1
|
Fariñas-Franco JM, Cook RL, Gell FR, Harries DB, Hirst N, Kent F, MacPherson R, Moore C, Mair JM, Porter JS, Sanderson WG. Are we there yet? Management baselines and biodiversity indicators for the protection and restoration of subtidal bivalve shellfish habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161001. [PMID: 36539096 DOI: 10.1016/j.scitotenv.2022.161001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Biodiversity loss and degradation of natural habitats is increasing at an unprecedented rate. Of all marine habitats, biogenic reefs created by once-widespread shellfish, are now one of the most imperilled, and globally scarce. Conservation managers seek to protect and restore these habitats, but suitable baselines and indicators are required, and detailed scientific accounts are rare and inconsistent. In the present study the biodiversity of a model subtidal habitat, formed by the keystone horse mussel Modiolus modiolus (L.), was analysed across its Northeast Atlantic biogeographical range. Consistent samples of 'clumped' mussels were collected at 16 locations, covering a wide range of environmental conditions. Analysis of the associated macroscopic biota showed high biodiversity across all sites, cumulatively hosting 924 marine macroinvertebrate and algal taxa. There was a rapid increase in macroinvertebrate biodiversity (H') and community evenness (J) between 2 and 10 mussels per clump, reaching an asymptote at mussel densities of 10 per clump. Diversity declined at more northern latitudes, with depth and in coarser substrata with the fastest tidal flows. Diversity metrics corrected for species abundance were generally high across the habitats sampled, with significant latitudinal variability caused by current, depth and substrate type. Faunal community composition varied significantly between most sites and was difficult to assign to a 'typical' M. modiolus assemblage, being significantly influenced by regional environmental conditions, including the presence of algal turfs. Within the context of the rapid global increase in protection and restoration of bivalve shellfish habitats, site and density-specific values of diversity are probably the best targets for conservation management and upon which to base monitoring programmes.
Collapse
Affiliation(s)
- Jose M Fariñas-Franco
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Marine and Freshwater Research Centre and Department of Natural Resource and the Environment, School of Science and Computing, Atlantic Technological University, Old Dublin Road, Galway H91 T8NW, Ireland.
| | - Robert L Cook
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Fiona R Gell
- Fisheries Directorate, Department of Environment Food and Agriculture, Isle of Man Government, St John's, Isle of Man
| | - Dan B Harries
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Natalie Hirst
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Flora Kent
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Scottish Natural Heritage, Silvan House, 231 Corstorphine Rd, Edinburgh EH12 7AT, UK
| | - Rebecca MacPherson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Colin Moore
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - James M Mair
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Joanne S Porter
- International Centre for Island Technology, Heriot-Watt University, Franklin Road, Stromness, Orkney KW16 3AN, UK
| | - William G Sanderson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| |
Collapse
|
2
|
Limiting motorboat noise on coral reefs boosts fish reproductive success. Nat Commun 2022; 13:2822. [PMID: 35595750 PMCID: PMC9123000 DOI: 10.1038/s41467-022-30332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Anthropogenic noise impacts are pervasive across taxa, ecosystems and the world. Here, we experimentally test the hypothesis that protecting vulnerable habitats from noise pollution can improve animal reproductive success. Using a season-long field manipulation with an established model system on the Great Barrier Reef, we demonstrate that limiting motorboat activity on reefs leads to the survival of more fish offspring compared to reefs experiencing busy motorboat traffic. A complementary laboratory experiment isolated the importance of noise and, in combination with the field study, showed that the enhanced reproductive success on protected reefs is likely due to improvements in parental care and offspring length. Our results suggest noise mitigation could have benefits that carry through to the population-level by increasing adult reproductive output and offspring growth, thus helping to protect coral reefs from human impacts and presenting a valuable opportunity for enhancing ecosystem resilience.
Collapse
|
3
|
Chen W, Wallhead P, Hynes S, Groeneveld R, O'Connor E, Gambi C, Danovaro R, Tinch R, Papadopoulou N, Smith C. Ecosystem service benefits and costs of deep-sea ecosystem restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114127. [PMID: 34838382 DOI: 10.1016/j.jenvman.2021.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea ecosystems are facing degradation which could have severe consequences for biodiversity and the livelihoods of coastal populations. Ecosystem restoration as a natural based solution has been regarded as a useful means to recover ecosystems. The study provides a social cost-benefit analysis for a proposed project to restore the Dohrn Canyon cold water corals and the deep-sea ecosystem in the Bay of Naples, Italy. By incorporating ecosystem service benefits and uncertainties related to a complex natural-technological-social system surrounding restoration activities, the study demonstrated how to evaluate large-scale ecosystem restoration activities. The results indicate that an ecosystem restoration project can be economic (in terms of welfare improvement) even if the restoration costs are high. Our study shows the uncertainty associated with restoration success rate significantly affects the probability distribution of the expected net present values. Identifying and controlling the underlying factors to improve the restoration successful rate is thus crucial.
Collapse
Affiliation(s)
| | | | - Stephen Hynes
- SEMRU (Socio-Economic Marine Research Unit), Whitaker Institute, National University of Ireland, Galway, Ireland
| | - Rolf Groeneveld
- Environmental Economics and Natural Resources Group, Wageningen University, the Netherlands
| | - Eamon O'Connor
- SEMRU (Socio-Economic Marine Research Unit), Whitaker Institute, National University of Ireland, Galway, Ireland
| | - Cristina Gambi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | |
Collapse
|