1
|
Chen D. Lungfish-like antero-labial tooth addition and amphibian-like enameloid-enamel transition in the coronoid of a Devonian stem actinopterygian. J Anat 2025. [PMID: 40083060 DOI: 10.1111/joa.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
New teeth are predominantly initiated lingually or postero-lingually to the old teeth in vertebrates. Osteichthyan dentitions typically consist of linear rows of shedding teeth, but internal to the marginal jawbones osteichthyans primitively have an extra dental arcade, in which teeth are sometimes spread out into a field and not organized in rows. The tooth plates of lungfish are specialized from the jawbones of the inner dental arcade, but the teeth are arranged in radial tooth rows with new teeth added at the anterior and labial end of the rows and without shedding the old teeth, distinct from other osteichthyan dentitions. Actinopterygian teeth can be recognized by a cap of enameloid, while sarcopterygian teeth are only coated by enamel. An enameloid cap is also borne by the unicuspid larval teeth in some amphibians, but it is covered by enamel and eventually disappears in the bicuspid adult teeth. In early osteichthyans, old teeth are often not completely resorbed and shed, and the overlapping relationship of their remnants buried in the bone records the sequence of developmental events. Using synchrotron microtomography, this ontogenetic record of a coronoid tooth field of a Devonian stem actinopterygian is visualized in 3D. As a component of the inner dental arcade, the coronoid displays initial radial non-shedding tooth rows followed by radial shedding tooth rows that are later transformed into linear shedding tooth rows. The teeth are always added antero-labially and replaced labially to keep pace with the labial bone apposition and lingual bone remodeling, which causes the shift of the tooth competent zone. These provide a clue to the evolution of the radial non-shedding dentition with antero-labial tooth addition in lungfish. The tooth patterning process suggests that the superficial disorder of the tooth field is an epiphenomenon of the ever-changing local developing environment of each tooth bud: due to the retention of old tooth bases, a tooth position that has been replaced in place can at some point drift to a site between the adjacent tooth positions, splitting or merging, and then continue being replaced in situ. Primary teeth are capped by enameloid, but replacement teeth bear enamel crests without an enameloid cap. This demonstrates that the transition from enameloid capping to enamel coating through tooth replacement can happen in actinopterygians too, as one of the mechanisms for a dentition to change tooth shape. All these unexpected observations indicate that, during ontogeny, the states of dental characters, such as lingual/labial tooth initiation, linear/radial tooth rows, in situ/cross-position tooth replacement and enameloid/enamel, can be switched and the capacity to produce these characters can be suspended or reactivated; the tremendous dental diversity can thus be attributed to the manipulation in time and space of relatively few dental developmental processes.
Collapse
Affiliation(s)
- Donglei Chen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Fitzpatrick AN, Clement AM, Long JA. Unique dental arrangement in a new species, Groenlandaspis howittensis (Placodermi, Arthrodira) from the Middle Devonian of Mount Howitt, Victoria, Australia. PeerJ 2024; 12:e18759. [PMID: 39726751 PMCID: PMC11670761 DOI: 10.7717/peerj.18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Well-preserved specimens of a new species of arthrodiran placoderm, Groenlandaspis howittensis sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus Groenlandaspis. The new material includes dual pineal plates, extrascapular plates, and cheek bones showing the presence of cutaneous sensory organs. The anterior supragnathal, usually a paired element in arthrodires, is a fused median bone in G. howittensis sp. nov. It is positioned anterior to the occlusion of the mouth between the lower jaw (infragnathals) and upper jaw (posterior supragnathals) bones, indicating a specialised feeding mechanism and broadening the known diversity of placoderm dental morphologies. G. howittensis sp. nov. differs from all other groenlandaspidids by a less pronounced posterior expansion of the nuchal plate; the shape of the posterior dorsolateral plate and the presence of a short accessory canal on the anterior dorsolateral plate. A new phylogenetic analysis positions Groenlandaspididae in a monophyly with the phlyctaeniid families Arctolepidae and Arctaspididae, however, the specific intrarelationships of groenlandaspidids remain poorly resolved.
Collapse
Affiliation(s)
- Austin N. Fitzpatrick
- College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia
| | - Alice M. Clement
- College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia
| | - John A. Long
- College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Tseng ZJ, Garcia-Lara S, Flynn JJ, Holmes E, Rowe TB, Dickson BV. A switch in jaw form-function coupling during the evolution of mammals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220091. [PMID: 37183899 PMCID: PMC10184249 DOI: 10.1098/rstb.2022.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The evolutionary shift from a single-element ear, multi-element jaw to a multi-element ear, single-element jaw during the transition to crown mammals marks one of the most dramatic structural transformations in vertebrates. Research on this transformation has focused on mammalian middle-ear evolution, but a mandible comprising only the dentary is equally emblematic of this evolutionary radiation. Here, we show that the remarkably diverse jaw shapes of crown mammals are coupled with surprisingly stereotyped jaw stiffness. This strength-based morphofunctional regime has a genetic basis and allowed mammalian jaws to effectively resist deformation as they radiated into highly disparate forms with markedly distinct diets. The main functional consequences for the mandible of decoupling hearing and mastication were a trade-off between higher jaw stiffness versus decreased mechanical efficiency and speed compared with non-mammals. This fundamental and consequential shift in jaw form-function underpins the ecological and taxonomic diversification of crown mammals. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Z Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Sergio Garcia-Lara
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
| | - Emily Holmes
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Timothy B Rowe
- Jackson School of Geological Sciences, University of Texas, Austin, TX 78712, USA
| | - Blake V Dickson
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Imai T, Hattori S, Uesugi K, Hoshino M. High-energy synchrotron-radiation-based X-ray micro-tomography enables non-destructive and micro-scale palaeohistological assessment of macro-scale fossil dinosaur bones. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:627-633. [PMID: 37026390 PMCID: PMC10161879 DOI: 10.1107/s1600577523001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
Palaeohistological analysis has numerous applications in understanding the palaeobiology of extinct dinosaurs. Recent developments of synchrotron-radiation-based X-ray micro-tomography (SXMT) have allowed the non-destructive assessment of palaeohistological features in fossil skeletons. Yet, the application of the technique has been limited to specimens on the millimetre to micrometre scale because its high-resolution capacity has been obtained at the expense of a small field of view and low X-ray energy. Here, SXMT analyses of dinosaur bones with widths measuring ∼3 cm under a voxel size of ∼4 µm at beamline BL28B2 at SPring-8 (Hyogo, Japan) are reported, and the advantages of virtual-palaeohistological analyses with large field of view and high X-ray energy are explored. The analyses provide virtual thin-sections visualizing palaeohistological features comparable with those obtained by traditional palaeohistology. Namely, vascular canals, secondary osteons and lines of arrested growth are visible in the tomography images, while osteocyte lacunae are unobservable due to their micrometre-scale diameter. Virtual palaeohistology at BL28B2 is advantageous in being non-destructive, allowing multiple sampling within and across skeletal elements to exhaustively test the skeletal maturity of an animal. Continued SXMT experiments at SPring-8 should facilitate the development of SXMT experimental procedures and aid in understanding the paleobiology of extinct dinosaurs.
Collapse
Affiliation(s)
- Takuya Imai
- Institute of Dinosaur Research, Fukui Prefectural University, 4-1-1 Matsuoka Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Soki Hattori
- Institute of Dinosaur Research, Fukui Prefectural University, 4-1-1 Matsuoka Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
5
|
Brazeau MD, Yuan H, Giles S, Jerve AL, Zorig E, Ariunchimeg Y, Sansom RS, Atwood RC. A well-preserved 'placoderm' (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221452. [PMID: 36844806 PMCID: PMC9943883 DOI: 10.1098/rsos.221452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The origin of jaws and teeth remains contentious in vertebrate evolution. 'Placoderms' (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. 'Acanthothoracids' are generally considered the most primitive 'placoderms'. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws-particularly the jaw hinge-is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete 'acanthothoracid' upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known 'placoderm' groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of 'placoderms', regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that 'acanthothoracid' dentitions were fundamentally similar in location to that of arthrodire 'placoderms', rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for 'placoderms' as a whole, and as such, ancestral morphology of known jawed vertebrates.
Collapse
Affiliation(s)
- Martin D. Brazeau
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
- The Natural History Museum, London SW7 5BD, UK
| | - Haobo Yuan
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Sam Giles
- The Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anna L. Jerve
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - E. Zorig
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
| | | | - Robert S. Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
6
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
7
|
Jobbins M, Rücklin M, Ferrón HG, Klug C. A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.969158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placoderms are an extinct group of early jawed vertebrates that play a key role in understanding the evolution of the gnathostome body plan, including the origin of novelties such as jaws, teeth, and pelvic fins. As placoderms have a poorly ossified axial skeleton, preservation of the mainly cartilaginous axial and fin elements is extremely rare, contrary to the heavily mineralized bones of the skull and thoracic armor. Therefore, the gross anatomy of the animals and body shape is only known from a few taxa, and reconstructions of the swimming function and ecology are speculative. Here, we describe articulated specimens preserving skull roofs, shoulder girdles, most fins, and body outlines of a newly derived arthrodire. Specimens of the selenosteid Amazichthys trinajsticae gen. et sp. nov. display a skull roof with reticular ornamentation and raised sensory lines like Driscollaspis, a median dorsal plate with a unique sharp posterior depression, the pelvic girdle, the proportions and shape of the pectoral, dorsal, and caudal fins as well as a laterally enlarged region resembling the lateral keel of a few modern sharks and bony fishes. Our new phylogenetic analyses support the monophyly of the selenosteid family and place the new genus in a clade with Melanosteus, Enseosteus, Walterosteus, and Draconichthys. The shape of its body and heterocercal caudal fin in combination with the pronounced “lateral keel” suggest Amazichthys trinajsticae was an active macropelagic swimmer capable of reaching high swimming speeds.
Collapse
|
8
|
Zhu YA, Li Q, Lu J, Chen Y, Wang J, Gai Z, Zhao W, Wei G, Yu Y, Ahlberg PE, Zhu M. The oldest complete jawed vertebrates from the early Silurian of China. Nature 2022; 609:954-958. [PMID: 36171378 DOI: 10.1038/s41586-022-05136-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.
Collapse
Affiliation(s)
- You-An Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jing Lu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Chen
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Zhikun Gai
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing, China
| | - Yilun Yu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Spiny chondrichthyan from the lower Silurian of South China. Nature 2022; 609:969-974. [PMID: 36171377 DOI: 10.1038/s41586-022-05233-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Modern representatives of chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods) have contrasting skeletal anatomies and developmental trajectories1-4 that underscore the distant evolutionary split5-7 of the two clades. Recent work on upper Silurian and Devonian jawed vertebrates7-10 has revealed similar skeletal conditions that blur the conventional distinctions between osteichthyans, chondrichthyans and their jawed gnathostome ancestors. Here we describe the remains (dermal plates, scales and fin spines) of a chondrichthyan, Fanjingshania renovata gen. et sp. nov., from the lower Silurian of China that pre-date the earliest articulated fossils of jawed vertebrates10-12. Fanjingshania possesses dermal shoulder girdle plates and a complement of fin spines that have a striking anatomical similarity to those recorded in a subset of stem chondrichthyans5,7,13 (climatiid 'acanthodians'14). Uniquely among chondrichthyans, however, it demonstrates osteichthyan-like resorptive shedding of scale odontodes (dermal teeth) and an absence of odontogenic tissues in its spines. Our results identify independent acquisition of these conditions in the chondrichthyan stem group, adding Fanjingshania to an increasing number of taxa7,15 nested within conventionally defined acanthodians16. The discovery of Fanjingshania provides the strongest support yet for a proposed7 early Silurian radiation of jawed vertebrates before their widespread appearance5 in the fossil record in the Lower Devonian series.
Collapse
|
10
|
Andreev PS, Sansom IJ, Li Q, Zhao W, Wang J, Wang CC, Peng L, Jia L, Qiao T, Zhu M. The oldest gnathostome teeth. Nature 2022; 609:964-968. [PMID: 36171375 DOI: 10.1038/s41586-022-05166-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).
Collapse
Affiliation(s)
- Plamen S Andreev
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ivan J Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Lijian Peng
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Liantao Jia
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tuo Qiao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Maho T, Maho S, Scott D, Reisz RR. Permian hypercarnivore suggests dental complexity among early amniotes. Nat Commun 2022; 13:4882. [PMID: 35986022 PMCID: PMC9391490 DOI: 10.1038/s41467-022-32621-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe oldest known complex terrestrial vertebrate community included hypercarnivorous varanopids, a successful clade of amniotes with wide geographic and temporal distributions. Little is known about their dentition and feeding behaviour, but with the unprecedented number of specimens of the varanopid Mesenosaurus from cave deposits in Oklahoma, we show that it exhibited serrations on the tooth crowns, and exceptionally rapid rates of development and reduced longevity relative to other terrestrial amniotes. In contrast, the coeval large apex predator Dimetrodon greatly increased dental longevity by increasing thickness and massiveness, whereas herbivores greatly reduced tooth replacement rates and increased dental longevity. Insectivores and omnivores represented the primitive condition and maintained modest replacement rates and longevity. The varied patterns of dental development among these early terrestrial amniotes reveal a hidden aspect of dental complexity in the emerging diverse amniote community, very soon after their initial appearance in the fossil record.
Collapse
|
12
|
Wang Y, Zhu M. Squamation and scale morphology at the root of jawed vertebrates. eLife 2022; 11:76661. [PMID: 35674421 PMCID: PMC9177148 DOI: 10.7554/elife.76661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Placoderms, as the earliest branching jawed vertebrates, are crucial to understanding how the characters of crown gnathostomes comprising Chondrichthyes and Osteichthyes evolved from their stem relatives. Despite the growing knowledge of the anatomy and diversity of placoderms over the past decade, the dermal scales of placoderms are predominantly known from isolated material, either morphologically or histologically, resulting in their squamation being poorly understood. Here we provide a comprehensive description of the squamation and scale morphology of a primitive taxon of Antiarcha (a clade at the root of jawed vertebrates), Parayunnanolepis xitunensis, based on the virtual restoration of an articulated specimen by using X-ray computed tomography. Thirteen morphotypes of scales are classified to exhibit how the morphology changes with their position on the body in primitive antiarchs, based on which nine areas of the post-thoracic body are distinguished to show their scale variations in the dorsal, flank, ventral, and caudal lobe regions. In this study, the histological structure of yunnanolepidoid scales is described for the first time based on disarticulated scales from the type locality and horizon of P. xitunensis. The results demonstrate that yunnanolepidoid scales are remarkably different from their dermal plates as well as euantiarch scales in lack of a well-developed middle layer. Together, our study reveals that the high regionalization of squamation and the bipartite histological structure of scales might be plesiomorphic for antiarchs, and jawed vertebrates in general.
Collapse
Affiliation(s)
- Yajing Wang
- School of Earth Sciences and Engineering, Nanjing University
| | - Min Zhu
- School of Earth Sciences and Engineering, Nanjing University
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences
- CAS Center for Excellence in Life and Paleoenvironment
| |
Collapse
|
13
|
Pospisilova A, Stundl J, Brejcha J, Metscher BD, Psenicka M, Cerny R, Soukup V. The remarkable dynamics in the establishment, rearrangement, and loss of dentition during the ontogeny of the sterlet sturgeon. Dev Dyn 2021; 251:826-845. [PMID: 34846759 DOI: 10.1002/dvdy.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Sturgeons belong to an early-branching lineage often used as a proxy of ancestor-like traits of ray-finned fishes. However, many features of this lineage, such as the transitory presence and the eventual loss of dentition, exemplify specializations that, in fact, provide important information on lineage-specific evolutionary dynamics. RESULTS Here, we introduce a detailed overview of the dentition during the development of the sterlet sturgeon. The dentition is composed of tooth fields at oral, palatal, and anterior pharyngeal regions. Oral fields are single-rowed, non-renewed and are shed early. Palatal and pharyngeal fields are multi-rowed and renewed from the adjacent superficial epithelium without the presence of the successional dental lamina. The early loss of oral fields and subsequent establishment of palatal and pharyngeal fields leads to a translocation of the functional dentition from the front to the rear of the oropharyngeal cavity until the eventual loss of all teeth. CONCLUSIONS Our survey shows the sterlet dentition as a dynamic organ system displaying differential composition at different time points in the lifetime of this fish. These dynamics represent a conspicuous feature of sturgeons, unparalleled among extant vertebrates, and appropriate to scrutinize developmental and evolutionary underpinnings of vertebrate odontogenesis.
Collapse
Affiliation(s)
- Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Jindrich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Dearden RP, Giles S. Diverse stem-chondrichthyan oral structures and evidence for an independently acquired acanthodid dentition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210822. [PMID: 34804566 PMCID: PMC8580420 DOI: 10.1098/rsos.210822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The teeth of sharks famously form a series of transversely organized files with a conveyor-belt replacement that are borne directly on the jaw cartilages, in contrast to the dermal plate-borne dentition of bony fishes that undergoes site-specific replacement. A major obstacle in understanding how this system evolved is the poorly understood relationships of the earliest chondrichthyans and the profusion of morphologically and terminologically diverse bones, cartilages, splints and whorls that they possess. Here, we use tomographic methods to investigate mandibular structures in several early branching 'acanthodian'-grade stem-chondrichthyans. We show that the dentigerous jaw bones of disparate genera of ischnacanthids are united by a common construction, being growing bones with non-shedding dentition. Mandibular splints, which support the ventro-lateral edge of the Meckel's cartilage in some taxa, are formed from dermal bone and may be an acanthodid synapomorphy. We demonstrate that the teeth of Acanthodopsis are borne directly on the mandibular cartilage and that this taxon is deeply nested within an edentulous radiation, representing an unexpected independent origin of teeth. Many or even all of the range of unusual oral structures may be apomorphic, but they should nonetheless be considered when building hypotheses of tooth and jaw evolution, both in chondrichthyans and more broadly.
Collapse
Affiliation(s)
- Richard P. Dearden
- CR2P, Centre de Recherche en Paléontologie–Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, CP 38, 57 Rue Cuvier, F75231 Paris Cedex 05, France
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
15
|
Li Q, Zhu YA, Lu J, Chen Y, Wang J, Peng L, Wei G, Zhu M. A new Silurian fish close to the common ancestor of modern gnathostomes. Curr Biol 2021; 31:3613-3620.e2. [PMID: 34146483 DOI: 10.1016/j.cub.2021.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
The Silurian Period occupies a pivotal stage in the unfolding of key evolutionary events, including the rise of jawed vertebrates.1-4 However, the understanding of this early diversification is often hampered by the patchy nature of the Silurian fossil record,5 with the articulated specimens of jawed vertebrates only known in isolated localities, most notably Qujing, Yunnan, China.6-9 Here, we report a new Silurian maxillate placoderm, Bianchengichthys micros, from the Ludlow of Chongqing, with a near-complete dermatoskeleton preserved in articulation. Although geographically separated, the new taxon resembles the previously reported Qilinyu in possessing a unique combination of dermatoskeletal characters. However, the dermal bone of the mandible in Bianchengichthys unexpectedly differs from those in both Qilinyu and Entelognathus and displays a broad oral lamina carrying a line of tooth-like denticles, in addition to the marginal toothless flange. The external morphology of the pectoral fin is preserved and reveals an extensively scale-covered lobate part, flanked by a fringe of lepidotrichia-like aligned scales. The phylogenetic analysis reveals that Bianchengichthys is positioned immediately below Entelognathus plus modern gnathostomes. The discovery significantly widens the distribution of Silurian placoderm-grade gnathostomes in South China and provides a range of morphological disparity for the outgroup comparison to the earliest evolution of jaws, dentitions, and pectoral fins in modern gnathostomes. We also demonstrate that the previously reported Silurian placoderms from central Vietnam10 are maxillate placoderms close to Qilinyu, Silurolepis, and Bianchengichthys, corroborating the paleogeographic proximity between the Indochina and South China blocks during the Middle Paleozoic.11.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China; Qujing Normal University, Yunnan 655000, China
| | - You-An Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | | | - Lijian Peng
- Qujing Normal University, Yunnan 655000, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing 401122, China
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Abstract
Fossil fish from the Silurian of China continue to surprise. These so-called 'maxillate placoderms', including the newly described Bianchengichthys micros, show a range of anatomical features that question our picture of vertebrate evolution and diversification.
Collapse
Affiliation(s)
- Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK.
| |
Collapse
|
17
|
Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo 2021; 12:4. [PMID: 33766133 PMCID: PMC7995769 DOI: 10.1186/s13227-021-00172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Emma J Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
18
|
Endocast and Bony Labyrinth of a Devonian "Placoderm" Challenges Stem Gnathostome Phylogeny. Curr Biol 2021; 31:1112-1118.e4. [PMID: 33508218 DOI: 10.1016/j.cub.2020.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Our understanding of the earliest evolution of jawed vertebrates depends on a credible phylogenetic framework for the jawed stem gnathostomes collectively known as "placoderms".1 However, their relationships, and whether placoderms represent a single radiation or a paraphyletic array, remain contentious.2-13 This uncertainty is compounded by an uneven understanding of anatomy across the group, particularly of the phylogenetically informative braincase and brain cavity-endocast. Based on new tomographic data, we here describe the endocast and bony labyrinth of Brindabellaspis stensioi from the Early Devonian of New South Wales.14 The taxon was commonly recovered as branching near the base of placoderms.5-9,11,12,15-17 Previous studies of Brindabellaspis emphasized its resemblances with fossil jawless fishes in the braincase anatomy14 and endocast proportions1,18 and its distinctive features were interpreted as autapomorphies, such as the elongated premedian region.19 Although our three-dimensional data confirmed the resemblance of its endocast to those of jawless vertebrates, we discovered that the inner ear and endolymphatic complex display a repertoire of previously unrecognized characters close to modern or crown-group jawed vertebrates, including a pronounced sinus superior and a vertical duct that connects the endolymphatic sac and the labyrinth cavity. Both parsimony and Bayesian analyses suggest that prevailing hypotheses of placoderm relationships are unstable, with newly revealed anatomy pointing to a radical revision of early gnathostome evolution. Our results call into question the appropriateness of arthrodire-like placoderms as models of primitive gnathostome anatomy and raise questions of homology relating to key cranial features.
Collapse
|
19
|
Jobbins M, Rücklin M, Argyriou T, Klug C. A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:2. [PMID: 33488510 PMCID: PMC7809001 DOI: 10.1186/s13358-020-00212-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
For the understanding of the evolution of jawed vertebrates and jaws and teeth, 'placoderms' are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire 'placoderms'. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontichthys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered synapomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were possibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large.
Collapse
Affiliation(s)
- Melina Jobbins
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | | | - Thodoris Argyriou
- UMR 7207 (MNHN – Sorbonne Université – CNRS) Centre de Recherche en Paléontologie, Muséum National D’Histoire Naturelle, 57 rue Cuvier, 75231 Paris cedex 05, France
| | - Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
20
|
Liang T, Hu Y, Kawasaki K, Zhang H, Zhang C, Saunders TL, Simmer JP, Hu JCC. Odontogenesis-associated phosphoprotein truncation blocks ameloblast transition into maturation in Odaph C41*/C41* mice. Sci Rep 2021; 11:1132. [PMID: 33441959 PMCID: PMC7807025 DOI: 10.1038/s41598-020-80912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Mutations of Odontogenesis-Associated Phosphoprotein (ODAPH, OMIM *614829) cause autosomal recessive amelogenesis imperfecta, however, the function of ODAPH during amelogenesis is unknown. Here we characterized normal Odaph expression by in situ hybridization, generated Odaph truncation mice using CRISPR/Cas9 to replace the TGC codon encoding Cys41 into a TGA translation termination codon, and characterized and compared molar and incisor tooth formation in Odaph+/+, Odaph+/C41*, and OdaphC41*/C41* mice. We also searched genomes to determine when Odaph first appeared phylogenetically. We determined that tooth development in Odaph+/+ and Odaph+/C41* mice was indistinguishable in all respects, so the condition in mice is inherited in a recessive pattern, as it is in humans. Odaph is specifically expressed by ameloblasts starting with the onset of post-secretory transition and continues until mid-maturation. Based upon histological and ultrastructural analyses, we determined that the secretory stage of amelogenesis is not affected in OdaphC41*/C41* mice. The enamel layer achieves a normal shape and contour, normal thickness, and normal rod decussation. The fundamental problem in OdaphC41*/C41* mice starts during post-secretory transition, which fails to generate maturation stage ameloblasts. At the onset of what should be enamel maturation, a cyst forms that separates flattened ameloblasts from the enamel surface. The maturation stage fails completely.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Thomas L Saunders
- Department of Internal Medicine, Division of Molecular, Medicine and Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| |
Collapse
|
21
|
Chen D, Blom H, Sanchez S, Tafforeau P, Märss T, Ahlberg PE. The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus. eLife 2020; 9:e60985. [PMID: 33317696 PMCID: PMC7738188 DOI: 10.7554/elife.60985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The ontogenetic trajectory of a marginal jawbone of Lophosteus superbus (Late Silurian, 422 Million years old), the phylogenetically most basal stem osteichthyan, visualized by synchrotron microtomography, reveals a developmental relationship between teeth and dermal odontodes that is not evident from the adult morphology. The earliest odontodes are two longitudinal founder ridges formed at the ossification center. Subsequent odontodes that are added lingually to the ridges turn into conical teeth and undergo cyclic replacement, while those added labially achieve a stellate appearance. Stellate odontodes deposited directly on the bony plate are aligned with the alternate files of teeth, whereas new tooth positions are inserted into the files of sequential addition when a gap appears. Successive teeth and overgrowing odontodes show hybrid morphologies around the oral-dermal boundary, suggesting signal cross-communication. We propose that teeth and dermal odontodes are modifications of a single system, regulated and differentiated by the oral and dermal epithelia.
Collapse
Affiliation(s)
- Donglei Chen
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Henning Blom
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
- SciLifeLab, Uppsala UniversityUppsalaSweden
- European Synchrotron Radiation FacilityGrenobleFrance
| | | | - Tiiu Märss
- Estonian Marine Institute, University of TartuTallinnEstonia
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
22
|
King B, Rücklin M. A Bayesian approach to dynamic homology of morphological characters and the ancestral phenotype of jawed vertebrates. eLife 2020; 9:e62374. [PMID: 33274719 PMCID: PMC7793628 DOI: 10.7554/elife.62374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Phylogenetic analysis of morphological data proceeds from a fixed set of primary homology statements, the character-by-taxon matrix. However, there are cases where multiple conflicting homology statements can be justified from comparative anatomy. The upper jaw bones of placoderms have traditionally been considered homologous to the palatal vomer-dermopalatine series of osteichthyans. The discovery of 'maxillate' placoderms led to the alternative hypothesis that 'core' placoderm jaw bones are premaxillae and maxillae lacking external (facial) laminae. We introduce a BEAST2 package for simultaneous inference of homology and phylogeny, and find strong evidence for the latter hypothesis. Phenetic analysis of reconstructed ancestors suggests that maxillate placoderms are the most plesiomorphic known gnathostomes, and the shared cranial architecture of arthrodire placoderms, maxillate placoderms and osteichthyans is inherited. We suggest that the gnathostome ancestor possessed maxillae and premaxillae with facial and palatal laminae, and that these bones underwent divergent evolutionary trajectories in placoderms and osteichthyans.
Collapse
|
23
|
Bone of contention. Nat Ecol Evol 2020; 4:1447-1448. [DOI: 10.1038/s41559-020-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|