1
|
Labonté JM, Campbell KL, Walker JR, Rodriguez-Pilco MA. Ubiquitous microbial contaminants associated with scientific ocean drilling. Access Microbiol 2025; 7:000865.v3. [PMID: 40135080 PMCID: PMC11936376 DOI: 10.1099/acmi.0.000865.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Deep-sea subsurface samples typically have low microbial biomass, making them more susceptible to contamination. Potential contaminants can be introduced during any step of the scientific process, including drilling (contamination from the drilling fluid and lubricants and seawater); sample preparation (contamination from air and human handling); and DNA extraction, amplification and sequencing (contamination from reagents). The International Ocean Discovery Program (IODP) samples that are dedicated to microbiological analyses (known as MBIO samples) are routinely tested for contamination by injecting known concentrations of fluorescent microspheres or tracers directly into the drilling fluids. These tracers are a great tool to determine the level of drilling fluid contamination on board, but they are not consistently used, and contamination of the samples could occur during other steps of sample processing and analysis. Moreover, there is an increased risk of contamination dominating the results of microbial surveys using PCR amplification of marker genes. Here, we built a database of common contaminants through the screening of contamination controls from available 16S rRNA gene amplicon datasets from past IODP expeditions. These controls included various lubricants used on board, drilling fluids, seawater, DNA extraction blanks and PCR blanks. The order Burkholderiales dominated most of the very low biomass samples, including negative controls, indicating the order's ubiquity and its potential to be overamplified with common 16S rRNA amplification protocols. We amplified the 16S rRNA gene from preserved IODP legacy microbiological core samples and tested their level of contamination using the database. We also looked at published studies that did not sequence negative controls. Our results demonstrate that the type of drilling, amount of manipulation of the sample prior to preservation and sample depth, often associated with biomass, can influence the level of contamination within subsurface samples. This work provides an analysis framework for microbial taxonomic survey studies from low biomass subsurface samples for future scientific ocean drilling expeditions.
Collapse
Affiliation(s)
- Jessica M. Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Kathryn L. Campbell
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Jordan R. Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | | |
Collapse
|
2
|
Cockell CS. Where the microbes aren't. FEMS Microbiol Rev 2025; 49:fuae034. [PMID: 39725411 PMCID: PMC11737512 DOI: 10.1093/femsre/fuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes. At the physico-chemical limits of life, questions such as whether spaces devoid of actively metabolizing or reproducing life constitute uninhabitable space or space containing vacant niches that could be occupied with appropriate adaptation are raised. We do not know the extent to which evolution has allowed life to occupy all niche space within its biochemical potential. The case of habitable extraterrestrial environments and the scientific and ethical questions that they raise is discussed.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
3
|
Meyer NR, Morono Y, Dekas AE. Single-cell analysis reveals an active and heterotrophic microbiome in the Guaymas Basin deep subsurface with significant inorganic carbon fixation by heterotrophs. Appl Environ Microbiol 2024; 90:e0044624. [PMID: 38709099 PMCID: PMC11334695 DOI: 10.1128/aem.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.
Collapse
Affiliation(s)
- Nicolette R. Meyer
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Mara P, Geller-McGrath D, Edgcomb V, Beaudoin D, Morono Y, Teske A. Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface. Nat Commun 2023; 14:7768. [PMID: 38012208 PMCID: PMC10681998 DOI: 10.1038/s41467-023-43296-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Previous studies of microbial communities in subseafloor sediments reported that microbial abundance and diversity decrease with sediment depth and age, and microbes dominating at depth tend to be a subset of the local seafloor community. However, the existence of geographically widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin (Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and archaea along thermal, geochemical and cell count gradients. We find that the composition and distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as temperatures remain moderate, but downcore increasing temperatures beyond ca. 45 ºC override other factors. Consistently, MAG size and diversity decrease with increasing temperature, indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition towards a specialized deep, hot biosphere.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Virginia Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David Beaudoin
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe, Nankoku, Kochi, Japan
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Schubert F, Kallmeyer J. Liquid scintillation counting at the limit of detection in biogeosciences. Front Microbiol 2023; 14:1194848. [PMID: 37485520 PMCID: PMC10361571 DOI: 10.3389/fmicb.2023.1194848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Liquid scintillation is widely used to quantify the activity of radioisotopes. We present an overview of the technique and its application to biogeosciences, particularly for turnover rate measurements. Microbial communities and their metabolism are notoriously difficult to analyze in low energy environments as biomass is exceedingly sparse and turnover rates low. Highly sensitive methods, such as liquid scintillation counting, are required to investigate low metabolic rates and conclusively differentiate them from the background noise of the respective analyzer. We conducted a series of experiments to explore the effects of luminescence, measurement time and temperature on scintillation measurements. Luminescence, the spontaneous emission of photons, disproportionally affects samples within the first few hours after sample preparation and can be minimized by following simple guidelines. Short measurement times will negatively affect liquid scintillation analysis or if background noise makes up a significant proportion of the detected events. Measurement temperature affected liquid scintillation analysis only when the temperature during the measurement reached approximately 30°C or higher, i.e. the liquid scintillation analyzer was placed in an environment without temperature control, but not in cases where chemicals were stored at elevated temperatures prior to measurement. Basic understanding on the functionality of a liquid scintillation analyzer and simple precautions prior to the measurement can significantly lower the minimum detection limit and therefore allow for determination of low turnover rates previously lost in the background noise.
Collapse
|
6
|
Polymenakou PN, Nomikou P, Hannington M, Petersen S, Kilias SP, Anastasiou TI, Papadimitriou V, Zaka E, Kristoffersen JB, Lampridou D, Wind S, Heinath V, Lange S, Magoulas A. Taxonomic diversity of microbial communities in sub-seafloor hydrothermal sediments of the active Santorini-Kolumbo volcanic field. Front Microbiol 2023; 14:1188544. [PMID: 37455712 PMCID: PMC10345502 DOI: 10.3389/fmicb.2023.1188544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Active hydrothermal vents of volcanic origin provide a remarkable manifestation of life on Earth under extreme conditions, which may have consequences for our understanding of habitability on other terrestrial bodies as well. Methods Here, we performed for the first time Illumina sequencing of bacterial and archaeal communities on sub-seafloor samples collected from the Santorini-Kolumbo volcanic field. A total of 19 (3-m long) gravity corers were collected and processed for microbial community analysis. Results From a total of 6,46,671 produced V4 sequences for all samples, a total of 10,496 different Operational Taxonomic Units (OTUs) were identified that were assigned to 40 bacterial and 9 archaeal phyla and 14 candidate divisions. On average, the most abundant phyla in all samples were Chloroflexi (Chloroflexota) (24.62%), followed by Proteobacteria (Pseudomonadota) (11.29%), Firmicutes (Bacillota) (10.73%), Crenarchaeota (Thermoproteota) (8.55%), and Acidobacteria (Acidobacteriota) (8.07%). At the genus level, a total of 286 known genera and candidate genera were mostly dominated by members of Bacillus, Thermoflexus, Desulfatiglans, Pseudoalteromonas, and Pseudomonas. Discussion In most of the stations, the Chao1 values at the deeper layers were comparable to the surface sediment samples denoting the high diversity in the subsurface of these ecosystems. Heatmap analysis based on the 100 most abundant OTUs, grouped the sampling stations according to their geographical location, placing together the two hottest stations (up to 99°C). This result indicates that this specific area within the active Kolumbo crater create a distinct niche, where microorganisms with adaptation strategies to withstand heat stresses can thrive, such as the endospore-forming Firmicutes.
Collapse
Affiliation(s)
- Paraskevi N. Polymenakou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Paraskevi Nomikou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Hannington
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Stephanos P. Kilias
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Vasiliki Papadimitriou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Eleutheria Zaka
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jon Bent Kristoffersen
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Danai Lampridou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandra Wind
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verena Heinath
- Institute of Geosciences, University of Kiel (CAU), Kiel, Germany
| | - Sabine Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antonios Magoulas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| |
Collapse
|
7
|
Köster M, Staubwasser M, Meixner A, Kasemann SA, Manners HR, Morono Y, Inagaki F, Heuer VB, Kasten S, Henkel S. Uniquely low stable iron isotopic signatures in deep marine sediments caused by Rayleigh distillation. Sci Rep 2023; 13:10281. [PMID: 37355766 DOI: 10.1038/s41598-023-37254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Dissimilatory iron reduction (DIR) is suggested to be one of the earliest forms of microbial respiration. It plays an important role in the biogeochemical cycling of iron in modern and ancient sediments. Since microbial iron cycling is typically accompanied by iron isotope fractionation, stable iron isotopes are used as tracer for biological activity. Here we present iron isotope data for dissolved and sequentially extracted sedimentary iron pools from deep and hot subseafloor sediments retrieved in the Nankai Trough off Japan. Dissolved iron (Fe(II)aq) is isotopically light throughout the ferruginous sediment interval but some samples have exceptionally light isotope values. Such light values have never been reported in natural marine environments and cannot be solely attributed to DIR. We show that the light isotope values are best explained by a Rayleigh distillation model where Fe(II)aq is continuously removed from the pore water by adsorption onto iron (oxyhydr)oxide surfaces. While the microbially mediated Fe(II)aq release has ceased due to an increase in temperature beyond the threshold of mesophilic microorganisms, the abiotic adsorptive Fe(II)aq removal continued, leading to uniquely light isotope values. These findings have important implications for the interpretation of dissolved iron isotope data especially in deep subseafloor sediments.
Collapse
Affiliation(s)
- Male Köster
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
- Faculty of Geosciences, University of Bremen, Bremen, Germany.
| | | | - Anette Meixner
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Simone A Kasemann
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Hayley R Manners
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Fumio Inagaki
- Institute for Marine-Earth Exploration and Engineering (MarE3), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Verena B Heuer
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Sabine Kasten
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Susann Henkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
8
|
Tyne RL, Barry PH, Lawson M, Lloyd KG, Giovannelli D, Summers ZM, Ballentine CJ. Identifying and Understanding Microbial Methanogenesis in CO 2 Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37327355 DOI: 10.1021/acs.est.2c08652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon capture and storage (CCS) is an important component in many national net-zero strategies. Ensuring that CO2 can be safely and economically stored in geological systems is critical. To date, CCS research has focused on the physiochemical behavior of CO2, yet there has been little consideration of the subsurface microbial impact on CO2 storage. However, recent discoveries have shown that microbial processes (e.g., methanogenesis) can be significant. Importantly, methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir. Such changes may subsequently reduce the volume of CO2 that can be stored and change the mobility and future trapping systematics of the evolved supercritical fluid. Here, we review the current knowledge of how microbial methanogenesis could impact CO2 storage, including the potential scale of methanogenesis and the range of geologic settings under which this process operates. We find that methanogenesis is possible in all storage target types; however, the kinetics and energetics of methanogenesis will likely be limited by H2 generation. We expect that the bioavailability of H2 (and thus potential of microbial methanogenesis) will be greatest in depleted hydrocarbon fields and least within saline aquifers. We propose that additional integrated monitoring requirements are needed for CO2 storage to trace any biogeochemical processes including baseline, temporal, and spatial studies. Finally, we suggest areas where further research should be targeted in order to fully understand microbial methanogenesis in CO2 storage sites and its potential impact.
Collapse
Affiliation(s)
- R L Tyne
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - P H Barry
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | | | - K G Lloyd
- University of Tennessee, Knoxville, Tennessee 37996, United States
| | - D Giovannelli
- University of Naples Federico II, Naples 80138 Italy
| | - Z M Summers
- LanzaTech, Skokie, Illinois 60077, United States
| | | |
Collapse
|
9
|
Lever MA, Alperin MJ, Hinrichs KU, Teske A. Zonation of the active methane-cycling community in deep subsurface sediments of the Peru trench. Front Microbiol 2023; 14:1192029. [PMID: 37250063 PMCID: PMC10213550 DOI: 10.3389/fmicb.2023.1192029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The production and anaerobic oxidation of methane (AOM) by microorganisms is widespread in organic-rich deep subseafloor sediments. Yet, the organisms that carry out these processes remain largely unknown. Here we identify members of the methane-cycling microbial community in deep subsurface, hydrate-containing sediments of the Peru Trench by targeting functional genes of the alpha subunit of methyl coenzyme M reductase (mcrA). The mcrA profile reveals a distinct community zonation that partially matches the zonation of methane oxidizing and -producing activity inferred from sulfate and methane concentrations and carbon-isotopic compositions of methane and dissolved inorganic carbon (DIC). McrA appears absent from sulfate-rich sediments that are devoid of methane, but mcrA sequences belonging to putatively methane-oxidizing ANME-1a-b occur from the zone of methane oxidation to several meters into the methanogenesis zone. A sister group of ANME-1a-b, referred to as ANME-1d, and members of putatively aceticlastic Methanothrix (formerly Methanosaeta) occur throughout the remaining methanogenesis zone. Analyses of 16S rRNA and mcrA-mRNA indicate that the methane-cycling community is alive throughout (rRNA to 230 mbsf) and active in at least parts of the sediment column (mRNA at 44 mbsf). Carbon-isotopic depletions of methane relative to DIC (-80 to -86‰) suggest mostly methane production by CO2 reduction and thus seem at odds with the widespread detection of ANME-1 and Methanothrix. We explain this apparent contradiction based on recent insights into the metabolisms of both ANME-1 and Methanothricaceae, which indicate the potential for methanogenetic growth by CO2 reduction in both groups.
Collapse
Affiliation(s)
- Mark A. Lever
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marc J. Alperin
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Environmental Selection and Biogeography Shape the Microbiome of Subsurface Petroleum Reservoirs. mSystems 2023; 8:e0088422. [PMID: 36786580 PMCID: PMC10134868 DOI: 10.1128/msystems.00884-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Petroleum reservoirs within the deep biosphere are extreme environments inhabited by diverse microbial communities and represent biogeochemical hot spots in the subsurface. Despite the ecological and industrial importance of oil reservoir microbiomes, systematic study of core microbial taxa and their associated genomic attributes spanning different environmental conditions is limited. Here, we compile and compare 343 16S rRNA gene amplicon libraries and 25 shotgun metagenomic libraries from oil reservoirs in different parts of the world to test for the presence of core taxa and functions. These oil reservoir libraries do not share any core taxa at the species, genus, family, or order levels, and Gammaproteobacteria was the only taxonomic class detected in all samples. Instead, taxonomic composition varies among reservoirs with different physicochemical characteristics and with geographic distance highlighting environmental selection and biogeography in these deep biosphere habitats. Gene-centric metagenomic analysis reveals a functional core of metabolic pathways including carbon acquisition and energy-yielding strategies consistent with biogeochemical cycling in other subsurface environments. Genes for anaerobic hydrocarbon degradation are observed in a subset of the samples and are therefore not considered to represent core functions in oil reservoirs despite hydrocarbons representing an abundant source of carbon in these deep biosphere settings. Overall, this work reveals common and divergent features of oil reservoir microbiomes that are shaped by and responsive to environmental factors, highlighting controls on subsurface microbial community assembly. IMPORTANCE This comprehensive analysis showcases how environmental selection and geographic distance influence the microbiome of subsurface petroleum reservoirs. We reveal substantial differences in the taxonomy of the inhabiting microbes but shared metabolic function between reservoirs with different in situ temperatures and between reservoirs separated by large distances. The study helps understand and advance the field of deep biosphere science by providing an ecological framework and footing for geologists, chemists, and microbiologists studying these habitats to elucidate major controls on deep biosphere microbial ecology.
Collapse
|
11
|
Mori F, Ijiri A, Nishimura T, Wakamatsu T, Katsuki N, Morono Y. Cultivation of Piezotolerant and Piezophilic Hyperthermophiles with a Newly Developed Constant High Pressure and Temperature Culturing and Monitoring System. Microbes Environ 2023; 38:ME23055. [PMID: 37866887 PMCID: PMC10728627 DOI: 10.1264/jsme2.me23055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
The Earth's microbial biosphere extends from ambient to extreme environments, including deep-sea hydrothermal vents and subseafloor habitats. Despite efforts to understand the physiological adaptations of these microbes, our knowledge is limited due to the technological challenges associated with reproducing in situ high temperature (HT)-high hydrostatic pressure (HHP) conditions and sampling HT-HHP cultures. In the present study, we developed a new high temperature and pressure (HTP) incubation system that enabled the maintenance of HT-HHP conditions while sampling incubation medium and mostly eliminated non-biological reactions, including hydrogen generation or the leakage of small gaseous molecules. The main characteristics of our system are (1) a chamber made of gold with gold-etched lid parts that suppress the majority of non-biological reactions, (2) the exceptional containment of dissolved gas, even small molecules, such as hydrogen, and (3) the sampling capacity of intra-chamber liquid without depressurization and the isobaric transfer of a culture to inoculate new medium. We initially confirmed the retention of dissolved hydrogen in the incubation container at 82°C and 20 MPa for 9 days. Cultivation tests with an obligate hyperthermophilic piezophile (Pyrococcus yayanosii), hydrogenotrophic hyperthermophile (Archaeoglobus profundus), and heterotrophic hyperthermophile (Pyrococcus horikoshii) were successful based on growth monitoring and chemical ana-lyses. During HTP cultivation, we observed a difference in the duration of the lag phase of P. horikoshii, which indicated the potential effect of a pressure change on the physiology of piezophiles. The present results suggest the importance of a cultivation system designed and developed explicitly for HTP conditions with the capacity for sampling without depressurization of the entire system.
Collapse
Affiliation(s)
- Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
- Graduate School of Maritime Sciences, Kobe University, 5–1–1 Fukaeminamimachi, Higashinada-ku, Kobe 658–0022, Japan
| | - Tomoya Nishimura
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
- Applied Science, Graduate School of Integrated Arts and Sciences, Kochi University, Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Nozomi Katsuki
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Monobe B200, Nankoku, Kochi 783–8502, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| |
Collapse
|
12
|
Kawagucci S, Sakai S, Tasumi E, Hirai M, Takaki Y, Nunoura T, Saitoh M, Ueno Y, Yoshida N, Shibuya T, Clifford Sample J, Okumura T, Takai K. Deep Subseafloor Biogeochemical Processes and Microbial Populations Potentially Associated with the 2011 Tohoku-oki Earthquake at the Japan Trench Accretionary Wedge (IODP Expedition 343). Microbes Environ 2023; 38:n/a. [PMID: 37331792 DOI: 10.1264/jsme2.me22108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851 m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole-cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana-lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105 cells mL-1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.
Collapse
Affiliation(s)
- Shinsuke Kawagucci
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Sanae Sakai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Eiji Tasumi
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Yuichiro Ueno
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology
- Earth-Life Science Institute, Tokyo Institute of Technology
| | - Naohiro Yoshida
- Earth-Life Science Institute, Tokyo Institute of Technology
- National Institute of Information and Communications Technology
| | - Takazo Shibuya
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Tomoyo Okumura
- Center for Advanced Marine Core Research, Kochi University
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
13
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
14
|
Bell E, Rattray JE, Sloan K, Sherry A, Pilloni G, Hubert CRJ. Hyperthermophilic endospores germinate and metabolize organic carbon in sediments heated to 80°C. Environ Microbiol 2022; 24:5534-5545. [PMID: 36100999 PMCID: PMC9826295 DOI: 10.1111/1462-2920.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
Cold surface sediments host a seedbank of functionally diverse thermophilic bacteria. These thermophiles are present as endospores, which are widely dispersed in aquatic environments. Here, we investigated the functional potential of endospore populations in cold surface sediments heated to 80°C. Microbial production of acetate was observed at 80°C and could be enhanced by supplying additional organic carbon substrates. Comparison of 16S rRNA gene amplicon libraries from 80°C enrichments to sediments heated to lower temperatures (50-70°C) showed that temperature selects for distinct populations of endospore-forming bacteria. Whereas sulfate-reducing thermophiles were enriched in 50-70°C incubations, 80°C exceeds their thermal tolerance and selects for hyperthermophilic organotrophic bacteria that are similarly detected in amplicon libraries from sediments heated to 90°C. Genome-resolved metagenomics revealed novel carbon cycling members of Symbiobacteriales, Thermosediminibacteraceae, Thermanaeromonas and Calditerricola with the genomic potential for the degradation of carbohydrates, sugars, amino acids and nucleotides. Endospores of thermophilic bacteria are deposited on seabed sediments worldwide where they remain dormant as they are buried in the accumulating sediments. Our results suggest that endospore populations could be activated by temperature increases encountered during burial and show the potential for organotrophic metabolic activity contributing to acetate generation in deep hot sediments.
Collapse
Affiliation(s)
- Emma Bell
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Kathryn Sloan
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Giovanni Pilloni
- ExxonMobil Technology and Engineering CompanyAnnandaleNew JerseyUSA
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
15
|
Rattray JE, Chakraborty A, Elizondo G, Ellefson E, Bernard B, Brooks J, Hubert CRJ. Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico. GEOBIOLOGY 2022; 20:823-836. [PMID: 35993193 PMCID: PMC9804197 DOI: 10.1111/gbi.12517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have reported up to 1.9 × 1029 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or 'dipicolinic acid' (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.
Collapse
Affiliation(s)
- Jayne E. Rattray
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Anirban Chakraborty
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Gretta Elizondo
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Emily Ellefson
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | | | | | - Casey R. J. Hubert
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
16
|
Gittins DA, Desiage PA, Morrison N, Rattray JE, Bhatnagar S, Chakraborty A, Zorz J, Li C, Horanszky O, Cramm MA, Bisiach F, Bennett R, Webb J, MacDonald A, Fowler M, Campbell DC, Hubert CRJ. Geological processes mediate a microbial dispersal loop in the deep biosphere. SCIENCE ADVANCES 2022; 8:eabn3485. [PMID: 36026445 PMCID: PMC9417182 DOI: 10.1126/sciadv.abn3485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry. Thermophilic endospores in the permanently cold seabed correlated with underlying seep conduits reveal geofluid-facilitated cell migration pathways originating in deep petroleum-bearing sediments. Endospore genomes highlight adaptations to life in anoxic petroleum systems and bear close resemblance to oil reservoir microbiomes globally. Upon transport out of the subsurface, viable thermophilic endospores reenter the geosphere by sediment burial, enabling germination and environmental selection at depth where new petroleum systems establish. This microbial dispersal loop circulates living biomass in and out of the deep biosphere.
Collapse
Affiliation(s)
- Daniel A. Gittins
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
- Corresponding author.
| | | | - Natasha Morrison
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Jackie Zorz
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Oliver Horanszky
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Margaret A. Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Francesco Bisiach
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Robbie Bennett
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Jamie Webb
- Applied Petroleum Technology, Calgary, Canada
| | - Adam MacDonald
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | | | - D. Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
17
|
Chakraborty A, Rattray JE, Drake SS, Matthews S, Li C, Jørgensen BB, Hubert CRJ. Metabolic responses of thermophilic endospores to sudden heat-induced perturbation in marine sediment samples. Front Microbiol 2022; 13:958417. [PMID: 36033870 PMCID: PMC9411986 DOI: 10.3389/fmicb.2022.958417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Microbially mediated processes in a given habitat tend to be catalyzed by abundant populations that are ecologically adapted to exploit specific environmental characteristics. Typically, metabolic activities of rare populations are limited but may be stimulated in response to acute environmental stressors. Community responses to sudden changes in temperature and pressure can include suppression and activation of different populations, but these dynamics remain poorly understood. The permanently cold ocean floor hosts countless low-abundance microbes including endospores of thermophilic bacteria. Incubating sediments at high temperature resuscitates viable spores, causing the proliferation of bacterial populations. This presents a tractable system for investigating changes in a microbiome's community structure in response to dramatic environmental perturbations. Incubating permanently cold Arctic fjord sediments at 50°C for 216 h with and without volatile fatty acid amendment provoked major changes in community structure. Germination of thermophilic spores from the sediment rare biosphere was tracked using mass spectrometry-based metabolomics, radiotracer-based sulfate reduction rate measurements, and high-throughput 16S rRNA gene sequencing. Comparing community similarity at different intervals of the incubations showed distinct temporal shifts in microbial populations, depending on organic substrate amendment. Metabolite patterns indicated that amino acids and other sediment-derived organics were decomposed by fermentative Clostridia within the first 12–48 h. This fueled early and late phases of exponential increases in sulfate reduction, highlighting the cross-feeding of volatile fatty acids as electron donors for different sulfate-reducing Desulfotomaculia populations. The succession of germinated endospores triggered by sudden exposure to high temperature and controlled by nutrient availability offers a model for understanding the ecological response of dormant microbial communities following major environmental perturbations.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anirban Chakraborty
| | - Jayne E. Rattray
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sienna S. Drake
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Stuart Matthews
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Barker Jørgensen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Stone J, Edgar JO, Gould JA, Telling J. Tectonically-driven oxidant production in the hot biosphere. Nat Commun 2022; 13:4529. [PMID: 35941147 PMCID: PMC9360021 DOI: 10.1038/s41467-022-32129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic reconstructions of the common ancestor to all life have identified genes involved in H2O2 and O2 cycling. Commonly dismissed as an artefact of lateral gene transfer after oxygenic photosynthesis evolved, an alternative is a geological source of H2O2 and O2 on the early Earth. Here, we show that under oxygen-free conditions high concentrations of H2O2 can be released from defects on crushed silicate rocks when water is added and heated to temperatures close to boiling point, but little is released at temperatures <80 °C. This temperature window overlaps the growth ranges of evolutionary ancient heat-loving and oxygen-respiring Bacteria and Archaea near the root of the Universal Tree of Life. We propose that the thermal activation of mineral surface defects during geological fault movements and associated stresses in the Earth’s crust was a source of oxidants that helped drive the (bio)geochemistry of hot fractures where life first evolved. Researchers at Newcastle University have discovered a mechanism by which earthquakes create bursts of hydrogen peroxide and oxygen in hot underground fractures. These may have played a vital role in the early evolution and origin of life on Earth.
Collapse
Affiliation(s)
- Jordan Stone
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - John O Edgar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jamie A Gould
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jon Telling
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
19
|
Moeller C, Schmidt C, Guyot F, Wilke M. Hydrolysis rate constants of ATP determined in situ at elevated temperatures. Biophys Chem 2022; 290:106878. [DOI: 10.1016/j.bpc.2022.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
20
|
Bradley JA, Arndt S, Amend JP, Burwicz-Galerne E, LaRowe DE. Sources and Fluxes of Organic Carbon and Energy to Microorganisms in Global Marine Sediments. Front Microbiol 2022; 13:910694. [PMID: 35875517 PMCID: PMC9301249 DOI: 10.3389/fmicb.2022.910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10–16 W cell–1 in recently deposited shelf sediments to minima of <10–20 W cell–1 in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.
Collapse
Affiliation(s)
- James A. Bradley
- School of Geography, Queen Mary University of London, London, United Kingdom
- GFZ German Research Center for Geosciences, Potsdam, Germany
- *Correspondence: James A. Bradley,
| | - Sandra Arndt
- BGeosys, Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jan P. Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ewa Burwicz-Galerne
- MARUM Center for Marine Environmental Sciences, Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Liu X, Huang X, Chu C, Xu H, Wang L, Xue Y, Arifeen Muhammad ZU, Inagaki F, Liu C. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 2022; 25:104417. [PMID: 35663011 PMCID: PMC9156946 DOI: 10.1016/j.isci.2022.104417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
To understand the genomic evolution and adaptation strategies of fungi to subseafloor sedimentary environments, we de novo assembled the genome of Schizophyllum commune strain 20R-7-F01 isolated from ∼2.0 km-deep, ∼20-millionyearsago (Mya) coal-bearing sediments. Phylogenomics study revealed a differentiation time of 28-73 Mya between this strain and the terrestrial type-strain H4-8, in line with sediment age records. Comparative genome analyses showed that FunK1 protein kinase, NmrA family, and transposons in this strain are significantly expanded, possibly linking to the environmental adaptation and persistence in sediment for over millions of years. Re-sequencing study of 14 S. commune strains sampled from different habitats revealed that subseafloor strains have much lower nucleotide diversity, substitution rate, and homologous recombination rate than other strains, reflecting that the growth and/or reproduction of subseafloor strains are extremely slow. Our data provide new insights into the adaptation and long-term survival of the fungi in the subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | | | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Katayama T, Yoshioka H, Kaneko M, Amo M, Fujii T, Takahashi HA, Yoshida S, Sakata S. Cultivation and biogeochemical analyses reveal insights into methanogenesis in deep subseafloor sediment at a biogenic gas hydrate site. THE ISME JOURNAL 2022; 16:1464-1472. [PMID: 35105960 PMCID: PMC9038717 DOI: 10.1038/s41396-021-01175-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
AbstractGas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.
Collapse
|
23
|
Nagakura T, Schubert F, Wagner D, Kallmeyer J, IODP Exp. 385 Shipboard Scientific Party. Biological Sulfate Reduction in Deep Subseafloor Sediment of Guaymas Basin. Front Microbiol 2022; 13:845250. [PMID: 35308366 PMCID: PMC8927301 DOI: 10.3389/fmicb.2022.845250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfate reduction is the quantitatively most important process to degrade organic matter in anoxic marine sediment and has been studied intensively in a variety of settings. Guaymas Basin, a young marginal ocean basin, offers the unique opportunity to study sulfate reduction in an environment characterized by organic-rich sediment, high sedimentation rates, and high geothermal gradients (100–958°C km−1). We measured sulfate reduction rates (SRR) in samples taken during the International Ocean Discovery Program (IODP) Expedition 385 using incubation experiments with radiolabeled 35SO42− carried out at in situ pressure and temperature. The highest SRR (387 nmol cm−3 d−1) was recorded in near-surface sediments from Site U1548C, which had the steepest geothermal gradient (958°C km−1). At this site, SRR were generally over an order of magnitude higher than at similar depths at other sites (e.g., 387–157 nmol cm−3 d−1 at 1.9 mbsf from Site U1548C vs. 46–1.0 nmol cm−3 d−1 at 2.1 mbsf from Site U1552B). Site U1546D is characterized by a sill intrusion, but it had already reached thermal equilibrium and SRR were in the same range as nearby Site U1545C, which is minimally affected by sills. The wide temperature range observed at each drill site suggests major shifts in microbial community composition with very different temperature optima but awaits confirmation by molecular biological analyses. At the transition between the mesophilic and thermophilic range around 40°C–60°C, sulfate-reducing activity appears to be decreased, particularly in more oligotrophic settings, but shows a slight recovery at higher temperatures.
Collapse
Affiliation(s)
- Toshiki Nagakura
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Potsdam, Germany
| | - Florian Schubert
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Potsdam, Germany
- *Correspondence: Jens Kallmeyer,
| | | |
Collapse
|
24
|
Beulig F, Schubert F, Adhikari RR, Glombitza C, Heuer VB, Hinrichs KU, Homola KL, Inagaki F, Jørgensen BB, Kallmeyer J, Krause SJE, Morono Y, Sauvage J, Spivack AJ, Treude T. Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere. Nat Commun 2022; 13:312. [PMID: 35078973 PMCID: PMC8789916 DOI: 10.1038/s41467-021-27802-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
A fourth of the global seabed sediment volume is buried at depths where temperatures exceed 80 °C, a previously proposed thermal barrier for life in the subsurface. Here, we demonstrate, utilizing an extensive suite of radiotracer experiments, the prevalence of active methanogenic and sulfate-reducing populations in deeply buried marine sediment from the Nankai Trough subduction zone, heated to extreme temperature (up to ~120 °C). The small microbial community subsisted with high potential cell-specific rates of energy metabolism, which approach the rates of active surface sediments and laboratory cultures. Our discovery is in stark contrast to the extremely low metabolic rates otherwise observed in the deep subseafloor. As cells appear to invest most of their energy to repair thermal cell damage in the hot sediment, they are forced to balance delicately between subsistence near the upper temperature limit for life and a rich supply of substrates and energy from thermally driven reactions of the sedimentary organic matter. In the deep sedimentary biosphere, 80 °C has been proposed as an upper thermal barrier for life. Using a suite of radiotracer experiments, this study reports active methanogenic and sulfate-reducing microbial populations with high cell-specific metabolic rates in deeply buried marine sediments from the Nankai Trough subduction zone, which reach temperatures up to 120 °C.
Collapse
|
25
|
Takamiya H, Kouduka M, Suzuki Y. The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Front Microbiol 2021; 12:785743. [PMID: 34917063 PMCID: PMC8670094 DOI: 10.3389/fmicb.2021.785743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Rocks that react with liquid water are widespread but spatiotemporally limited throughout the solar system, except for Earth. Rock-forming minerals with high iron content and accessory minerals with high amounts of radioactive elements are essential to support rock-hosted microbial life by supplying organics, molecular hydrogen, and/or oxidants. Recent technological advances have broadened our understanding of the rocky biosphere, where microbial inhabitation appears to be difficult without nutrient and energy inputs from minerals. In particular, microbial proliferation in igneous rock basements has been revealed using innovative geomicrobiological techniques. These recent findings have dramatically changed our perspective on the nature and the extent of microbial life in the rocky biosphere, microbial interactions with minerals, and the influence of external factors on habitability. This study aimed to gather information from scientific and/or technological innovations, such as omics-based and single-cell level characterizations, targeting deep rocky habitats of organisms with minimal dependence on photosynthesis. By synthesizing pieces of rock-hosted life, we can explore the evo-phylogeny and ecophysiology of microbial life on Earth and the life’s potential on other planetary bodies.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
26
|
Formation of ethane and propane via abiotic reductive conversion of acetic acid in hydrothermal sediments. Proc Natl Acad Sci U S A 2021; 118:2005219118. [PMID: 34782456 DOI: 10.1073/pnas.2005219118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
A mechanistic understanding of formation pathways of low-molecular-weight hydrocarbons is relevant for disciplines such as atmospheric chemistry, geology, and astrobiology. The patterns of stable carbon isotopic compositions (δ13C) of hydrocarbons are commonly used to distinguish biological, thermogenic, and abiotic sources. Here, we report unusual isotope patterns of nonmethane hydrocarbons in hydrothermally heated sediments of the Guaymas Basin; these nonmethane hydrocarbons are notably 13C-enriched relative to sedimentary organic matter and display an isotope pattern that is reversed relative to thermogenic hydrocarbons (i.e., δ13C ethane > δ13C propane > δ13C n-butane > δ13C n-pentane). We hypothesized that this pattern results from abiotic reductive conversion of volatile fatty acids, which were isotopically enriched due to prior equilibration of their carboxyl carbon with dissolved inorganic carbon. This hypothesis was tested by hydrous pyrolysis experiments with isotopically labeled substrates at 350 °C and 400 bar that demonstrated 1) the exchange of carboxyl carbon of C2 to C5 volatile fatty acids with 13C-bicarbonate and 2) the incorporation of 13C from 13C-2-acetic acid into ethane and propane. Collectively, our results reveal an abiotic formation pathway for nonmethane hydrocarbons, which may be sufficiently active in organic-rich, geothermally heated sediments and petroleum systems to affect isotopic compositions of nonmethane hydrocarbons.
Collapse
|
27
|
Lloyd MK, Trembath-Reichert E, Dawson KS, Feakins SJ, Mastalerz M, Orphan VJ, Sessions AL, Eiler JM. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. Science 2021; 374:894-897. [PMID: 34762461 DOI: 10.1126/science.abg0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- M K Lloyd
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - E Trembath-Reichert
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - K S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - S J Feakins
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - M Mastalerz
- Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47405, USA
| | - V J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - A L Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - J M Eiler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
28
|
Drake H, Reiners PW. Thermochronologic perspectives on the deep-time evolution of the deep biosphere. Proc Natl Acad Sci U S A 2021; 118:e2109609118. [PMID: 34725158 PMCID: PMC8609299 DOI: 10.1073/pnas.2109609118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
The Earth's deep biosphere hosts some of its most ancient chemolithotrophic lineages. The history of habitation in this environment is thus of interest for understanding the origin and evolution of life. The oldest rocks on Earth, formed about 4 billion years ago, are in continental cratons that have experienced complex histories due to burial and exhumation. Isolated fracture-hosted fluids in these cratons may have residence times older than a billion years, but understanding the history of their microbial communities requires assessing the evolution of habitable conditions. Here, we present a thermochronological perspective on the habitability of Precambrian cratons through time. We show that rocks now in the upper few kilometers of cratons have been uninhabitable (>∼122 °C) for most of their lifetime or have experienced high-temperature episodes, such that the longest record of habitability does not stretch much beyond a billion years. In several cratons, habitable conditions date back only 50 to 300 million years, in agreement with dated biosignatures. The thermochronologic approach outlined here provides context for prospecting and interpreting the little-explored geologic record of the deep biosphere of Earth's cratons, when and where microbial communities may have thrived, and candidate areas for the oldest records of chemolithotrophic microbes.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnæus University, Kalmar 391 82, Sweden;
| | - Peter W Reiners
- Department of Geosciences, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
29
|
Sanz-Robinson J, Brisco T, Warr O, Jabeen I, Lacrampe-Couloume G, Hanley JJ, Sherwood Lollar B. Advances in carbon isotope analysis of trapped methane and volatile hydrocarbons in crystalline rock cores. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9170. [PMID: 34302407 DOI: 10.1002/rcm.9170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The isotopic composition of hydrocarbons trapped in rocks on the microscale (fluid inclusions, mineral grain boundaries, microfractures) can provide powerful information on geological and biological processes but are an analytical challenge due to low concentrations. We present a new approach for the extraction and carbon isotopic analysis of methane (CH4 ) and hydrocarbons in trapped volatiles in crystalline rocks. METHODS An off-line crusher with cryogenic trapping and a custom-made silica glass U-trap were attached to an external injector port on a continuous flow gas chromatograph/combustion/isotope ratio mass spectrometer to demonstrate the accuracy, reproducibility, and sensitivity of δ13 C measurements for CH4 . RESULTS The method can isotopically characterize CH4 in crushed rock samples with concentrations as low as 3.5 × 10-9 mol/g of rock, and both sample and isotopic standards are analyzed with an accuracy and reproducibility of ±0.5‰. High H2 O/CH4 ratios of 98 to 500 have no effect on measured δ13 CCH4 values. The method is successfully applied to natural samples from the north range of Sudbury Basin, Ontario, Canada. The δ13 C isotopic signatures of CH4 trapped microscopically in rock from the north range overlap significantly with that of CH4 contained in larger scale flowing fracture fluids from the same part of the Sudbury Basin, indicating a potential genetic link. CONCLUSIONS A novel method for δ13 CCH4 analysis was developed for the extraction of nanomole quantities of CH4 trapped microscopically in rocks. The technique has an accuracy and reproducibility comparable to that of on-line crushing techniques but importantly provides the capability of crushing larger rock quantities (up to 100 g). The benefit is improved detection levels for trace hydrocarbon species. Such a capability will be important for future extension of such crushing techniques for measurement of 2 H/1 H for CH4 , clumped isotopologues of CH4 and other trapped volatiles species, such as C2 H6 , C3 H8 , C4 H10 , CO2 and N2 .
Collapse
Affiliation(s)
| | - Trevor Brisco
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Warr
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Iffat Jabeen
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Jacob J Hanley
- Department of Geology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
30
|
Cockell CS. Are microorganisms everywhere they can be? Environ Microbiol 2021; 23:6355-6363. [PMID: 34693610 DOI: 10.1111/1462-2920.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Baas-Becking is famously attributed with the conjecture that 'everything is everywhere, but the environment selects'. Although this aphorism is largely challenged by microbial biogeographical data, even weak versions of the claim leave unanswered the question about whether all environments that could theoretically support life contain life. In the last decade, the discovery of thermally sterilized habitable environments disconnected from inhabited regions, and habitats within organisms such as the sterile, but habitable human fetal gut, suggest the existence of a diversity of macroscopic habitable environments apparently devoid of actively metabolizing or reproducing life. Less clear is the status of such environments at the micron scale, for example, between colonies of organisms within rock interstices or on and within other substrates. I discuss recent evidence for these types of environments. These environments have practical uses in: (i) being negative controls for understanding the role of microbial processes in geochemical cycles and geological processes, (ii) yielding insights into the extent to which the biosphere extends into all spaces it theoretically can, (iii) suggesting caution in interpreting the results of life detection instrumentation, and (iv) being useful for establishing the conditions for the origin of life and its prevalence on other planetary bodies.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| |
Collapse
|
31
|
Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds. Life (Basel) 2021; 11:life11090883. [PMID: 34575032 PMCID: PMC8468739 DOI: 10.3390/life11090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.
Collapse
|
32
|
Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Commun Biol 2021; 4:1006. [PMID: 34433861 PMCID: PMC8387401 DOI: 10.1038/s42003-021-02507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Temperature and bioavailable energy control the distribution of life on Earth, and interact with each other due to the dependency of biological energy requirements on temperature. Here we analyze how temperature-energy interactions structure sediment microbial communities in two hydrothermally active areas of Guaymas Basin. Sites from one area experience advective input of thermogenically produced electron donors by seepage from deeper layers, whereas sites from the other area are diffusion-dominated and electron donor-depleted. In both locations, Archaea dominate at temperatures >45 °C and Bacteria at temperatures <10 °C. Yet, at the phylum level and below, there are clear differences. Hot seep sites have high proportions of typical hydrothermal vent and hot spring taxa. By contrast, high-temperature sites without seepage harbor mainly novel taxa belonging to phyla that are widespread in cold subseafloor sediment. Our results suggest that in hydrothermal sediments temperature determines domain-level dominance, whereas temperature-energy interactions structure microbial communities at the phylum-level and below. Lagostina et al. show that relative abundances of Bacteria and Archaea in sediments of Guaymas Basin, Gulf of California, are controlled by temperature, while energy flux explains microbial community structure at the phylum-level and below. Hot diffusion-dominated and energy-depleted sediments are dominated by taxa with relatives in cold subseafloor sediments, while hot sediments with high energy supply from fluid seepage are dominated by taxa also found at hydrothermal vents and in hot springs.
Collapse
|
33
|
Mori F, Nishimura T, Wakamatsu T, Terada T, Morono Y. Simple In-liquid Staining of Microbial Cells for Flow Cytometry Quantification of the Microbial Population in Marine Subseafloor Sediments. Microbes Environ 2021; 36:ME21031. [PMID: 34433737 PMCID: PMC8446754 DOI: 10.1264/jsme2.me21031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial cell counting provides essential information for the study of cell abundance profiles and biogeochemical interactions with the surrounding environments. However, it often requires labor-intensive and time-consuming processes, particularly for subseafloor sediment samples, in which non-cell particles are abundant. We developed a rapid and straightforward method for staining microbial intracellular DNA by SYBR Green I (SYBR-I) to enumerate cells by flow cytometry (FCM). We initially examined the efficiency of microbial cell staining at various dye/sediment ratios (volume ratio of SYBR-I/sediment [vSYBR/vSed]). Non-cell particles in sediment strongly and preferentially adsorbed SYBR-I dye, resulting in the unsuccessful staining of microbial cells when an insufficient ratio (<1.63 vSYBR/vSed) of SYBR-I dye was present per volume of sediment. SYBR-I dye at an abundance of 10 vSYBR/vSed successfully and stably stained microbial cells in green fluorescence, while the fluorescent color of non-cell particles red-shifted to yellow-orange with the overaccumulation of SYBR-I dye. A low vSYBR/vSed ratio was quickly recognized by a colorless supernatant after centrifugation. At the appropriate vSYBR/vSed ratio, FCM-measured cell concentrations in subseafloor sediments were consistently similar to microscopy counts (>106 cells cm-3). Samples with low cell abundance (<105 cells cm-3) still require cell separation. This modified staining allows us to efficiently process and perform the microbial cell counting of sediment samples to a depth of a few hundred meters below the seafloor with a higher throughput and capability to scale up than procedures employing microscopy-based observations.
Collapse
Affiliation(s)
- Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Tomoya Nishimura
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Takeshi Terada
- Marine Works Japan Ltd., Oppama-higashi 3–54–1, Yokosuka 237–0063, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| |
Collapse
|