1
|
Espinosa-Soto C. Plasticity as a Sign of Developmental Bias in the Evolution of Gene Regulatory Networks. Evol Dev 2025; 27:e70007. [PMID: 40249065 DOI: 10.1111/ede.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Phenotypic plasticity is an organism's ability to produce a different phenotype in response to nongenetic perturbations such as environmental disturbances. Beneficial phenotypic plasticity can be important in evolution. After an environmental disturbance, it can delay extinction giving opportunity to the appearance of beneficial mutations. In addition, plasticity may also be one of the factors that define the course that evolution takes, for example, through genetic assimilation. This is a process in which a phenotype that initially appears as a plastic response becomes under genetic control. In the end, development of such a phenotype does not require the factor that originally induced it. Here, I use a model of the evolution of gene regulatory networks to study the range of conditions that allow the association between plasticity and the course of evolution. I assayed conditions like the difference between ancestral and optimum phenotypes, the difficulty to build the optimum phenotype, the complexity of the developmental system, mutation rate, strength of plasticity limitations, fitness advantage of the optima, and the similarity between the initially induced phenotype and the optimum. I found that populations that yield a beneficial phenotype through plasticity most often evolve a similar genetically determined phenotype under all the conditions that I assayed. I also identified conditions that facilitate evolution through genetic assimilation. Notwithstanding, even under less favorable circumstances, this form of evolution still confers easier access to a new genetically determined optimum.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
2
|
Sabarís G, Schuettengruber B, Papadopoulos GL, Coronado-Zamora M, Fitz-James MH, González J, Cavalli G. A mechanistic basis for genetic assimilation in natural fly populations. Proc Natl Acad Sci U S A 2025; 122:e2415982122. [PMID: 40063800 PMCID: PMC11929479 DOI: 10.1073/pnas.2415982122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
Genetic assimilation is a process by which a trait originally driven by the environment becomes independent of the initial cue and is expressed constitutively in a population. More than seven decades have passed since Waddington's pioneering demonstration of the acquisition of morphological traits through genetic assimilation, but the underlying mechanism remains unknown. Here, we address this gap by performing combined genomic analyses of Waddington's genetic assimilation experiments using the ectopic veins (EV) phenocopy in Drosophila as a model. Our study reveals the assimilation of EV in both outbred and inbred fly natural populations, despite their limited genetic diversity. We identified key changes in the expression of developmental genes and pinpointed selected alleles involved in EV assimilation. The assimilation of EV is mainly driven by the selection of regulatory alleles already present in the ancestral populations, including the downregulation of the receptor tyrosine kinase gene Cad96Ca by the insertion of a transposable element in its 3' untranslated region. The genetic variation at this locus in the inbred population is maintained by a large chromosomal inversion. In outbred populations, the evolution of EV results from a polygenic response shaped by the selective environment. Our results support a model in which selection for multiple preexisting alleles in the ancestral population, rather than stress-induced genetic or epigenetic variation, drives the evolution of EV in natural fly populations.
Collapse
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Giorgio L. Papadopoulos
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | | | - Josefa González
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| |
Collapse
|
3
|
Li F, Wang X, Zhou X. The Genomics Revolution Drives a New Era in Entomology. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:379-400. [PMID: 39874145 DOI: 10.1146/annurev-ento-013024-013420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Thanks to the fast development of sequencing techniques and bioinformatics tools, sequencing the genome of an insect species for specific research purposes has become an increasingly popular practice. Insect genomes not only provide sets of gene sequences but also represent a change in focus from reductionism to systemic biology in the field of entomology. Using insect genomes, researchers are able to identify and study the functions of all members of a gene family, pathway, or gene network associated with a trait of interest. Comparative genomics studies provide new insights into insect evolution, addressing long-lasting controversies in taxonomy. It is also now feasible to uncover the genetic basis of important traits by identifying variants using genome resequencing data of individual insects, followed by genome-wide association analysis. Here, we review the current progress in insect genome sequencing projects and the application of insect genomes in uncovering the phylogenetic relationships between insects and unraveling the mechanisms of important life-history traits. We also summarize the challenges in genome data sharing and possible solutions. Finally, we provide guidance for fully and deeply mining insect genome data.
Collapse
Affiliation(s)
- Fei Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China;
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China;
| |
Collapse
|
4
|
Tian S, Asano Y, Banerjee TD, Komata S, Wee JLQ, Lamb A, Wang Y, Murugesan SN, Fujiwara H, Ui-Tei K, Wittkopp PJ, Monteiro A. A microRNA is the effector gene of a classic evolutionary hotspot locus. Science 2024; 386:1135-1141. [PMID: 39636974 PMCID: PMC12015148 DOI: 10.1126/science.adp7899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a "hotspot" locus, repeatedly implicated in generating intraspecific melanic wing color polymorphisms across 100 million years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. We show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a microRNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its role is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic primary long noncoding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yoshimasa Asano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Applied Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Tirtha Das Banerjee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shinya Komata
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Jocelyn Liang Qi Wee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Abigail Lamb
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI USA
| | - Yehan Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- NucleoTIDE and PepTIDE Drug Discovery Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI USA
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, USA
| | - Antónia Monteiro
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Fandino RA, Brady NK, Chatterjee M, McDonald JMC, Livraghi L, van der Burg KRL, Mazo-Vargas A, Markenscoff-Papadimitriou E, Reed RD. The ivory lncRNA regulates seasonal color patterns in buckeye butterflies. Proc Natl Acad Sci U S A 2024; 121:e2403426121. [PMID: 39352931 PMCID: PMC11474026 DOI: 10.1073/pnas.2403426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcribed elements increasingly recognized for their roles in regulating gene expression. Thus far, however, we have little understanding of how lncRNAs contribute to evolution and adaptation. Here, we show that a conserved lncRNA, ivory, is an important color patterning gene in the buckeye butterfly Junonia coenia. ivory overlaps with cortex, a locus linked to multiple cases of crypsis and mimicry in Lepidoptera. Along with a companion paper by Livraghi et al., we argue that ivory, not cortex, is the color pattern gene of interest at this locus. In J. coenia, a cluster of cis-regulatory elements (CREs) in the first intron of ivory are genetically associated with natural variation in seasonal color pattern plasticity, and targeted deletions of these CREs phenocopy seasonal phenotypes. Deletions of different ivory CREs produce other distinct phenotypes as well, including loss of melanic eyespot rings, and positive and negative changes in overall wing pigmentation. We show that the color pattern transcription factors Spineless, Bric-a-brac, and Ftz-f1 bind to the ivory promoter during wing pattern development, suggesting that they directly regulate ivory. This case study demonstrates how cis-regulation of a single noncoding RNA can exert diverse and nuanced effects on the evolution and development of color patterns, including modulating seasonally plastic color patterns.
Collapse
Affiliation(s)
- Richard A. Fandino
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Noah K. Brady
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Martik Chatterjee
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Karin R. L. van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
- Department of Biological Sciences, Clemson University, Clemson, SC29631
| | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | | | - Robert D. Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
6
|
Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, Mazo-Vargas A, Kamrava K, Carter A, van der Heijden ESM, Reed RD, Papa R, Jiggins CD, Martin A. A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies. Proc Natl Acad Sci U S A 2024; 121:e2403326121. [PMID: 39213180 PMCID: PMC11388343 DOI: 10.1073/pnas.2403326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The cortex locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name ivory, transcribed from the cortex locus, in modulating color patterning in butterflies. Strikingly, ivory expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that ivory mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of Vanessa cardui germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of ivory. In contrast, cortex germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
| | - Charlotte J. Wright
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
| | - Kiana Kamrava
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Alexander Carter
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Eva S. M. van der Heijden
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Robert D. Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan00925, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan00926, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma43124, Italy
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| |
Collapse
|
7
|
Lozano-Morales LV, Gutiérrez-García AA, Salamanca L, Barreto-Triana N, Sarmiento CE. Altitude is correlated with body size differences among Cotesia flavipes (Hymenoptera: Braconidae) wasps collected in two mountain ranges. ZOOLOGY 2024; 166:126197. [PMID: 39232351 DOI: 10.1016/j.zool.2024.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Living at high altitudes impose physiological and ecological challenges to which species may respond altering their body size, body proportions, and the shape of their body parts. Despite the importance of this topic for understanding the origin of species diversity, little attention has been invested in this phenomenon at the populational level. This paper study the relationship between altitude and body size, body proportions, and forewing shape venation of two populations of the parasitoid wasp Cotesia flavipes. Wasps were collected from Diatraea spp. larvae from sugarcane crops in two Colombian mountain ranges that cover between 600 m and 2143 m of altitude. Linear measurements of different body regions and geometric morphometrics of the forewing were subject to multivariate comparisons and allometric analyses to assess variation and to compare trends between ranges. Central (600 m to 1704 m) and Eastern Cordillera (877 m to 2143 m) populations showed different trends between body size and altitude. Allometric trends were not uniform within or between populations nor between structures. The allometric slopes of five body measurements from a single altitude differed from these from its own mountain range suggesting that body size trends along the cordilleras are a consequence of altitude and not of intrinsic body resource allocation processes. Wing shape between populations differed; however, these changes were poorly related to altitude. In agreement with recent studies in other groups, the observed allometric and wing shape differences between the two C. flavipes populations could be a plasticity response to altitude with interesting implications for posterior genetic differentiation.
Collapse
Affiliation(s)
- Lina V Lozano-Morales
- Laboratorio de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, carrera 30 No. 45-3 Edificio 425, oficina 303, Ciudad Universitaria, Bogotá, Colombia.
| | - Andrés A Gutiérrez-García
- Laboratorio de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, carrera 30 No. 45-3 Edificio 425, oficina 303, Ciudad Universitaria, Bogotá, Colombia.
| | | | - Nancy Barreto-Triana
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación Tibaitatá, km 14 vía Mosquera, Cundinamarca, Colombia.
| | - Carlos E Sarmiento
- Laboratorio de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, carrera 30 No. 45-3 Edificio 425, oficina 303, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
8
|
Lin RC, Ferreira BT, Yuan YW. The molecular basis of phenotypic evolution: beyond the usual suspects. Trends Genet 2024; 40:668-680. [PMID: 38704304 PMCID: PMC11303103 DOI: 10.1016/j.tig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bianca T Ferreira
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Orteu A, Hornett EA, Reynolds LA, Warren IA, Hurst GDD, Martin SH, Jiggins CD. Optix and cortex/ivory/mir-193 again: the repeated use of two mimicry hotspot loci. Proc Biol Sci 2024; 291:20240627. [PMID: 39045691 PMCID: PMC11267468 DOI: 10.1098/rspb.2024.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.
Collapse
Affiliation(s)
- Anna Orteu
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Louise A. Reynolds
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Ian A. Warren
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Nakazato Y, Otaki JM. Socket Array Irregularities and Wing Membrane Distortions at the Eyespot Foci of Butterfly Wings Suggest Mechanical Signals for Color Pattern Determination. INSECTS 2024; 15:535. [PMID: 39057268 PMCID: PMC11276954 DOI: 10.3390/insects15070535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
11
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Huang G, Zhang Y, Zhang W, Wei F. Genetic mechanisms of animal camouflage: an interdisciplinary perspective. Trends Genet 2024; 40:613-620. [PMID: 38644132 DOI: 10.1016/j.tig.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Camouflage is a classic example of a trait wherein animals respond to natural selection to avoid predation or attract prey. This unique phenomenon has attracted significant recent attention and the rapid development of integrative research methods is facilitating advances in our understanding of the in-depth genetic mechanisms of camouflage. In this review article, we revisit camouflage definitions and strategies and then we examine the underlying mechanisms of the two most common forms of camouflage, crypsis and masquerade, that have recently been elucidated using multiple approaches. We also discuss unresolved questions related to camouflage. Ultimately, we highlight the implications of camouflage for informing various key issues in ecology and evolution.
Collapse
Affiliation(s)
- Guangping Huang
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fuwen Wei
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Li JL, Li SS, Luo ZJ, Lu J, Cai XM, Luo ZX, Bian L, Xiu CL, Fu NX, Liu NY, Li ZQ. CRISPR/Cas9-mediated ebony knockout causes melanin pigmentation and prevents moth Eclosion in Ectropis grisescens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105810. [PMID: 38582582 DOI: 10.1016/j.pestbp.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 04/08/2024]
Abstract
Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.
Collapse
Affiliation(s)
- Jia-Li Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China; East China Academy of Inventory and Planning of NFGA, Hangzhou 310008, People's Republic of China
| | - Shun-Si Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Zi-Jun Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Ji Lu
- East China Academy of Inventory and Planning of NFGA, Hangzhou 310008, People's Republic of China
| | - Xiao-Ming Cai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zong-Xiu Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Lei Bian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Chun-Li Xiu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Nan-Xia Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, People's Republic of China.
| | - Zhao-Qun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China.
| |
Collapse
|
14
|
Recknagel H, Leitão HG, Elmer KR. Genetic basis and expression of ventral colour in polymorphic common lizards. Mol Ecol 2024; 33:e17278. [PMID: 38268086 DOI: 10.1111/mec.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Colour is an important visual cue that can correlate with sex, behaviour, life history or ecological strategies, and has evolved divergently and convergently across animal lineages. Its genetic basis in non-model organisms is rarely known, but such information is vital for determining the drivers and mechanisms of colour evolution. Leveraging genetic admixture in a rare contact zone between oviparous and viviparous common lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise morphologically indistinguishable reproductive modes differ in their ventral colouration (from pale to vibrant yellow) and intensity of melanic patterning. We find no association between female colouration and reproductive investment, and no evidence for selection on colour. Using a combination of genetic mapping and transcriptomic evidence, we identified two candidate genes associated with ventral colour differentiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metabolism and melanin synthesis respectively. Ventral melanic spots were associated with two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) genes. Using genome re-sequencing data, our results show that fixed coding mutations in the candidate genes cannot account for differences in colouration. Taken together, our findings show that the evolution of ventral colouration and its associations across common lizard lineages is variable. A potential genetic mechanism explaining the flexibility of ventral colouration may be that colouration in common lizards, but also across squamates, is predominantly driven by regulatory genetic variation.
Collapse
Affiliation(s)
- Hans Recknagel
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Henrique G Leitão
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Teng D, Zhang W. The diversification of butterfly wing patterns: progress and prospects. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101137. [PMID: 37922984 DOI: 10.1016/j.cois.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Butterfly wings display rich phenotypic diversity and are associated with complex biological functions, thus serving as an important evolutionary system to address the genetic basis and evolution of phenotypic diversification. We review recent butterfly studies that revealed complex functions underlying diversified wing patterns and describe the genetic and environmental factors involved in wing pattern determinations. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, which in many cases are decided by several key genes. We also summarize the research advances on gene co-option as an important origin of functional complexity and evolutionary novelty. These findings reveal a pattern of evolutionary innovation within a constrained developmental framework during butterfly wing morphogenesis, but further research is required to gain a systematic and comprehensive understanding.
Collapse
Affiliation(s)
- Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Medog Biodiversity Observation and Research Station of Tibet Autonomous Region, Nyingchi 860711, China.
| |
Collapse
|
16
|
Tendolkar A, Mazo-Vargas A, Livraghi L, Hanly JJ, Van Horne KC, Gilbert LE, Martin A. Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings. eLife 2024; 12:RP90846. [PMID: 38261357 PMCID: PMC10945631 DOI: 10.7554/elife.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.
Collapse
Affiliation(s)
- Amruta Tendolkar
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Kelsey C Van Horne
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas – AustinAustinUnited States
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| |
Collapse
|
17
|
Raju A, Xue B, Leibler S. A theoretical perspective on Waddington's genetic assimilation experiments. Proc Natl Acad Sci U S A 2023; 120:e2309760120. [PMID: 38091287 PMCID: PMC10743363 DOI: 10.1073/pnas.2309760120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington's original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington's picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon-Waddington's, expressed in terms of an individual organism's developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - BingKan Xue
- Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL32611
| | - Stanislas Leibler
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY01065
| |
Collapse
|
18
|
Fukutomi Y, Takahashi A, Koshikawa S. Thermal plasticity of wing size and wing spot size in Drosophila guttifera. Dev Genes Evol 2023; 233:77-89. [PMID: 37332038 PMCID: PMC10746645 DOI: 10.1007/s00427-023-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Thermal plasticity of melanin pigmentation patterns in Drosophila species has been studied as a model to investigate developmental mechanisms of phenotypic plasticity. The developmental process of melanin pigmentation patterns on wings of Drosophila is divided into two parts, prepattern specification during the pupal period and wing vein-dependent transportation of melanin precursors after eclosion. Which part can be affected by thermal changes? To address this question, we used polka-dotted melanin spots on wings of Drosophila guttifera, whose spot areas are specified by wingless morphogen. In this research, we reared D. guttifera at different temperatures to test whether wing spots show thermal plasticity. We found that wing size becomes larger at lower temperature and that different spots have different reaction norms. Furthermore, we changed the rearing temperature in the middle of the pupal period and found that the most sensitive developmental periods for wing size and spot size are different. The results suggest that the size control mechanisms for the thermal plasticity of wing size and spot size are independent. We also found that the most sensitive stage for spot size was part of the pupal period including stages at which wingless is expressed in the polka-dotted pattern. Therefore, it is suggested that temperature change might affect the prepattern specification process and might not affect transportation through wing veins.
Collapse
Affiliation(s)
- Yuichi Fukutomi
- Department of Evolution and Ecology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan.
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
19
|
Ballinger MA, Mack KL, Durkin SM, Riddell EA, Nachman MW. Environmentally robust cis-regulatory changes underlie rapid climatic adaptation. Proc Natl Acad Sci U S A 2023; 120:e2214614120. [PMID: 37725649 PMCID: PMC10523592 DOI: 10.1073/pnas.2214614120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Changes in gene expression are thought to play a major role in adaptive evolution. While it is known that gene expression is highly sensitive to the environment, very few studies have determined the influence of genetic and environmental effects on adaptive gene expression differences in natural populations. Here, we utilize allele-specific expression to characterize cis and trans gene regulatory divergence in temperate and tropical house mice in two metabolic tissues under two thermal conditions. First, we show that gene expression divergence is pervasive between populations and across thermal conditions, with roughly 5 to 10% of genes exhibiting genotype-by-environment interactions. Second, we found that most expression divergence was due to cis-regulatory changes that were stable across temperatures. In contrast, patterns of expression plasticity were largely attributable to trans-effects, which showed greater sensitivity to temperature. Nonetheless, we found a small subset of temperature-dependent cis-regulatory changes, thereby identifying loci underlying expression plasticity. Finally, we performed scans for selection in wild house mice to identify genomic signatures of rapid adaptation. Genomic outliers were enriched in genes with evidence for cis-regulatory divergence. Notably, these genes were associated with phenotypes that affected body weight and metabolism, suggesting that cis-regulatory changes are a possible mechanism for adaptive body size evolution between populations. Our results show that gene expression plasticity, largely controlled in trans, may facilitate the colonization of new environments, but that evolved changes in gene expression are largely controlled in cis, illustrating the genetic and nongenetic mechanisms underlying the establishment of populations in new environments.
Collapse
Affiliation(s)
- Mallory A. Ballinger
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Biology, Utah State University, Logan, UT84322
| | - Katya L. Mack
- Department of Biology, Stanford University, Stanford, CA94305
| | - Sylvia M. Durkin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Eric A. Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA50011
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California, Berkeley, CA94720
- Department of Integrative Biology, University of California, Berkeley, CA94720
| |
Collapse
|
20
|
Mendieta JP, Sangra A, Yan H, Minow MAA, Schmitz RJ. Exploring plant cis-regulatory elements at single-cell resolution: overcoming biological and computational challenges to advance plant research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1486-1499. [PMID: 37309871 PMCID: PMC10598807 DOI: 10.1111/tpj.16351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Cis-regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single-cell epigenomics have revolutionized the field of identifying cell-type-specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single-cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single-cell research, challenges, and common pitfalls in the analysis of plant single-cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single-cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes.
Collapse
Affiliation(s)
| | - Ankush Sangra
- Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA
| | - Mark A A Minow
- Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, 30602, Georgia, USA
| |
Collapse
|
21
|
Kang X, Yang M, Cui X, Wang H, Kang L. Spatially differential regulation of ATF2 phosphorylation contributes to warning coloration of gregarious locusts. SCIENCE ADVANCES 2023; 9:eadi5168. [PMID: 37611100 PMCID: PMC10446495 DOI: 10.1126/sciadv.adi5168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Warning coloration are common defense strategies used by animals to deter predators. Pestilential gregarious locusts exhibit a notable black-brown pattern as a form of warning coloration. However, the mechanisms regulating this distinctive pattern remain largely unknown. Here, we revealed that the black and brown integuments of locusts are governed by varying amounts of β-carotene and β-carotene-binding protein (βCBP) complexes. βCBP expression is regulated by the bZIP transcription factor activation transcription factor 2 (ATF2), which is activated by protein kinase C alpha in response to crowding. Specifically, ATF2 is phosphorylated at Ser327 and translocates to the nucleus, where it binds to the βCBP promoter and stimulates overexpression. Differential phosphorylation of ATF2 leads to the divergent black and brown coloration in gregarious locusts. The accumulation of red pigments vital for creating the brown sternum depends on βCBP overexpression. The spatial variation in ATF2 phosphorylation enables locusts to rapidly adapt to changing environment for aposematism.
Collapse
Affiliation(s)
- Xinle Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiling Yang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaoshuang Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
23
|
Lenuzzi M, Witte H, Riebesell M, Rödelsperger C, Hong RL, Sommer RJ. Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:214-224. [PMID: 34379868 DOI: 10.1002/jez.b.23094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.
Collapse
Affiliation(s)
- Maša Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
24
|
Tenger‐Trolander A, Julick CR, Lu W, Green DA, Montooth KL, Kronforst MR. Seasonal plasticity in morphology and metabolism differs between migratory North American and resident Costa Rican monarch butterflies. Ecol Evol 2023; 13:e9796. [PMID: 36844673 PMCID: PMC9943933 DOI: 10.1002/ece3.9796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental heterogeneity in temperate latitudes is expected to maintain seasonally plastic life-history strategies that include the tuning of morphologies and metabolism that support overwintering. For species that have expanded their ranges into tropical latitudes, it is unclear the extent to which the capacity for plasticity will be maintained or will erode with disuse. The migratory generations of the North American (NA) monarch butterfly Danaus plexippus lead distinctly different lives from their summer generation NA parents and their tropical descendants living in Costa Rica (CR). NA migratory monarchs postpone reproduction, travel thousands of kilometers south to overwinter in Mexico, and subsist on little food for months. Whether recently dispersed populations of monarchs such as those in Costa Rica, which are no longer subject to selection imposed by migration, retain ancestral seasonal plasticity is unclear. To investigate the differences in seasonal plasticity, we reared the NA and CR monarchs in summer and autumn in Illinois, USA, and measured the seasonal reaction norms for aspects of morphology and metabolism related to flight. NA monarchs were seasonally plastic in forewing and thorax size, increasing wing area and thorax to body mass ratio in autumn. While CR monarchs increased thorax mass in autumn, they did not increase the area of the forewing. NA monarchs maintained similar resting and maximal flight metabolic rates across seasons. However, CR monarchs had elevated metabolic rates in autumn. Our findings suggest that the recent expansion of monarchs into habitats that support year-round breeding may be accompanied by (1) the loss of some aspects of morphological plasticity as well as (2) the underlying physiological mechanisms that maintain metabolic homeostasis in the face of temperature heterogeneity.
Collapse
Affiliation(s)
- Ayşe Tenger‐Trolander
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
- Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Cole R. Julick
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Wei Lu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| | | | - Kristi L. Montooth
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | |
Collapse
|
25
|
Functional genomic tools for emerging model species. Trends Ecol Evol 2022; 37:1104-1115. [PMID: 35914975 DOI: 10.1016/j.tree.2022.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/12/2023]
Abstract
Most studies in the field of ecology and evolution aiming to connect genotype to phenotype rarely validate identified loci using functional tools. Recent developments in RNA interference (RNAi) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas genome editing have dramatically increased the feasibility of functional validation. However, these methods come with specific challenges when applied to emerging model organisms, including limited spatial control of gene silencing, low knock-in efficiencies, and low throughput of functional validation. Moreover, many functional studies to date do not recapitulate ecologically relevant variation, and this limits their scope for deeper insights into evolutionary processes. We therefore argue that increased use of gene editing by allelic replacement through homology-directed repair (HDR) would greatly benefit the field of ecology and evolution.
Collapse
|
26
|
Otaki JM, Nakazato Y. Butterfly Wing Color Pattern Modification Inducers May Act on Chitin in the Apical Extracellular Site: Implications in Morphogenic Signals for Color Pattern Determination. BIOLOGY 2022; 11:1620. [PMID: 36358322 PMCID: PMC9687432 DOI: 10.3390/biology11111620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/28/2023]
Abstract
Butterfly wing color patterns are modified by various treatments, such as temperature shock, injection of chemical inducers, and covering materials on pupal wing tissue. Their mechanisms of action have been enigmatic. Here, we investigated the mechanisms of color pattern modifications usingthe blue pansy butterfly Junoniaorithya. We hypothesized that these modification-inducing treatments act on the pupal cuticle or extracellular matrix (ECM). Mechanical load tests revealed that pupae treated with cold shock or chemical inducers were significantly less rigid, suggesting that these treatments made cuticle formation less efficient. A known chitin inhibitor, FB28 (fluorescent brightener 28), was discovered to efficiently induce modifications. Taking advantage of its fluorescent character, fluorescent signals from FB28 were observed in live pupae in vivo from the apical extracellular side and were concentrated at the pupal cuticle focal spots immediately above the eyespot organizing centers. It was shown that chemical modification inducers and covering materials worked additively. Taken together, various modification-inducing treatments likely act extracellularly on chitin or other polysaccharides to inhibit pupal cuticle formation or ECM function, which probably causes retardation of morphogenic signals. It is likely that an interactive ECM is required for morphogenic signals for color pattern determination to travel long distances.
Collapse
Affiliation(s)
- Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | | |
Collapse
|
27
|
Mazo-Vargas A, Langmüller AM, Wilder A, van der Burg KRL, Lewis JJ, Messer PW, Zhang L, Martin A, Reed RD. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science 2022; 378:304-308. [PMID: 36264807 DOI: 10.1126/science.abi9407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Butterfly wing patterns derive from a deeply conserved developmental ground plan yet are diverse and evolve rapidly. It is poorly understood how gene regulatory architectures can accommodate both deep homology and adaptive change. To address this, we characterized the cis-regulatory evolution of the color pattern gene WntA in nymphalid butterflies. Comparative assay for transposase-accessible chromatin using sequencing (ATAC-seq) and in vivo deletions spanning 46 cis-regulatory elements across five species revealed deep homology of ground plan-determining sequences, except in monarch butterflies. Furthermore, noncoding deletions displayed both positive and negative regulatory effects that were often broad in nature. Our results provide little support for models predicting rapid enhancer turnover and suggest that deeply ancestral, multifunctional noncoding elements can underlie rapidly evolving trait systems.
Collapse
Affiliation(s)
- Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Anna M Langmüller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alexis Wilder
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Wan WT, Hu P, Chang Z, Ren YD, Dong ZW, Yang J, Pan XY, He JW, Liu W, Liu GC, Zhao RP, Mao CY, Li J, Wang W, Li XY. Genome-wide survey of open chromatin regions in two swallowtail butterflies Papilio machaon and P. bianor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21952. [PMID: 35909310 DOI: 10.1002/arch.21952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Papilio machaon was assigned as the type species for all butterflies by Linnaeus and P. bianor is a congener but exhibits a great difference in morphology (especially larva and adult color pattern) and larval host plants from P. machaon. Thus, they are the ideal models to investigate genetic mechanisms underlying morphology and plasticity between congeners. The reference genomes of both species were dissected in our previous studies, but little is known about their regulatory genome and the epigenetic regulation of gene expression throughout developmental stages. Here, we profiled the chromatin accessibility and gene expression of three developmental stages (the 4th instar larva [L4], the 5th instar larva [L5], and pupa [P]) using transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq. Results showed that many accessible chromatin peaks were identified at three developmental stages (peak number, P. machaon: 44,977 [L4], 36,919 [L5], 47,147 [P]; P. bianor: 20,341 [L4], 44,668 [L5], 62,249 [P]). Moreover, the number of differentially accessible peaks and differentially expressed genes between larval stages of each butterfly species are significantly fewer than that between larval and pupal stages, suggesting a higher similarity within larvae and a significant difference between larvae and pupae. This study added the annotated information of chromatin accessibility genome-wide of the two papilionid species and will promote the investigation of gene regulation in butterfly evolution.
Collapse
Affiliation(s)
- Wen-Ting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ping Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan-Dong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhi-Wei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiang-Yu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Wu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Gui-Chun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruo-Ping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yang Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jun Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| | - Xue-Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
29
|
Davidson PL, Byrne M, Wray GA. Evolutionary Changes in the Chromatin Landscape Contribute to Reorganization of a Developmental Gene Network During Rapid Life History Evolution in Sea Urchins. Mol Biol Evol 2022; 39:msac172. [PMID: 35946348 PMCID: PMC9435058 DOI: 10.1093/molbev/msac172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs.
Collapse
Affiliation(s)
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Wang S, Teng D, Li X, Yang P, Da W, Zhang Y, Zhang Y, Liu G, Zhang X, Wan W, Dong Z, Wang D, Huang S, Jiang Z, Wang Q, Lohman DJ, Wu Y, Zhang L, Jia F, Westerman E, Zhang L, Wang W, Zhang W. The evolution and diversification of oakleaf butterflies. Cell 2022; 185:3138-3152.e20. [PMID: 35926506 DOI: 10.1016/j.cell.2022.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/20/2022] [Accepted: 06/22/2022] [Indexed: 10/16/2022]
Abstract
Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peiwen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, China
| | - Yiming Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; National Teaching Center for Experimental Biology, Peking University, Beijing 100871, China
| | - Shun Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhisheng Jiang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA; Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA; Entomology Section, National Museum of Natural History, Manila 1000, Philippines
| | - Yongjie Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Fenghai Jia
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Kunming 650223, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute of Ecology, Peking University, Beijing 100871, China; Institute for Tibetan Plateau Research, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Shimajiri T, Otaki JM. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly Papilio polytes: Color Pattern Modifications and Their Implications in Mimicry Evolution. INSECTS 2022; 13:insects13070649. [PMID: 35886825 PMCID: PMC9322193 DOI: 10.3390/insects13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diverse butterfly wing color patterns are evolutionary products in response to environmental changes in the past. Environmental stress, such as temperature shock, is known to induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern modifications that were partly similar to those of the mimetic form, and nonmimetic females were more sensitive than males and mimetic females. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution. Abstract Butterfly wing color patterns are sensitive to environmental stress, such as temperature shock, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly reduced in size by heat shock. These temperature-shock-induced color pattern modifications were partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another inducer discovered recently, induced unique modifications. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution.
Collapse
|
32
|
Tian R, Chen X, Wu M, Xu Q, Wang S, Zang L, Xiao D. The Molecular Properties and Roles of Pannier in Harmonia axyridis's Metamorphosis and Melanin Synthesis. Front Physiol 2022; 13:909258. [PMID: 35592031 PMCID: PMC9110671 DOI: 10.3389/fphys.2022.909258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The GATA transcription factor Pannier is identified as the major regulatory gene in color pattern formation in the Asian multi-colored ladybird beetle (Harmonia axyridis). however, the mechanisms of Pannier in regulating melanin synthesis and development in H. axyridis remain elusive. In this study, we identified and characterized Pannier in H. axyridis (HaPnr) and showed it to have two alternative spliced variants named HaPnr-α and HaPnr-β. Analyses of developmental stage expression patterns revealed that HaPnr, HaPnr-α and HaPnr-β were constitutively expressed throughout all developmental stages. To examine the role of HaPnr in H. axyridis development, RNA interference was performed in late larvae (the fourth instar) and early pupae (the first day of pupa stage). The transcript levels of HaPnr were effectively suppressed after the injection of double-stranded RNA of HaPnr (dsHaPnr). The fourth instar larvae injected with dsHaPnr reduced the pupation rates to only 61.50%, compared with 88.5% in the dsGFP-injected group. The un-pupated larvae gradually died after 1 week, and visually unaffected pupae emerged into abnormal adults with malformed hind wings and melanin absent from the cuticle. These abnormal adults gradually died 10 days after eclosion. However, when early pupae were injected with dsHaPnr, the normal eclosion rate was achieved at 88.41% on day 6 after the injection. In addition, these successful eclosion adults also showed an absence of melanin in the cuticle, but they could mate normally and have normal fecundity as compared with the control. We further demonstrated that the suppression of HaPnr-α or HaPnr-β individually did not affect the pupation and eclosion process. The suppression of HaPnr-α expression resulted in elytra melanin decreasing in both the conspicua and the succinea subgroup in H. axyridis. Even though the suppression of HaPnr-β expression only affected the melanin synthesis in the succinea subgroup, it significantly prolonged the time taken for melanin synthesis to occur in the conspicua subgroup in H. axyridis. These results indicate that HaPnr plays an essential role in insect development, especially during their metamorphosis, and also support our hypothesis that HaPnr could regulate melanin synthesis in H. axyridis under the combined action with its two splicing variants, HaPnr-α and HaPnr-β.
Collapse
Affiliation(s)
- Renbin Tian
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xu Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering of Ministry of Education, Guizhou University, Guiyang, China
| | - Mengmeng Wu
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qingxuan Xu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liansheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering of Ministry of Education, Guizhou University, Guiyang, China
| | - Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
33
|
Hanly JJ, Livraghi L, Heryanto C, McMillan WO, Jiggins CD, Gilbert LE, Martin A. A large deletion at the cortex locus eliminates butterfly wing patterning. G3 GENES|GENOMES|GENETICS 2022; 12:6517782. [PMID: 35099556 PMCID: PMC8982378 DOI: 10.1093/g3journal/jkac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Luca Livraghi
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
34
|
Levis NA, Ragsdale EJ. Linking Molecular Mechanisms and Evolutionary Consequences of Resource Polyphenism. Front Integr Neurosci 2022; 16:805061. [PMID: 35210995 PMCID: PMC8861301 DOI: 10.3389/fnint.2022.805061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Resource polyphenism-the occurrence of environmentally induced, discrete, and intraspecific morphs showing differential niche use-is taxonomically widespread and fundamental to the evolution of ecological function where it has arisen. Despite longstanding appreciation for the ecological and evolutionary significance of resource polyphenism, only recently have its proximate mechanisms begun to be uncovered. Polyphenism switches, especially those influencing and influenced by trophic interactions, offer a route to integrating proximate and ultimate causation in studies of plasticity, and its potential influence on evolution more generally. Here, we use the major events in generalized polyphenic development as a scaffold for linking the molecular mechanisms of polyphenic switching with potential evolutionary outcomes of polyphenism and for discussing challenges and opportunities at each step in this process. Not only does the study of resource polyphenism uncover interesting details of discrete plasticity, it also illuminates and informs general principles at the intersection of development, ecology, and evolution.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | |
Collapse
|
35
|
Rohner PT. Secondary Sexual Trait Melanization in “Black” Scavenger Flies: Nutritional Plasticity and Its Evolution. Am Nat 2022; 199:168-177. [DOI: 10.1086/717051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Li N, Jiang L, Wang JS, Hua BZ. Integrative taxonomy of the seasonally polyphenic scorpionfly Panorpa liui Hua, 1997 (Mecoptera: Panorpidae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Espinosa-Soto C, Hernández U, Posadas-García YS. Recombination facilitates genetic assimilation of new traits in gene regulatory networks. Evol Dev 2021; 23:459-473. [PMID: 34455697 DOI: 10.1111/ede.12391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
A new phenotypic variant may appear first in organisms through plasticity, that is, as a response to an environmental signal or other nongenetic perturbation. If such trait is beneficial, selection may increase the frequency of alleles that enable and facilitate its development. Thus, genes may take control of such traits, decreasing dependence on nongenetic disturbances, in a process called genetic assimilation. Despite an increasing amount of empirical studies supporting genetic assimilation, its significance is still controversial. Whether genetic assimilation is widespread depends, to a great extent, on how easily mutation and recombination reduce the trait's dependence on nongenetic perturbations. Previous research suggests that this is the case for mutations. Here we use simulations of gene regulatory network dynamics to address this issue with respect to recombination. We find that recombinant offspring of parents that produce a new phenotype through plasticity are more likely to produce the same phenotype without requiring any perturbation. They are also prone to preserve the ability to produce that phenotype after genetic and nongenetic perturbations. Our work also suggests that ancestral plasticity can play an important role for setting the course that evolution takes. In sum, our results indicate that the manner in which phenotypic variation maps unto genetic variation facilitates evolution through genetic assimilation in gene regulatory networks. Thus, we contend that the importance of this evolutionary mechanism should not be easily neglected.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ulises Hernández
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
38
|
Van Belleghem SM, Lewis JJ, Rivera ES, Papa R. Heliconius butterflies: a window into the evolution and development of diversity. Curr Opin Genet Dev 2021; 69:72-81. [PMID: 33714874 PMCID: PMC8364860 DOI: 10.1016/j.gde.2021.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
Butterflies have become prominent models for studying the evolution and development of phenotypic variation. In Heliconius, extraordinary within species divergence and between species convergence in wing color patterns has driven decades of comparative genetic studies. However, connecting genetic patterns of diversification to the molecular mechanisms of adaptation has remained elusive. Recent studies are bridging this gap between genome and function and have driven substantial advances in deciphering the genetic architecture of diversification in Heliconius. While only a handful of large-effect genes were initially identified in the diversification of Heliconius color patterns, recent experiments have begun to unravel the underlying gene regulatory networks and how these have evolved. These results reveal an evolutionary story of many interacting loci and partly independent genetic architectures that underlie convergent evolution.
Collapse
Affiliation(s)
| | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edgardo S Rivera
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Chairs of Biomaterials, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
39
|
Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, van der Heijden ESM, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife 2021; 10:e68549. [PMID: 34280087 PMCID: PMC8289415 DOI: 10.7554/elife.68549] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Steven M Van Bellghem
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | | | - Eva SM van der Heijden
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Ling Sheng Loh
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Anna Ren
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - James J Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | | | - Laura Hebberecht
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Charlotte J Wright
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - Jonah M Walker
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | | | - Zachary H Goldberg
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | | | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del RosarioBogotáColombia
| | - Michael W Perry
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | - Riccardo Papa
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | - Arnaud Martin
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
40
|
van der Burg KR, Reed RD. Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? Curr Opin Genet Dev 2021; 69:82-87. [PMID: 33740694 DOI: 10.1016/j.gde.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023]
Abstract
Phenotypic plasticity in response to environmental cues is common in butterflies, and is a major driver of butterfly wing pattern diversity. The endocrine signal ecdysone has been revealed as a major modulator of plasticity in butterflies. External cues such as day length or temperature are translated internally into variation in ecdysone titers, which in turn lead to alternate phenotypes such as seasonal wing patterns. Here we review the evidence showing that ecdysone-mediated plasticity of different wing pattern features such as wing color and eyespot size can evolve independently. Recent studies show that ecdysone regulates gene expression in Drosophila melanogaster via a chromatin remodeling mechanism. We thus propose that environmentally responsive ecdysone titers in butterflies may also function via chromatin regulation to promote different seasonal phenotypes. We present a model of ecdysone response evolution that integrates both gene regulatory architecture and organismal development, and propose a set of testable mechanistic hypotheses for how plastic response profiles of specific genes can evolve.
Collapse
Affiliation(s)
- Karin Rl van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|