocating VO subcomplex. The V1 and VO subcomplexes can undergo reversible dissociation to regulate proton pumping, with reassociation of V1 and VO requiring the protein complex known as RAVE (regulator of the ATPase of vacuoles and endosomes). In the yeast Saccharomyces cerevisiae, RAVE consists of subunits Rav1p, Rav2p, and Skp1p. We used electron cryomicroscopy (cryo-EM) to determine a structure of yeast RAVE bound to V1. In the structure, RAVE is an L-shaped complex with Rav2p pointing toward the membrane and Skp1p distant from both the membrane and V1. Only Rav1p interacts with V1, binding to a region of subunit A not found in the corresponding ATP synthase subunit. When bound to RAVE, V1 is in a rotational state suitable for binding the free VO complex, but in the structure, it is partially disrupted, missing five of its 16 subunits. Other than these missing subunits and the conformation of the inhibitory subunit H, the V1 complex with RAVE appears poised for reassembly with VO.
Collapse
Affiliation(s)
- Hanlin Wang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
18
|
Karimi R, Coupland CE, Rubinstein JL. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles. J Struct Biol 2024; 216:108148. [PMID: 39481498 DOI: 10.1016/j.jsb.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis. Here we present Vesicle Picker, an open-source program built on the Segment Anything model. Vesicle Picker enables automatic identification of vesicles in cryo-EM micrographs with high recall and precision. It then exhaustively selects all potential particle locations, either at the perimeter or uniformly over the surface of the projection of the vesicle. The program is designed to interface with cryoSPARC, which performs both upstream micrograph processing and downstream single particle image analysis. We demonstrate Vesicle Picker's utility by determining a high-resolution map of the vacuolar-type ATPase from micrographs of native synaptic vesicles (SVs) and identifying an additional protein or protein complex in the SV membrane.
Collapse
Affiliation(s)
- Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada
| | - Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
19
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
20
|
Song C, Huang W, Zhang P, Shi J, Yu T, Wang J, Hu Y, Zhao L, Zhang R, Wang G, Zhang Y, Chen H, Wang H. Critical role of ROCK1 in AD pathogenesis via controlling lysosomal biogenesis and acidification. Transl Neurodegener 2024; 13:54. [PMID: 39497162 PMCID: PMC11533276 DOI: 10.1186/s40035-024-00442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Lysosomal homeostasis and functions are essential for the survival of neural cells. Impaired lysosomal biogenesis and acidification in Alzheimer's disease (AD) pathogenesis leads to proteolytic dysfunction and neurodegeneration. However, the key regulatory factors and mechanisms of lysosomal homeostasis in AD remain poorly understood. METHODS ROCK1 expression and its co-localization with LAMP1 and SQSTM1/p62 were detected in post-mortem brains of healthy controls and AD patients. Lysosome-related fluorescence probe staining, transmission electron microscopy and immunoblotting were performed to evaluate the role of ROCK1 in lysosomal biogenesis and acidification in various neural cell types. The interaction between ROCK1 and TFEB was confirmed by surface plasmon resonance and in situ proximity ligation assay (PLA). Moreover, we performed AAV-mediated ROCK1 downregulation followed by immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and behavioral tests to unveil the effects of the ROCK1-TFEB axis on lysosomes in APP/PS1 transgenic mice. RESULTS ROCK1 level was significantly increased in the brains of AD individuals, and was positively correlated with lysosomal markers and Aβ. Lysosomal proteolysis was largely impaired by the high abundance of ROCK1, while ROCK1 knockdown mitigated the lysosomal dysfunction in neurons and microglia. Moreover, we verified ROCK1 as a previously unknown upstream kinase of TFEB independent of m-TOR or GSK-3β. ROCK1 elevation resulted in abundant extracellular Aβ deposition which in turn bound to Aβ receptors and activated RhoA/ROCK1, thus forming a vicious circle of AD pathogenesis. Genetically downregulating ROCK1 lowered its interference with TFEB, promoted TFEB nuclear distribution, lysosomal biogenesis and lysosome-mediated Aβ clearance, and eventually prevented pathological traits and cognitive deficits in APP/PS1 mice. CONCLUSION In summary, our results provide a mechanistic insight into the critical role of ROCK1 in lysosomal regulation and Aβ clearance in AD by acting as a novel upstream serine kinase of TFEB.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongbo Hu
- Department of Neurology, Chang-Hai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gang Wang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Kim SH, Lee B, Lee SM, Kim Y. Restoring social deficits in IRSp53-deleted mice: chemogenetic inhibition of ventral dentate gyrus Emx1-expressing cells. Transl Psychiatry 2024; 14:425. [PMID: 39375329 PMCID: PMC11458854 DOI: 10.1038/s41398-024-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.
Collapse
Affiliation(s)
- Su Hyun Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Bomee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Seong Mi Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
22
|
Ge L, Wang Z, Hu Y, Wang P, Qin Q, Tian Y, Wang X, Wen X, Zeng D. Transcriptomic and Proteomic Analyses of the Immune Mechanism in Pathogenetic and Resistant Chinese Soft-Shelled Turtle ( Pelodiscus sinensis) Infected with Aeromonas hydrophila. Genes (Basel) 2024; 15:1273. [PMID: 39457397 PMCID: PMC11508015 DOI: 10.3390/genes15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As intensive aquaculture practices have progressed, the prevalence of bacterial diseases in the Chinese soft-shell turtle (Pelodiscus sinensis) has escalated, particularly infections caused by Aeromonas hydrophila, such as ulcerative dermatitis and abscess disease. Despite this, little is known about their immune defenses against this pathogen. METHODS Our study pioneers an integrated analysis of transcriptomics and proteomics to investigate the immune responses of Chinese soft-shelled turtles to A. hydrophila infection. RESULTS The investigation revealed significant differences in immune-related pathways between groups susceptible and resistant to A. hydrophila infection after 4 days. A total of 4667 and 3417 differentially expressed genes (DEGs), 763 and 568 differentially expressed proteins (DEPs), and 13 and 5 correlated differentially expressed genes and proteins (cor-DEGs-DEPs) were identified in susceptible and resistant Chinese soft-shelled turtles, respectively. In the resistant group, upregulation of immune-related genes, such as CD3ε and CD45, enhanced T-cell activation and the immune response. The proteomic analysis indicated that immune proteins, such as NF-κB1, were significantly upregulated in the resistant group. The correlation analysis between transcriptomics and proteomics demonstrated that the CD40 gene and protein, differentially expressed in the resistant group compared to the control group, were commonly upregulated within the Toll-like receptor signaling pathway. CONCLUSIONS The transcriptomic and proteomic data obtained from this study provide a scientific foundation for understanding the immune mechanisms that enable the Chinese soft-shelled turtle to resist A. hydrophila infection.
Collapse
Affiliation(s)
- Lingrui Ge
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Zi’ao Wang
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Yazhou Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Pei Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qin Qin
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Yu Tian
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Xiaoqing Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (Q.Q.); (Y.T.); (X.W.)
| | - Xingxing Wen
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Dan Zeng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
23
|
Makar AN, Boraman A, Mosen P, Simpson JE, Marques J, Michelberger T, Aitken S, Wheeler AP, Winter D, von Kriegsheim A, Gammoh N. The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation. Nat Commun 2024; 15:7743. [PMID: 39231962 PMCID: PMC11374810 DOI: 10.1038/s41467-024-52049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.
Collapse
Affiliation(s)
- Agata N Makar
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Alina Boraman
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Peter Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Jair Marques
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Tim Michelberger
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK.
| |
Collapse
|
24
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
25
|
Li Z, Alshagawi MA, Oot RA, Alamoudi MK, Su K, Li W, Collins MP, Wilkens S, Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice. Oncotarget 2024; 15:575-587. [PMID: 39145534 PMCID: PMC11325586 DOI: 10.18632/oncotarget.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells. We have previously shown that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. We have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. We show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro. We further find that injection of this nanobody into mice implanted with 4T1-12B cells orthotopically in the mammary fat pad inhibits metastasis of tumor cells to lung. These results suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mohammed A. Alshagawi
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Pharmacology, University of Minnesota School of Medicine, MN 55455, USA
- These authors contributed equally to this work
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariam K. Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kevin Su
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Korro Bio, Cambridge, MA 02139, USA
| | - Wenhui Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael P. Collins
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Foghorn Therapeutics, Cambridge, MA 02139, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
26
|
Timimi L, Wrobel AG, Chiduza GN, Maslen SL, Torres-Méndez A, Montaner B, Davis C, Minckley T, Hole KL, Serio A, Devine MJ, Skehel JM, Rubinstein JL, Schreiber A, Beale R. The V-ATPase/ATG16L1 axis is controlled by the V 1H subunit. Mol Cell 2024; 84:2966-2983.e9. [PMID: 39089251 DOI: 10.1016/j.molcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.
Collapse
Affiliation(s)
- Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - George N Chiduza
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Antonio Torres-Méndez
- Neural Circuits & Evolution Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Beatriz Montaner
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Taylor Minckley
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Katriona L Hole
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrea Serio
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Michael J Devine
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - J Mark Skehel
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK.
| |
Collapse
|
27
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
28
|
Wang H, Tarsio M, Kane PM, Rubinstein JL. Structure of yeast RAVE bound to a partial V 1 complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604153. [PMID: 39071316 PMCID: PMC11275763 DOI: 10.1101/2024.07.18.604153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Vacuolar-type ATPases (V-ATPases) are membrane-embedded proton pumps that acidify intracellular compartments in almost all eukaryotic cells. Homologous with ATP synthases, these multi-subunit enzymes consist of a soluble catalytic V 1 subcomplex and a membrane-embedded proton-translocating V O subcomplex. The V 1 and V O subcomplexes can undergo reversible dissociation to regulate proton pumping, with reassociation of V 1 and V O requiring the protein complex known as RAVE (regulator of the A TPase of v acuoles and e ndosomes). In the yeast Saccharomyces cerevisiae , RAVE consists of subunits Rav1p, Rav2p, and Skp1p. We used electron cryomicroscopy (cryo-EM) to determine a structure of yeast RAVE bound to V 1 . In the structure, RAVE is a L-shaped complex with Rav2p pointing toward the membrane and Skp1p distant from both the membrane and V 1 . Only Rav1p interacts with V 1 , binding to a region of subunit A not found in the corresponding ATP synthase subunit. When bound to RAVE, V 1 is in a rotational state suitable for binding the free V O complex, but it is partially disrupted in the structure, missing five of its 16 subunits. Other than these missing subunits and the conformation of the inhibitory subunit H, the V 1 complex with RAVE appears poised for reassembly with V O .
Collapse
|
29
|
Xie Z, Chai Y, Zhu Z, Shen Z, Guo Z, Zhao Z, Xiao L, Du Z, Ou G, Li W. Vacuolar H +-ATPase determines daughter cell fates through asymmetric segregation of the nucleosome remodeling and deacetylase complex. eLife 2024; 12:RP89032. [PMID: 38994733 PMCID: PMC11245309 DOI: 10.7554/elife.89032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.
Collapse
Affiliation(s)
- Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zijie Shen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua UniversityBeijingChina
| | - Wei Li
- School of Medicine, Tsinghua UniversityBeijingChina
| |
Collapse
|
30
|
Coupland CE, Karimi R, Bueler SA, Liang Y, Courbon GM, Di Trani JM, Wong CJ, Saghian R, Youn JY, Wang LY, Rubinstein JL. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024; 385:168-174. [PMID: 38900912 DOI: 10.1126/science.adp5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.
Collapse
Affiliation(s)
- Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Rayan Saghian
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Young Youn
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lu-Yang Wang
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
31
|
Oot RA, Wilkens S. Human V-ATPase function is positively and negatively regulated by TLDc proteins. Structure 2024; 32:989-1000.e6. [PMID: 38593795 PMCID: PMC11246223 DOI: 10.1016/j.str.2024.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
32
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
35
|
Zhang W, Sha Z, Tang Y, Jin C, Gao W, Chen C, Yu L, Lv N, Liu S, Xu F, Wang D, Shi L. Defective Lamtor5 Leads to Autoimmunity by Deregulating v-ATPase and Lysosomal Acidification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400446. [PMID: 38639386 PMCID: PMC11165510 DOI: 10.1002/advs.202400446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Despite accumulating evidence linking defective lysosome function with autoimmune diseases, how the catabolic machinery is regulated to maintain immune homeostasis remains unknown. Late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (Lamtor5) is a subunit of the Ragulator mediating mechanistic target of rapamycin complex 1 (mTORC1) activation in response to amino acids, but its action mode and physiological role are still unclear. Here it is demonstrated that Lamtor5 level is markedly decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE). In parallel, the mice with myeloid Lamtor5 ablation developed SLE-like manifestation. Impaired lysosomal function and aberrant activation of mTORC1 are evidenced in Lamtor5 deficient macrophages and PBMCs of SLE patients, accompanied by blunted autolysosomal pathway and undesirable inflammatory responses. Mechanistically, it is shown that Lamtor5 is physically associated with ATP6V1A, an essential subunit of vacuolar H+-ATPase (v-ATPase), and promoted the V0/V1 holoenzyme assembly to facilitate lysosome acidification. The binding of Lamtor5 to v-ATPase affected the lysosomal tethering of Rag GTPase and weakened its interaction with mTORC1 for activation. Overall, Lamtor5 is identified as a critical factor for immune homeostasis by intergrading v-ATPase activity, lysosome function, and mTOR pathway. The findings provide a potential therapeutic target for SLE and/or other autoimmune diseases.
Collapse
Affiliation(s)
- Wei Zhang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Zhou Sha
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Yunzhe Tang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Cuiyuan Jin
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| | - Wenhua Gao
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Changmai Chen
- School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Lang Yu
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Nianyin Lv
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Dandan Wang
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210093China
| | - Liyun Shi
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| |
Collapse
|
36
|
Bindschedler A, Schmuckli-Maurer J, Buchser S, Fischer TD, Wacker R, Davalan T, Brunner J, Heussler VT. LC3B labeling of the parasitophorous vacuole membrane of Plasmodium berghei liver stage parasites depends on the V-ATPase and ATG16L1. Mol Microbiol 2024; 121:1095-1111. [PMID: 38574236 DOI: 10.1111/mmi.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.
Collapse
Affiliation(s)
- Annina Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Sophie Buchser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tara D Fischer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tim Davalan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jessica Brunner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Ma YF, Zhao YQ, Zhou YY, Feng HY, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Roy A, Smagghe G, He M, He P. Nanoparticle-delivered RNAi-based pesticide target screening for the rice pest white-backed planthopper and risk assessment for a natural predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171286. [PMID: 38428617 DOI: 10.1016/j.scitotenv.2024.171286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Vacuolar-type (H+)-ATPase (vATPase) is a conserved multi-subunit eukaryotic enzyme composed of 14 subunits that form a functional complex consisting of an ATP-hydrolytic domain (V1) and a proton-translocation domain (V0). ATP hydrolysis and subsequent H+ translocation rely heavily on a fully assembled V1/V0 complex. Since vATPase is crucial for insect survival, it is a viable molecular target for pest control. However, detailed functional analyses of the 14 subunits and their suitability for pest control have not been fully explored in a single insect species. In this study, we identified 22 vATPase subunit transcripts that correspond to 13 subunits (A1, A2, B, C, D, E, F, G, H, a1, a2, c and d) in the white-backed planthopper (WBPH), Sogatella furcifera, a major hemipteran pest of rice. RNAi screens using microinjection and spray-based methods revealed that the SfVHA-F, SfVHA-a2 and SfVHA-c2 subunits are critical. Furthermore, star polymer (SPc) nanoparticles were utilized to conduct spray-induced and nanoparticle-delivered gene silencing (SI-NDGS) to evaluate the pest control efficacy of RNAi targeting the SfVHA-F, SfVHA-a2 and SfVHA-c2 transcripts. Target mRNA levels and vATPase enzymatic activity were both reduced. Honeydew excreta was likewise reduced in WBPH treated with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. To assess the environmental safety of the nanoparticle-wrapped dsRNAs, Cyrtorhinus lividipennis Reuter, a major natural enemy of planthoppers, was also sprayed with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. Post-spray effects of dsSfVHA-a2 and dsSfVHA-c2 on C. lividipennis were innocuous. This study identifies SfVHA-a2 and SfVHA-c2 as promising targets for biorational control of WBPH and lays the foundation for developing environment-friendly RNAi biopesticides.
Collapse
Affiliation(s)
- Yun-Feng Ma
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ya-Qin Zhao
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yang-Yuntao Zhou
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Hong-Yan Feng
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czech Republic
| | - Guy Smagghe
- Institute Entomology, Guizhou University, Huaxi District, Guiyang 550025, PR China; Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
| | - Ming He
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
38
|
Lawrence SS, Kirschbaum C, Bennett JL, Lutomski CA, El-Baba TJ, Robinson CV. Phospholipids Differentially Regulate Ca 2+ Binding to Synaptotagmin-1. ACS Chem Biol 2024; 19:953-961. [PMID: 38566504 PMCID: PMC11040605 DOI: 10.1021/acschembio.3c00772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 μM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.
Collapse
Affiliation(s)
- Sophie
A. S. Lawrence
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carla Kirschbaum
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jack L. Bennett
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Tarick J. El-Baba
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carol. V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
39
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Li B, Lan S, Liu XR, Ji JJ, He YY, Zhang DM, Xu J, Sun H, Shi Z, Wang J, Tian Y. ATP6V1A variants are associated with childhood epilepsy with favorable outcome. Seizure 2024; 116:81-86. [PMID: 37574426 DOI: 10.1016/j.seizure.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.
Collapse
Affiliation(s)
- Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Jing Ji
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yun-Yan He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Dong-Ming Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hui Sun
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| | - Yang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China; Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| |
Collapse
|
41
|
Wang S, Han Y, Liu R, Hou M, Neumann D, Zhang J, Wang F, Li Y, Zhao X, Schianchi F, Dai C, Liu L, Nabben M, Glatz JF, Wu X, Lu X, Li X, Luiken JJ. Glycolysis-Mediated Activation of v-ATPase by Nicotinamide Mononucleotide Ameliorates Lipid-Induced Cardiomyopathy by Repressing the CD36-TLR4 Axis. Circ Res 2024; 134:505-525. [PMID: 38422177 PMCID: PMC10906217 DOI: 10.1161/circresaha.123.322910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Yinying Han
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Y.H.)
| | - Ruimin Liu
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, China (R.L.)
| | - Mengqian Hou
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Dietbert Neumann
- Department of Pathology (D.N.), Maastricht University Medical Center+, the Netherlands
| | - Jun Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Fang Wang
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China (Y.L., X.W.)
| | - Xueya Zhao
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China (Y.L., X.W.)
| | - Francesco Schianchi
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
| | - Chao Dai
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China (C.D., X.W.)
| | - Lizhong Liu
- Department of Physiology, Shenzhen University Medical School, Shenzhen University, China (L.L.)
| | - Miranda Nabben
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
- Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands (M.N.)
| | - Jan F.C. Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China (C.D., X.W.)
| | - Xifeng Lu
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, China (X. Lu)
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, China (S.W., Y.H., R.L., M.H., J.Z., X.Z., X. Li)
| | - Joost J.F.P. Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands (S.W., F.W., F.S., M.N., J.F.C.G., J.J.F.P.L.)
- Department of Clinical Genetics (M.N., J.F.C.G., J.J.F.P.L.), Maastricht University Medical Center+, the Netherlands
| |
Collapse
|
42
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
43
|
Jimenez-Armijo A, Morkmued S, Ahumada JT, Kharouf N, de Feraudy Y, Gogl G, Riet F, Niederreither K, Laporte J, Birling MC, Selloum M, Herault Y, Hernandez M, Bloch-Zupan A. The Rogdi knockout mouse is a model for Kohlschütter-Tönz syndrome. Sci Rep 2024; 14:445. [PMID: 38172607 PMCID: PMC10764811 DOI: 10.1038/s41598-023-50870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.
Collapse
Affiliation(s)
- Alexandra Jimenez-Armijo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Supawich Morkmued
- Pediatrics Division, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - José Tomás Ahumada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Naji Kharouf
- Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Université de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Gergo Gogl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Marie Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Mohammed Selloum
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Competence Center for Rare Oral and Dental Diseases, Université de Lorraine, Nancy, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Institut d'études Avancées (USIAS), Université de Strasbourg, Strasbourg, France.
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
44
|
Bunel L, Pincet L, Malhotra V, Raote I, Pincet F. A model for collagen secretion by intercompartmental continuities. Proc Natl Acad Sci U S A 2024; 121:e2310404120. [PMID: 38147551 PMCID: PMC10769856 DOI: 10.1073/pnas.2310404120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Newly synthesized secretory proteins are exported from the endoplasmic reticulum (ER) at specialized subcompartments called exit sites (ERES). Cargoes like procollagen are too large for export by the standard COPII-coated vesicle of 60 nm average diameter. We have previously suggested that procollagen is transported from the ER to the next secretory organelle, the ER-Golgi intermediate compartment (ERGIC), in TANGO1-dependent interorganelle tunnels. In the theoretical model presented here, we suggest that intrinsically disordered domains of TANGO1 in the ER lumen induce an entropic contraction, which exerts a force that draws procollagen toward the ERES. Within this framework, molecular gradients of pH and/or HSP47 between the ER and ERGIC create a force in the order of tens of femto-Newtons. This force is substantial enough to propel procollagen from the ER at a speed of approximately 1 nm · s-1. This calculated speed and the quantities of collagen secreted are similar to its observed physiological secretion rate in fibroblasts, consistent with the proposal that ER export is the rate-limiting step for procollagen secretion. Hence, the mechanism we propose is theoretically adequate to explain how cells can utilize molecular gradients and export procollagens at a rate commensurate with physiological needs.
Collapse
Affiliation(s)
- Louis Bunel
- Laboratoire de Physique de l’École normale supérieure, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université Paris Cité, F-75005Paris, France
| | - Lancelot Pincet
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405Orsay, France
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona08003, Spain
- Universitat Pompeu Fabra, Barcelona08003, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
| | - Ishier Raote
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l’École normale supérieure, École Normale Supérieure, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université Paris Cité, F-75005Paris, France
| |
Collapse
|
45
|
Ye S, Agalave NM, Ma F, D Mahmood DF, Al-Grety A, Khoonsari PE, Svensson CI, Kultima K, Vera PL. Lumbosacral spinal proteomic changes during PAR4-induced persistent bladder pain. Neurosci Lett 2024; 818:137563. [PMID: 38036085 PMCID: PMC10929774 DOI: 10.1016/j.neulet.2023.137563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Repeated intravesical activation of protease-activated receptor-4 (PAR4) in mice results in persistent bladder hyperalgesia (BHA). We investigated spinal proteomic changes associated with persistent BHA. Persistent BHA was induced in female mice by repeated (3x; days 0,2,4; n = 9) intravesical instillation of PAR4 activating peptide (PAR4-AP) while scrambled peptide served as the control (no pain; n = 9) group. The threshold to lower abdominal von Frey stimulation was recorded prior to and during treatment. On day 7, L6-S1 spinal segments were excised and examined for proteomic changes using LC-MS/MS. In-depth, unbiased proteomic tandem-mass tag (TMT) analysis identified and relatively quantified 6739 proteins. We identified significant changes with 29 decreasing and 51 increasing proteins in the persistent BHA group and they were associated with neuroprotection, redox modulation, mitochondrial factors, and neuronal-related proteins. In an additional experiment, decreases in protein levels were confirmed by immunohistochemistry for metallothionein 1/2. Our results show that persistent bladder pain is associated with central (spinal) protein changes. Previous work showed that PAR4-induced bladder pain is mediated, at least in part by spinal MIF. Further functional studies of these top changing proteins may lead to the discovery of novel potential therapeutic targets at the spinal level to modulate persistent bladder pain. Future studies will examine the effect of spinal MIF antagonism on PAR4-induced spinal proteomics associated with persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Nilesh M Agalave
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Dlovan F D Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Asma Al-Grety
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Payam Emani Khoonsari
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Camila I Svensson
- Karolinska Institutet, Depts of Physiology & Pharmacology Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Kim Kultima
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Pedro L Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA; University of Kentucky, Dept of Physiology Department of Physiology, Lexington, KY, USA
| |
Collapse
|
46
|
Xiong YM, Zhou F, Zhou JW, Liu F, Zhou SQ, Li B, Liu ZJ, Qin Y. Aberrant Expressions of PSMD14 in Tumor Tissue are the Potential Prognostic Biomarkers for Hepatocellular Carcinoma after Curative Resection. Curr Genomics 2023; 24:368-384. [PMID: 38327651 PMCID: PMC10845065 DOI: 10.2174/0113892029277262231108105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a high mortality rate, with curative resection being the primary treatment. However, HCC patients have a large possibility of recurrence within 5 years after curative resection. Methods Thus, identifying biomarkers to predict recurrence is crucial. In our study, we analyzed data from CCLE, GEO, and TCGA, identifying eight oncogenes associated with HCC. Subsequently, the expression of 8 genes was tested in 5 cases of tumor tissues and the adjacent non-tumor tissues. Then ATP6AP1, PSMD14 and HSP90AB1 were selected to verify the expression in 63 cases of tumor tissues and the adjacent non-tumor tissues. The results showed that ATP6AP1, PSMD14, HSP90AB1 were generally highly expressed in tumor tissues. A five-year follow-up of the 63 clinical cases, combined with Kaplan-Meier Plotter's relapse-free survival (RFS) analysis, found a significant correlation between PSMD14 expression and recurrence in HCC patients. Subsequently, we analyzed the PSMD14 mutations and found that the PSMD14 gene mutations can lead to a shorter disease-free survival time for HCC patients. Results The results of enrichment analysis indicated that the differentially expressed genes related to PSMD14 are mainly enriched in the signal release pathway. Conclusion In conclusion, our research showed that PSMD14 might be related to recurrence in HCC patients, and the expression of PSMD14 in tumor tissue might be a potential prognostic biomarker after tumor resection in HCC patients.
Collapse
Affiliation(s)
- Yi-Mei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Fang Zhou
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Jia-Wen Zhou
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Fei Liu
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Si-Qi Zhou
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Bo Li
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Zhong-Jian Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| |
Collapse
|
47
|
Sun Y, Wang X, Yang X, Wang L, Ding J, Wang CC, Zhang H, Wang X. V-ATPase recruitment to ER exit sites switches COPII-mediated transport to lysosomal degradation. Dev Cell 2023; 58:2761-2775.e5. [PMID: 37922908 DOI: 10.1016/j.devcel.2023.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Endoplasmic reticulum (ER)-phagy is crucial to regulate the function and homeostasis of the ER via lysosomal degradation, but how it is initiated is unclear. Here we discover that Z-AAT, a disease-causing mutant of α1-antitrypsin, induces noncanonical ER-phagy at ER exit sites (ERESs). Accumulation of misfolded Z-AAT at the ERESs impairs coat protein complex II (COPII)-mediated ER-to-Golgi transport and retains V0 subunits that further assemble V-ATPase at the arrested ERESs. V-ATPase subsequently recruits ATG16L1 onto ERESs to mediate in situ lipidation of LC3C. FAM134B-II is then recruited by LC3C via its LIR motif and elicits ER-phagy leading to efficient lysosomal degradation of Z-AAT. Activation of this ER-phagy mediated by the V-ATPase-ATG16L1-LC3C axis (EVAC) is also triggered by blocking ER export. Our findings identify a pathway which switches COPII-mediated transport to lysosomal degradation for ER quality control.
Collapse
Affiliation(s)
- Yiwei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
48
|
Jiang YT, Yang LH, Zheng JX, Geng XC, Bai YX, Wang YC, Xue HW, Lin WH. Vacuolar H +-ATPase and BZR1 form a feedback loop to regulate the homeostasis of BR signaling in Arabidopsis. MOLECULAR PLANT 2023; 16:1976-1989. [PMID: 37837193 DOI: 10.1016/j.molp.2023.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Brassinosteroid (BR) is a vital plant hormone that regulates plant growth and development. BRASSINAZOLE RESISTANT 1 (BZR1) is a key transcription factor in BR signaling, and its nucleocytoplasmic localization is crucial for BR signaling. However, the mechanisms that regulate BZR1 nucleocytoplasmic distribution and thus the homeostasis of BR signaling remain largely unclear. The vacuole is the largest organelle in mature plant cells and plays a key role in maintenance of cellular pH, storage of intracellular substances, and transport of ions. In this study, we uncovered a novel mechanism of BR signaling homeostasis regulated by the vacuolar H+-ATPase (V-ATPase) and BZR1 feedback loop. Our results revealed that the vha-a2 vha-a3 mutant (vha2, lacking V-ATPase activity) exhibits enhanced BR signaling with increased total amount of BZR1, nuclear-localized BZR1, and the ratio of BZR1/phosphorylated BZR1 in the nucleus. Further biochemical assays revealed that VHA-a2 and VHA-a3 of V-ATPase interact with the BZR1 protein through a domain that is conserved across multiple species. VHA-a2 and VHA-a3 negatively regulate BR signaling by interacting with BZR1 and promoting its retention in the tonoplast. Interestingly, a series of molecular analyses demonstrated that nuclear-localized BZR1 could bind directly to specific motifs in the promoters of VHA-a2 and VHA-a3 to promote their expression. Taken together, these results suggest that V-ATPase and BZR1 may form a feedback regulatory loop to maintain the homeostasis of BR signaling in Arabidopsis, providing new insights into vacuole-mediated regulation of hormone signaling.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Han Yang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Xuan Zheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian-Chen Geng
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Xuan Bai
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Chen Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, Shanghai 200240, China.
| |
Collapse
|
49
|
Mitra C, Winkley S, Kane PM. Human V-ATPase a-subunit isoforms bind specifically to distinct phosphoinositide phospholipids. J Biol Chem 2023; 299:105473. [PMID: 37979916 PMCID: PMC10755780 DOI: 10.1016/j.jbc.2023.105473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.
Collapse
Affiliation(s)
- Connie Mitra
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Samuel Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
50
|
Luo J, Sun A, Yu Y, Pei Y, Zuo Y, Hu Z. Periplocoside P affects synaptic transmission at the neuromuscular junction and reduces synaptic excitability in Drosophila melanogaster by inhibiting V-ATPase. PEST MANAGEMENT SCIENCE 2023; 79:5044-5052. [PMID: 37556562 DOI: 10.1002/ps.7705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Periplocoside P (PSP) is a major component of Periploca sepium Bunge known for its potent insecticidal activity. V-Type adenosine triphosphatase (V-ATPase), which is widely distributed in the cytoplasmic membranes and organelles of eukaryotic cells, plays a crucial role in synaptic excitability conduction. Previous research has shown that PSP targets the apical membrane of goblet cells in the insect midgut. However, the effects of PSP on synaptic transmission at the neuromuscular junction are often overlooked. RESULTS The bioassay revealed that Drosophila adults with different genetic backgrounds showed varying levels of susceptibility to PSP in the order: parats1 > parats1 ;DSC1-/- ≈ w1118 > DSC1-/- . Intracellular electrode recording demonstrated that PSP, similar to bafilomycin A1, had an impact on the amplitude of the excitatory junction potential (EJP) and accelerated excitability decay. Furthermore, the alteration in EJP amplitude is concentration-dependent. Another surprising discovery was that the knockout DSC1 channel showed insensitivity to PSP. CONCLUSION Our findings confirm that PSP can influence synaptic transmission at the neuromuscular junction of Drosophila larvae by targeting V-ATPase. These results provide a basis for investigating the mechanism of action of PSP and its potential application in designing novel insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaojiao Luo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Anqi Sun
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F Univeristy, Yangling, Shaanxi, China
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F Univeristy, Yangling, Shaanxi, China
| |
Collapse
|