1
|
Frans VF, Liu J. Gaps and opportunities in modelling human influence on species distributions in the Anthropocene. Nat Ecol Evol 2024; 8:1365-1377. [PMID: 38867092 PMCID: PMC11239511 DOI: 10.1038/s41559-024-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Understanding species distributions is a global priority for mitigating environmental pressures from human activities. Ample studies have identified key environmental (climate and habitat) predictors and the spatial scales at which they influence species distributions. However, regarding human influence, such understandings are largely lacking. Here, to advance knowledge concerning human influence on species distributions, we systematically reviewed species distribution modelling (SDM) articles and assessed current modelling efforts. We searched 12,854 articles and found only 1,429 articles using human predictors within SDMs. Collectively, these studies of >58,000 species used 2,307 unique human predictors, suggesting that in contrast to environmental predictors, there is no 'rule of thumb' for human predictor selection in SDMs. The number of human predictors used across studies also varied (usually one to four per study). Moreover, nearly half the articles projecting to future climates held human predictors constant over time, risking false optimism about the effects of human activities compared with climate change. Advances in using human predictors in SDMs are paramount for accurately informing and advancing policy, conservation, management and ecology. We show considerable gaps in including human predictors to understand current and future species distributions in the Anthropocene, opening opportunities for new inquiries. We pose 15 questions to advance ecological theory, methods and real-world applications.
Collapse
Affiliation(s)
- Veronica F Frans
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Blowes SA, McGill B, Brambilla V, Chow CFY, Engel T, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Xu WB, Gotelli NJ, Magurran A, Dornelas M, Chase JM. Synthesis reveals approximately balanced biotic differentiation and homogenization. SCIENCE ADVANCES 2024; 10:eadj9395. [PMID: 38381832 PMCID: PMC10881054 DOI: 10.1126/sciadv.adj9395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.
Collapse
Affiliation(s)
- Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Brian McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cher F. Y. Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Thore Engel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S. Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Department of Data Science, Kitasato University, Kanagawa, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Yang S, Yuan Z, Ye B, Zhu F, Chu Z, Liu X. Impacts of landscape pattern on plants diversity and richness of 20 restored wetlands in Chaohu Lakeside of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167649. [PMID: 37813269 DOI: 10.1016/j.scitotenv.2023.167649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The recovery of wetland function and biodiversity conservation aroused considerable interest in the past decades. Although many advances have been achieved in revealing disturbing factors on plants diversity, the knowledge of biodiversity manipulation, landscape configuration and ecosystem process in restored wetlands remains incomplete. To address this issue, the landscape of 20 restored wetlands' vegetation was classified into five vegetation formations including: upland plants, wet grassland, emergent plants, floating plants and submerged plants. Meanwhile, the configuration of landscape, plants' function traits and the structure of plants communities of each wetland were analyzed. A total of 142 herbaceous plants were identified from 399 samples of 20 lakeside wetlands. The top five predominant species were Typha orientalis, Alternanthera philoxeroides, Phragmites australis, Echinochloa caudata, and Erigeron canadensis. The highest of diversity index was observed in upland plants with Shannon-Wiener index (H) of 0.92 while higher richness of plants was obtained in wet grassland with species of 88. In dry year, the immigration of upland xerophyte and obligated aquatic species to facultative area increased the biodiversity of the ecotone. Meanwhile, this change may also aggravate the diffusion risk of exotic invasive species Erigeron canadensis. Additionally, the results indicated that number and evenness of landscape outweighed Shannon diversity index (SHDI) of wetlands in shaping the richness and diversity of wetland plants. Whereas, the high value of maximum proportion of landscape (Pmax) have reduced the landscape evenness and species richness. A suggested Pmax of <0.5 was benefit for the stability and biodiversity of restored wetlands.
Collapse
Affiliation(s)
- Shenglin Yang
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bibi Ye
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng Zhu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaosheng Chu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Liu
- School of Biology, food and Environment, Hefei University, Hefei 230601, China.
| |
Collapse
|
4
|
Bezerra WCA, Figueiredo GM, Kozlowsky-Suzuki B. Can we meaningfully estimate the impacts of climate on zooplankton biodiversity? A review on uses and limitations of marine time series. MARINE POLLUTION BULLETIN 2023; 195:115515. [PMID: 37716130 DOI: 10.1016/j.marpolbul.2023.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Climate events compromise ecosystems functioning and services. Marine zooplankton play a key role linking primary producers and higher consumers, in the carbon export to deeper regions, and respond quickly to environmental change. We conducted a systematic review to assess the effects of climate on marine zooplankton diversity. We describe the major findings, uses and limitations raised in the literature from worldwide time series ≥5 years. Thirty-five studies were included and only 6 presented extractable data (i.e., those that could be extracted from images) for the most studied group (i.e., copepods). Responses to climate were conflicting, and studies were mostly restricted to the global north, applied richness, alpha- and beta-diversity equally, and had a large number of unresolved taxonomic identification. Standardized open long-term data would meaningfully help unveiling assemblage reorganization and allow meta-analyses to improve our understanding of the effects of climate change and variability on zooplankton biodiversity.
Collapse
Affiliation(s)
- Wellen Cristina Alves Bezerra
- Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil
| | - Gisela Mandali Figueiredo
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Professor Rodolfo Rocco 211, CCS, Cidade Universitária, CEP: 21941-902, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Betina Kozlowsky-Suzuki
- Departmento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Gutiérrez-López R, Egeter B, Paupy C, Rahola N, Makanga B, Jiolle D, Bourret V, Melo M, Loiseau C. Monitoring mosquito richness in an understudied area: can environmental DNA metabarcoding be a complementary approach to adult trapping? BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:456-468. [PMID: 37183666 DOI: 10.1017/s0007485323000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mosquito surveillance programmes are essential to assess the risks of local vector-borne disease outbreaks as well as for early detection of mosquito invasion events. Surveys are usually performed with traditional sampling tools (i.e., ovitraps and dipping method for immature stages or light or decoy traps for adults). Over the past decade, numerous studies have highlighted that environmental DNA (eDNA) sampling can enhance invertebrate species detection and provide community composition metrics. However, the usefulness of eDNA for detection of mosquito species has, to date, been largely neglected. Here, we sampled water from potential larval breeding sites along a gradient of anthropogenic perturbations, from the core of an oil palm plantation to the rainforest on São Tomé Island (Gulf of Guinea, Africa). We showed that (i) species of mosquitoes could be detected via metabarcoding mostly when larvae were visible, (ii) larvae species richness was greater using eDNA than visual identification and (iii) new mosquito species were also detected by the eDNA approach. We provide a critical discussion of the pros and cons of eDNA metabarcoding for monitoring mosquito species diversity and recommendations for future research directions that could facilitate the adoption of eDNA as a tool for assessing insect vector communities.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- Animal Health Research Center, National Food and Agriculture Research and Technology Institute (INIA-CISA-CSIC), Valdeolmos, Spain
| | - Bastian Egeter
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Christophe Paupy
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Boris Makanga
- Institut de Recherche en Écologie Tropicale/CENAREST, BP 13354 Libreville, Gabon
| | - Davy Jiolle
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Vincent Bourret
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- INRAE - Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Natural History and Science Museum of the University of Porto, Porto, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Claire Loiseau
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- CEFE, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
6
|
Clare EL, Economou CK, Bennett FJ, Dyer CE, Adams K, McRobie B, Drinkwater R, Littlefair JE. Measuring biodiversity from DNA in the air. Curr Biol 2021; 32:693-700.e5. [PMID: 34995488 DOI: 10.1016/j.cub.2021.11.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
Abstract
The crisis of declining biodiversity1 exceeds our current ability to monitor changes in ecosystems. Rapid terrestrial biomonitoring approaches are essential to quantify the causes and consequences of global change. Environmental DNA2 has revolutionized aquatic ecology,3 permitting population monitoring4 and remote diversity assessments matching or outperforming conventional methods of community sampling.3-5 Despite this model, similar methods have not been widely adopted in terrestrial ecosystems. Here, we demonstrate that DNA from terrestrial animals can be filtered, amplified, and then sequenced from air samples collected in natural settings representing a powerful tool for terrestrial ecology. We collected air samples at a zoological park, where spatially confined non-native species allowed us to track DNA sources. We show that DNA can be collected from air and used to identify species and their ecological interactions. Air samples contained DNA from 25 species of mammals and birds, including 17 known terrestrial resident zoo species. We also identified food items from air sampled in enclosures and detected taxa native to the local area, including the Eurasian hedgehog, endangered in the United Kingdom. Our data demonstrate that airborne eDNA concentrates around recently inhabited areas but disperses away from sources, suggesting an ecology to airborne eDNA and the potential for sampling at a distance. Our findings demonstrate the profound potential of air as a source of DNA for global terrestrial biomonitoring.
Collapse
Affiliation(s)
- Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Chloe K Economou
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Frances J Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Caitlin E Dyer
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | - Rosie Drinkwater
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Joanne E Littlefair
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
7
|
Yang LH, Postema EG, Hayes TE, Lippey MK, MacArthur-Waltz DJ. The complexity of global change and its effects on insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:90-102. [PMID: 34004376 DOI: 10.1016/j.cois.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA.
| | - Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA
| | - Tracie E Hayes
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Mia K Lippey
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Entomology Graduate Group, University of California, Davis, CA 95616, USA
| | - Dylan J MacArthur-Waltz
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Buckley HL, Day NJ, Lear G, Case BS. Changes in the analysis of temporal community dynamics data: a 29-year literature review. PeerJ 2021; 9:e11250. [PMID: 33889452 PMCID: PMC8038643 DOI: 10.7717/peerj.11250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding how biological communities change over time is of increasing importance as Earth moves into the Anthropocene. A wide variety of methods are used for multivariate community analysis and are variously applied to research that aims to characterise temporal dynamics in community composition. Understanding these methods and how they are applied is useful for determining best practice in community ecology. METHODOLOGY We reviewed the ecological literature from 1990 to 2018 that used multivariate methods to address questions of temporal community dynamics. For each paper that fulfilled our search criteria, we recorded the types of multivariate analysis used to characterise temporal community dynamics in addition to the research aim, habitat type, location, taxon and the experimental design. RESULTS Most studies had relatively few temporal replicates; the median number was seven time points. Nearly 70% of studies applied more than one analysis method; descriptive methods such as bar graphs and ordination were the most commonly applied methods. Surprisingly, the types of analyses used were only related to the number of temporal replicates, but not to research aim or any other aspects of experimental design such as taxon, or habitat or year of study. CONCLUSIONS This review reveals that most studies interested in understanding community dynamics use relatively short time series meaning that several, more sophisticated, temporal analyses are not widely applicable. However, newer methods using multivariate dissimilarities are growing in popularity and many can be applied to time series of any length.
Collapse
Affiliation(s)
- Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Nicola J. Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bradley S. Case
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
9
|
Rishworth GM, Adams JB, Bird MS, Carrasco NK, Dänhardt A, Dannheim J, Lemley DA, Pistorius PA, Scheiffarth G, Hillebrand H. Cross-continental analysis of coastal biodiversity change. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190452. [PMID: 33131440 PMCID: PMC7662198 DOI: 10.1098/rstb.2019.0452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 01/16/2023] Open
Abstract
Whereas the anthropogenic impact on marine biodiversity is undebated, the quantification and prediction of this change are not trivial. Simple traditional measures of biodiversity (e.g. richness, diversity indices) do not capture the magnitude and direction of changes in species or functional composition. In this paper, we apply recently developed methods for measuring biodiversity turnover to time-series data of four broad taxonomic groups from two coastal regions: the southern North Sea (Germany) and the South African coast. Both areas share geomorphological features and ecosystem types, allowing for a critical assessment of the most informative metrics of biodiversity change across organism groups. We found little evidence for directional trends in univariate metrics of diversity for either the effective number of taxa or the amount of richness change. However, turnover in composition was high (on average nearly 30% of identities when addressing presence or absence of species) and even higher when taking the relative dominance of species into account. This turnover accumulated over time at similar rates across regions and organism groups. We conclude that biodiversity metrics responsive to turnover provide a more accurate reflection of community change relative to conventional metrics (absolute richness or relative abundance) and are spatially broadly applicable. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Gavin M. Rishworth
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
- Department of Zoology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Janine B. Adams
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Matthew S. Bird
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Nicola K. Carrasco
- School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Andreas Dänhardt
- Lower Saxon Wadden Sea National Park Authority, Virchowstr. 1 26382 Wilhelmshaven, Germany
| | - Jennifer Dannheim
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Ammerländer Heerstrasse 231 26129 Oldenbburg, Germany
| | - Daniel A. Lemley
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Pierre A. Pistorius
- Department of Zoology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Gregor Scheiffarth
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1 D-26382 Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Ammerländer Heerstrasse 231 26129 Oldenbburg, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1 D-26382 Wilhelmshaven, Germany
| |
Collapse
|
10
|
Hillebrand H, Jacob U, Leslie HM. Integrative research perspectives on marine conservation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190444. [PMID: 33131441 DOI: 10.1098/rstb.2019.0444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whereas the conservation and management of biodiversity has become a key issue in environmental sciences and policy in general, the conservation of marine biodiversity faces additional challenges such as the challenges of accessing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity trends, high mobility of many organisms in fluid environments, and ecosystem-specific obstacles to stakeholder engagement and governance. This issue comprises contributions from a diverse international group of scientists in a benchmarking volume for a common research agenda on marine conservation. We begin by addressing information gaps on marine biodiversity trends through novel approaches and technologies, then linking such information to ecosystem functioning through a focus on traits. We then leverage the knowledge of these relationships to inform theory aiming at predicting the future composition and functioning of marine communities. Finally, we elucidate the linkages between marine ecosystems and human societies by examining economic, management and governance approaches that contribute to effective marine conservation in practice. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Ammerländer Heerstrasse 231, 26129 Oldenbburg, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ute Jacob
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Ammerländer Heerstrasse 231, 26129 Oldenbburg, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Heather M Leslie
- Darling Marine Center and School of Marine Sciences, University of Maine, 193 Clarks Cove Road, Walpole, ME 04573, USA
| |
Collapse
|
11
|
The World Coral Conservatory (WCC): A Noah's ark for corals to support survival of reef ecosystems. PLoS Biol 2020; 18:e3000823. [PMID: 32925901 PMCID: PMC7529426 DOI: 10.1371/journal.pbio.3000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Global change causes widespread decline of coral reefs. In order to counter the anticipated disappearance of coral reefs by the end of this century, many initiatives are emerging, including creation of marine protected areas (MPAs), reef restoration projects, and assisted evolution initiatives. Such efforts, although critically important, are locally constrained. We propose to build a “Noah's Ark” biological repository for corals that taps into the network of the world’s public aquaria and coral reef scientists. Public aquaria will serve not only as a reservoir for the purpose of conservation, restoration, and research of reef-building corals but also as a laboratory for the implementation of operations for the selection of stress-resilient and resistant genotypes. The proposed project will provide a global dimension to coral reef education and protection as a result of the involvement of a network of public and private aquaria. Global change is causing a widespread decline in coral reefs. This Community Page article proposes to build the World Coral Conservatory, a “Noah's Ark” biological repository that taps into the network of the world’s public aquaria and coral reef scientists, in order to preserve the fast-disappearing biodiversity of coral reefs.
Collapse
|