1
|
Yang J, Strandberg I, Vivas-Viaña A, Gaikwad A, Castillo-Moreno C, Kockum AF, Ullah MA, Muñoz CS, Eriksson AM, Gasparinetti S. Entanglement of photonic modes from a continuously driven two-level system. NPJ QUANTUM INFORMATION 2025; 11:69. [PMID: 40308436 PMCID: PMC12037412 DOI: 10.1038/s41534-025-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/21/2025] [Indexed: 05/02/2025]
Abstract
The ability to generate entangled states of light is a key primitive for quantum communication and distributed quantum computation. Continuously driven sources, including those based on spontaneous parametric downconversion, are usually probabilistic, whereas deterministic sources require accurate timing of the control fields. Here, we experimentally generate entangled photonic modes by continuously exciting a quantum emitter - a superconducting qubit - with a coherent drive, taking advantage of mode matching in the time and frequency domain. Using joint quantum state tomography and logarithmic negativity, we show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum. Because the entangled photonic modes are perfectly orthogonal, they can be transferred into distinct quantum memories. Our approach can be utilized to distribute entanglement at a high rate in various physical platforms, with applications in waveguide quantum electrodynamics, distributed quantum computing, and quantum networks.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
- Ericsson Research, Ericsson AB, Stockholm, Sweden
| | - Ingrid Strandberg
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | - Alejandro Vivas-Viaña
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Institute of Fundamental Physics IFF-CSIC, Madrid, Spain
| | - Akshay Gaikwad
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | - Claudia Castillo-Moreno
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | - Anton Frisk Kockum
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | | | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Institute of Fundamental Physics IFF-CSIC, Madrid, Spain
| | - Axel Martin Eriksson
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | - Simone Gasparinetti
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
2
|
Mo Q, Shi C, Zhang X, Zhang J, Zhang J. Polarization-entangled photon pairs from lithium niobate metasurfaces. OPTICS LETTERS 2025; 50:2294-2297. [PMID: 40167704 DOI: 10.1364/ol.559126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Flat optics has emerged as a promising platform for ultrathin polarization-entangled sources via spontaneous parametric downconversion in subwavelength-thick nonlinear films or metasurfaces. However, previous schemes typically required multiplexing two films or two meta-structures with different orientations. Here, we propose a nonlinear metasurface composed of a single silica grating atop a lithium niobate film to generate polarization-entangled photon pairs. By engineering the angular dispersion of metasurface resonances, adjusting the pump frequency, and leveraging the polarization correlated transverse phase matching, the |HH〉 and |VV〉 states are simultaneously enhanced by over 2000 times, while the |HV〉 and |VH〉 states remain similar when compared to the pure film. Therefore, the degree of polarization entanglement is significantly improved. Furthermore, by tuning the pump polarization and film orientation, and applying spatial filtering, the concurrence of the two-photon state is optimized to near one, meaning maximal entanglement. Such an ultrathin and spatial-separated-entangled photon-pair source will be useful in realizing miniaturized quantum photonic systems for various applications.
Collapse
|
3
|
Grinkemeyer B, Guardado-Sanchez E, Dimitrova I, Shchepanovich D, Mandopoulou GE, Borregaard J, Vuletić V, Lukin MD. Error-detected quantum operations with neutral atoms mediated by an optical cavity. Science 2025; 387:1301-1305. [PMID: 40112061 DOI: 10.1126/science.adr7075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025]
Abstract
Neutral-atom quantum processors are a promising platform for large-scale quantum computing. Integrating them with optical cavities enables fast nondestructive qubit readout and access to fast remote entanglement generation for quantum networking. In this work, we introduce a platform for coupling single atoms in optical tweezers to a Fabry-Perot fiber cavity. Leveraging the strong atom-cavity coupling, we demonstrated fast qubit-state readout with [Formula: see text] fidelity and two methods for cavity-mediated entanglement generation with integrated error detection. First, we used cavity-carving to generate a Bell state with 91(4)% fidelity and a 32(1)% success rate (the number in parentheses is the standard deviation). Second, we performed a cavity-mediated gate with a deterministic entanglement fidelity of 52.5(18)%, increased to 76(2)% with error detection. Our approach provides a route toward modular quantum computing and networking.
Collapse
Affiliation(s)
| | | | - Ivana Dimitrova
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | | | - Vladan Vuletić
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Ruskuc A, Wu CJ, Green E, Hermans SLN, Pajak W, Choi J, Faraon A. Multiplexed entanglement of multi-emitter quantum network nodes. Nature 2025; 639:54-59. [PMID: 40011776 DOI: 10.1038/s41586-024-08537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025]
Abstract
Quantum networks that distribute entanglement among remote nodes will unlock transformational technologies in quantum computing, communication and sensing1-4. However, state-of-the-art networks5-14 use only a single optically addressed qubit per node; this constrains both the quantum communication bandwidth and memory resources, greatly impeding scalability. Solid-state platforms15-24 provide a valuable resource for multiplexed quantum networking in which multiple spectrally distinguishable qubits can be hosted in nano-scale volumes. Here we harness this resource by implementing a two-node network consisting of several rare-earth ions coupled to nanophotonic cavities25-31. This is accomplished with a protocol that entangles distinguishable 171Yb ions through frequency-erasing photon detection combined with real-time quantum feedforward. This method is robust to slow optical frequency fluctuations occurring on timescales longer than a single entanglement attempt: a universal challenge amongst solid-state emitters. We demonstrate the enhanced functionality of these multi-emitter nodes in two ways. First, we mitigate the bottlenecks to the entanglement distribution rate through multiplexed entanglement of two remote ion pairs32,33. Second, we prepare multipartite W-states comprising three distinguishable ions as a resource for advanced quantum networking protocols34,35. These results lay the groundwork for scalable quantum networking based on rare-earth ions.
Collapse
Affiliation(s)
- A Ruskuc
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - C-J Wu
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA
| | - E Green
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - S L N Hermans
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - W Pajak
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - J Choi
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - A Faraon
- Thomas J. Watson, Sr, Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA.
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Lai PC, Wang Y, Shi JX, Cui ZB, Wang ZQ, Zhang S, Liu PY, Tian ZC, Sun YD, Chang XY, Qi BX, Huang YY, Zhou ZC, Wu YK, Xu Y, Pu YF, Duan LM. Realization of a Crosstalk-Free Two-Ion Node for Long-Distance Quantum Networking. PHYSICAL REVIEW LETTERS 2025; 134:070801. [PMID: 40053954 DOI: 10.1103/physrevlett.134.070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/08/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025]
Abstract
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes to realize large-scale quantum networks. In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits: one type, called the communication qubit, to establish an entangling interface with telecom photons; and the other type, called the memory qubit, to store quantum information immune from photon scattering under entangling attempts. Here, we report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node based on two trapped ^{40}Ca^{+} ions. The memory qubit is encoded on a long-lived metastable level to avoid crosstalk with the communication qubit encoded in another subspace of the same ion species, and a quantum wavelength conversion module is employed to generate heralded ion-photon entanglement over a 12 km fiber. Our work therefore constitutes an important step toward the realization of quantum repeaters and long-distance quantum networks.
Collapse
Affiliation(s)
- P-C Lai
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Y Wang
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - J-X Shi
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Z-B Cui
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Z-Q Wang
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - S Zhang
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - P-Y Liu
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Z-C Tian
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Y-D Sun
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - X-Y Chang
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - B-X Qi
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Y-Y Huang
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
| | - Z-C Zhou
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Y-K Wu
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Y Xu
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Y-F Pu
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - L-M Duan
- Tsinghua University, Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
6
|
Qiu J, Liu Y, Hu L, Wu Y, Niu J, Zhang L, Huang W, Chen Y, Li J, Liu S, Zhong Y, Duan L, Yu D. Deterministic quantum state and gate teleportation between distant superconducting chips. Sci Bull (Beijing) 2025; 70:351-358. [PMID: 39694794 DOI: 10.1016/j.scib.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Quantum teleportation is of both fundamental interest and great practical importance in quantum information science. To date, quantum teleportation has been implemented in various physical systems, among which superconducting qubits are of particular practical significance as they emerge as a leading system to realize large-scale quantum computation. Nevertheless, scaling up the number of superconducting qubits on a single chip becomes increasing challenging because of some emergent technical difficulties. Realization of quantum teleportation and remote computation over qubits on distant superconducting chips is a key quantum communication technology to scaling up the system through a distributed quantum computational network. However, this goal has not been realized yet in experiments due to the technical challenges including making a quantum interconnect between distant superconducting chips and the inefficient transfer of flying microwave photons over the lossy interconnects. Here we demonstrate deterministic teleportation of quantum states and entangling gates between distant superconducting chips connected by a 64-m-long cable bus featuring an ultralow loss of 0.32 dB/km at cryogenic temperatures, where high fidelity remote entanglement is generated via flying microwave photons. Our work demonstrates a prime building block for distributed quantum computation with superconducting qubits, and opens up a new avenue for waveguide quantum electrodynamics and quantum photonics at microwave frequencies.
Collapse
Affiliation(s)
- Jiawei Qiu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Hu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yukai Wu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjing Niu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanzhen Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Youpeng Zhong
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Luming Duan
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Main D, Drmota P, Nadlinger DP, Ainley EM, Agrawal A, Nichol BC, Srinivas R, Araneda G, Lucas DM. Distributed quantum computing across an optical network link. Nature 2025; 638:383-388. [PMID: 39910308 PMCID: PMC11821536 DOI: 10.1038/s41586-024-08404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/14/2024] [Indexed: 02/07/2025]
Abstract
Distributed quantum computing (DQC) combines the computing power of multiple networked quantum processing modules, ideally enabling the execution of large quantum circuits without compromising performance or qubit connectivity1,2. Photonic networks are well suited as a versatile and reconfigurable interconnect layer for DQC; remote entanglement shared between matter qubits across the network enables all-to-all logical connectivity through quantum gate teleportation (QGT)3,4. For a scalable DQC architecture, the QGT implementation must be deterministic and repeatable; until now, no demonstration has satisfied these requirements. Here we experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules. The modules, separated by about two metres, each contain dedicated network and circuit qubits. By using heralded remote entanglement between the network qubits, we deterministically teleport a controlled-Z (CZ) gate between two circuit qubits in separate modules, achieving 86% fidelity. We then execute Grover's search algorithm5-to our knowledge, the first implementation of a distributed quantum algorithm comprising several non-local two-qubit gates-and measure a 71% success rate. Furthermore, we implement distributed iSWAP and SWAP circuits, compiled with two and three instances of QGT, respectively, demonstrating the ability to distribute arbitrary two-qubit operations6. As photons can be interfaced with a variety of systems, the versatile DQC architecture demonstrated here provides a viable pathway towards large-scale quantum computing for a range of physical platforms.
Collapse
Affiliation(s)
- D Main
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - P Drmota
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - D P Nadlinger
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - E M Ainley
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - A Agrawal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - B C Nichol
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - R Srinivas
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - G Araneda
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - D M Lucas
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Tang L, Tang JS, Xia K. Integrated all-optical nonreciprocity based on a moving index grating. OPTICS EXPRESS 2025; 33:2205-2216. [PMID: 39876375 DOI: 10.1364/oe.546389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Optical nonreciprocal devices are critical components in integrated photonic systems and scalable quantum technologies. We propose an all-optical approach to achieve integrated optical nonreciprocity utilizing a moving index grating. The grating is generated in a nonlinear optical waveguide through the Kerr effect by driving the waveguide with two counter-propagating pump fields of slightly different frequencies. Based on this moving index grating, our system exhibits exceptional versatility by achieving both nonreciprocal transmission and reflection of signal fields. We obtain an all-optical isolator that achieves near-unity isolation contrast and negligible insertion loss while effectively addressing the dynamic reciprocity challenge. Our protocol establishes a novel approach for achieving integrated all-optical nonreciprocal devices, paving the way for advanced integrated photonic circuits.
Collapse
|
9
|
Zhang S, Shi J, Liang Y, Sun Y, Wu Y, Duan L, Pu Y. Fast delivery of heralded atom-photon quantum correlation over 12 km fiber through multiplexing enhancement. Nat Commun 2024; 15:10306. [PMID: 39604376 PMCID: PMC11603145 DOI: 10.1038/s41467-024-54691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Distributing quantum entanglement between distant parties is a significant but difficult task in quantum information science, as it can enable numerous applications but suffers from exponential decay in the quantum channel. Quantum repeaters are one of the most promising approaches towards this goal. In a quantum repeater protocol, it is essential that the entanglement generation speed within each elementary link is faster than the memory decoherence rate, and this stringent requirement has not been implemented over a fiber of metropolitan scale so far. As a step towards this challenging goal, in this work we experimentally realize multiplexing-enhanced generation of heralded atom-photon quantum correlation over a 12 km fiber. We successively generate 280 pairs of atom-photon quantum correlations with a train of photonic time-bin pulses filling the long fiber, and read out the excited memory modes on demand with either fixed or variable storage time after successful heralding. With the multiplexing enhancement, the heralding rate of atom-photon correlation can reach 1.95 kHz, and the ratio between the quantum correlation generation rate to memory decoherence rate can be improved to 0.46 for a fiber length of 12 km. This work therefore constitutes an important step towards the realization of a large-scale quantum repeater network.
Collapse
Affiliation(s)
- Sheng Zhang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China
| | - Jixuan Shi
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China
| | - Yibo Liang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China
| | - Yuedong Sun
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China
| | - Yukai Wu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China
- Hefei National Laboratory, Hefei, 230088, PR China
| | - Luming Duan
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China.
- Hefei National Laboratory, Hefei, 230088, PR China.
| | - Yunfei Pu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, PR China.
- Hefei National Laboratory, Hefei, 230088, PR China.
| |
Collapse
|
10
|
Jing R, Lan Q, Zhou P. Hierarchical Controlled Joint Remote Implementation of the Partially Unknown Operations of m Qudits via m High-Dimensional Entangled States. ENTROPY (BASEL, SWITZERLAND) 2024; 26:857. [PMID: 39451934 PMCID: PMC11507572 DOI: 10.3390/e26100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
We present a protocol for the hierarchical controlled joint remote implementation of the partially unknown operations of m qudits belonging to some restricted sets by using m multiparticle high-dimensional entangled states as the quantum channel. All the senders share the information of the partially unknown operations and cooperate with each other to implement the partially unknown operations on the remote receiver's quantum system. The receivers are hierarchized in accordance with their abilities to reconstruct the desired state. The agents in the upper grade need only cooperate with one of the lower-grade agents, and the agents in the lower grade need the cooperation of all the other agents. The protocol has the advantage of having high channel capacity by using a high-dimensional entangle state as the quantum channel for the hierarchial controlled joint remote implementation of partially unknown quantum operations of m qudits.
Collapse
Affiliation(s)
- Ruiheng Jing
- College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China; (R.J.); (Q.L.)
- Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, Nanning 530006, China
| | - Qi Lan
- College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China; (R.J.); (Q.L.)
- Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, Nanning 530006, China
| | - Ping Zhou
- College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China; (R.J.); (Q.L.)
- Key Lab of Quantum Information and Quantum Optics, Guangxi University for Nationalities, Nanning 530006, China
- Guangxi Key Laboratory of Hybrid Computational and IC Design Analysis, Nanning 530006, China
| |
Collapse
|
11
|
Zhang C, Hu XM, Ding F, Hu XY, Guo Y, Liu BH, Huang YF, Li CF, Guo GC. Experimental Catalytic Amplification of Asymmetry. PHYSICAL REVIEW LETTERS 2024; 133:140201. [PMID: 39423375 DOI: 10.1103/physrevlett.133.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024]
Abstract
The manipulation and transformation of quantum resources are key parts of quantum mechanics. Among them, asymmetry is one of the most useful operational resources, which is widely used in quantum clocks, quantum metrology, and other tasks. Recent studies have shown that the asymmetry of quantum states can be significantly amplified with the assistance of correlating catalysts that are finite-dimensional auxiliaries. In the experiment, we perform translationally invariant operations, ensuring that the asymmetric resources of the entire system remain nonincreasing, on a composite system composed of a catalytic system and a quantum system. The experimental results demonstrate an asymmetry amplification of 0.0172±0.0022 in the system following the catalytic process. Our Letter showcases the potential of quantum catalytic processes and is expected to inspire further research in the field of quantum resource theories.
Collapse
|
12
|
Liu X, Hu XM, Zhu TX, Zhang C, Xiao YX, Miao JL, Ou ZW, Li PY, Liu BH, Zhou ZQ, Li CF, Guo GC. Nonlocal photonic quantum gates over 7.0 km. Nat Commun 2024; 15:8529. [PMID: 39358375 PMCID: PMC11447119 DOI: 10.1038/s41467-024-52912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Quantum networks provide a prospective paradigm to connect separated quantum nodes, which relies on the distribution of long-distance entanglement and active feedforward control of qubits between remote nodes. Such approaches can be utilized to construct nonlocal quantum gates, forming building blocks for distributed quantum computing and other novel quantum applications. However, these gates have only been realized within single nodes or between nodes separated by a few tens of meters, limiting the ability to harness computing resources in large-scale quantum networks. Here, we demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km using stationary qubits based on multiplexed quantum memories, flying qubits at telecom wavelengths, and active feedforward control based on field-deployed fibers. Furthermore, we illustrate quantum parallelism by implementing the Deutsch-Jozsa algorithm and the quantum phase estimation algorithm between the two remote nodes. These results represent a proof-of-principle demonstration of quantum gates over metropolitan-scale distances and lay the foundation for the construction of large-scale distributed quantum networks relying on existing fiber channels.
Collapse
Grants
- This work is supported by the National Key R&D Program of China (No. 2017YFA0304100), Innovation Program for Quantum Science and Technology (No. 2021ZD0301200), the National Natural Science Foundation of China (Nos. 12374338, 12222411, 11904357, 12174367, 12204458, 11821404, 12204459 and 62322513), Anhui Provincial Natural Science Foundation (No. 2108085QA26), Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Xiaomi Young Talents Program, Science and Technological Fund of Anhui Province for Outstanding Youth (2008085J02). Z.-Q.Z acknowledges the support from the Youth Innovation Promotion Association CAS. The allocation of node B and the deployment of ultralow-loss fiber is supported by China Unicom (Anhui).
Collapse
Affiliation(s)
- Xiao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Min Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Tian-Xiang Zhu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Xin Xiao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Le Miao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Wen Ou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Yun Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Heng Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
13
|
Pal S, Bhattacharya M, Dash S, Lee SS, Chakraborty C. Future Potential of Quantum Computing and Simulations in Biological Science. Mol Biotechnol 2024; 66:2201-2218. [PMID: 37717248 DOI: 10.1007/s12033-023-00863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
The review article presents the recent progress in quantum computing and simulation within the field of biological sciences. The article is designed mainly into two portions: quantum computing and quantum simulation. In the first part, significant aspects of quantum computing was illustrated, such as quantum hardware, quantum RAM and big data, modern quantum processors, qubit, superposition effect in quantum computation, quantum interference, quantum entanglement, and quantum logic gates. Simultaneously, in the second part, vital features of the quantum simulation was illustrated, such as the quantum simulator, algorithms used in quantum simulations, and the use of quantum simulation in biological science. Finally, the review provides exceptional views to future researchers about different aspects of quantum simulation in biological science.
Collapse
Affiliation(s)
- Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Snehasish Dash
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
14
|
Hartung L, Seubert M, Welte S, Distante E, Rempe G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 2024; 385:179-183. [PMID: 38991069 DOI: 10.1126/science.ado6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics. However, scalability to larger systems with many qubits is challenging. One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits that are reversibly interfaced to communication qubits. In this study, we report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity. Harnessing a single atom-addressing beam, we stimulate the emission of a photon from each atom and demonstrate multiplexed atom-photon entanglement with a generation-to-detection efficiency approaching 90%. Combined with cavity-mediated quantum logic, our approach provides a possible route to distributed quantum information processing.
Collapse
Affiliation(s)
- Lukas Hartung
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | | | - Stephan Welte
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Gerhard Rempe
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| |
Collapse
|
15
|
Yan J, Zhou X, Yan Z, Jia X. Remote and controlled quantum teleportation network of the polarization squeezed state. OPTICS EXPRESS 2024; 32:21977-21987. [PMID: 38859538 DOI: 10.1364/oe.523111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
Quantum teleportation is a building block in quantum computation and quantum communication. The continuous-variable polarization squeezed state is a key resource in quantum networks, offering advantages for long-distance distribution and direct interfacing of quantum nodes. Although polarization squeezed state has been generated and distributed between remote users, it is a long-standing goal to implement controlled quantum teleportation of the polarization squeezed state with multiple remote users. Here, we propose a feasible scheme to teleport a polarization squeezed state among multiple remote users under control. The polarization state is transferred between different remote quantum networks, and the controlled quantum teleportation of the polarization state can be implemented in one quantum network involving multiple remote users. The results show that such a controlled quantum teleportation can be realized with 36 users through about 6-km free-space or fiber quantum channels, where the fidelity of 0.352 is achieved beyond the classical limit of 0.349 with an input squeezing variance of 0.25. This scheme provides a direct reference for the experimental implementation of remote and controlled quantum teleportation of polarization states, thus enabling more teleportation-based quantum network protocols.
Collapse
|
16
|
Li L, Liu Y, Zhou X, Huang D, Shen Z, He S, Wang J, Li C, Guo G. Background-free imaging of cold atoms in optical traps. OPTICS EXPRESS 2024; 32:21988-21995. [PMID: 38859539 DOI: 10.1364/oe.523169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
Optical traps, including those used in atomic physics, cold chemistry, and quantum science, are widely used in the research on cold atoms and molecules. Owing to their microscopic structure and excellent operational capability, optical traps have been proposed for cold atom experiments involving complex physical systems, which generally induce violent background scattering. In this study, using a background-free imaging scheme in cavity quantum electrodynamics systems, a cold atomic ensemble was accurately prepared below a fiber cavity and loaded into an optical trap for transfer into the cavity. By satisfying the demanding requirements for the background-free imaging scheme in optical traps, cold atoms in an optical trap were detected with a high signal-to-noise ratio while maintaining atomic loading. The cold atoms were then transferred into the fiber cavity using an optical trap, and the vacuum Rabi splitting was measured, facilitating relevant research on cavity quantum electrodynamics. This method can be extended to related experiments involving cold atoms and molecules in complex physical systems using optical traps.
Collapse
|
17
|
Knaut CM, Suleymanzade A, Wei YC, Assumpcao DR, Stas PJ, Huan YQ, Machielse B, Knall EN, Sutula M, Baranes G, Sinclair N, De-Eknamkul C, Levonian DS, Bhaskar MK, Park H, Lončar M, Lukin MD. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 2024; 629:573-578. [PMID: 38750231 PMCID: PMC11096112 DOI: 10.1038/s41586-024-07252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/28/2024] [Indexed: 05/18/2024]
Abstract
A key challenge in realizing practical quantum networks for long-distance quantum communication involves robust entanglement between quantum memory nodes connected by fibre optical infrastructure1-3. Here we demonstrate a two-node quantum network composed of multi-qubit registers based on silicon-vacancy (SiV) centres in nanophotonic diamond cavities integrated with a telecommunication fibre network. Remote entanglement is generated by the cavity-enhanced interactions between the electron spin qubits of the SiVs and optical photons. Serial, heralded spin-photon entangling gate operations with time-bin qubits are used for robust entanglement of separated nodes. Long-lived nuclear spin qubits are used to provide second-long entanglement storage and integrated error detection. By integrating efficient bidirectional quantum frequency conversion of photonic communication qubits to telecommunication frequencies (1,350 nm), we demonstrate the entanglement of two nuclear spin memories through 40 km spools of low-loss fibre and a 35-km long fibre loop deployed in the Boston area urban environment, representing an enabling step towards practical quantum repeaters and large-scale quantum networks.
Collapse
Affiliation(s)
- C M Knaut
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - A Suleymanzade
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Y-C Wei
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - D R Assumpcao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - P-J Stas
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Y Q Huan
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - B Machielse
- Department of Physics, Harvard University, Cambridge, MA, USA
- AWS Center for Quantum Networking, Boston, MA, USA
| | - E N Knall
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - M Sutula
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - G Baranes
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - N Sinclair
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - D S Levonian
- Department of Physics, Harvard University, Cambridge, MA, USA
- AWS Center for Quantum Networking, Boston, MA, USA
| | - M K Bhaskar
- Department of Physics, Harvard University, Cambridge, MA, USA
- AWS Center for Quantum Networking, Boston, MA, USA
| | - H Park
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - M Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Wu H, Tang J, Chen M, Xiao M, Lu Y, Xia K, Nori F. Passive magnetic-free broadband optical isolator based on unidirectional self-induced transparency. OPTICS EXPRESS 2024; 32:11010-11021. [PMID: 38570960 DOI: 10.1364/oe.507019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Achieving a broadband nonreciprocal device without gain and any external bias is very challenging and highly desirable for modern photonic technologies and quantum networks. Here we theoretically propose a passive and magnetic-free all-optical isolator for a femtosecond laser pulse by exploiting a new mechanism of unidirectional self-induced transparency, obtained with a nonlinear medium followed by a normal absorbing medium at one side. The transmission contrast between the forward and backward directions can reach 14.3 dB for a 2π - 5 fs laser pulse. The 20 dB bandwidth is about 56 nm, already comparable with a magneto-optical isolator. This work provides a new mechanism which may benefit non-magnetic isolation of ultrashort laser pulses.
Collapse
|
19
|
Ding X, Zhao Z, Xie P, Cai D, Meng F, Wang C, Wu Q, Liu J, Burokur SN, Hu G. Metasurface-Based Optical Logic Operators Driven by Diffractive Neural Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308993. [PMID: 38032696 DOI: 10.1002/adma.202308993] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Indexed: 12/01/2023]
Abstract
In this paper, a novel optical logic operator based on the multifunctional metasurface driven by all-optical diffractive neural network is reported, which can perform four principal quantum logic operations (Pauli-X, Pauli-Y, Pauli-Z, and Hadamard gates). The two ground states| 0 ⟩ $|0 \rangle $ and| 1 ⟩ $|1 \rangle $ are characterized by two orthogonal linear polarization states. The proposed spatial- and polarization-multiplexed all-optical diffractive neural network only contains a hidden layer physically mapped as a metasurface with simple and compact unit cells, which dramatically reduces the volume and computing resources required for the system. The designed optical quantum operator is proven to achieve high fidelities for all four quantum logical gates, up to 99.96% numerically and 99.88% experimentally. The solution will facilitate the construction of large-scale optical quantum computing systems and scalable optical quantum devices.
Collapse
Affiliation(s)
- Xumin Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Zihan Zhao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Peng Xie
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dayu Cai
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Fanyi Meng
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qun Wu
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jian Liu
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | | | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
He L, Liu D, Gao J, Zhang W, Zhang H, Feng X, Huang Y, Cui K, Liu F, Zhang W, Zhang X. Super-compact universal quantum logic gates with inverse-designed elements. SCIENCE ADVANCES 2023; 9:eadg6685. [PMID: 37235652 DOI: 10.1126/sciadv.adg6685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Integrated quantum photonic circuit is a promising platform for the realization of quantum information processing in the future. To achieve the large-scale quantum photonic circuits, the applied quantum logic gates should be as small as possible for the high-density integration on chips. Here, we report the implementation of super-compact universal quantum logic gates on silicon chips by the method of inverse design. In particular, the fabricated controlled-NOT gate and Hadamard gate are both nearly a vacuum wavelength, being the smallest optical quantum gates reported up to now. We further design the quantum circuit by cascading these fundamental gates to perform arbitrary quantum processing, where the corresponding size is about several orders smaller than that of previous quantum photonic circuits. Our study paves the way for the realization of large-scale quantum photonic chips with integrated sources and can have important applications in the field of quantum information processes.
Collapse
Affiliation(s)
- Lu He
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Dongning Liu
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
| | - Jingxing Gao
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
| | - Weixuan Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Huizhen Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Xue Feng
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
| | - Yidong Huang
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
| | - Kaiyu Cui
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
| | - Fang Liu
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
| | - Xiangdong Zhang
- Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
21
|
Liu Y, Wang Z, Yang P, Wang Q, Fan Q, Guan S, Li G, Zhang P, Zhang T. Realization of Strong Coupling between Deterministic Single-Atom Arrays and a High-Finesse Miniature Optical Cavity. PHYSICAL REVIEW LETTERS 2023; 130:173601. [PMID: 37172253 DOI: 10.1103/physrevlett.130.173601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
We experimentally demonstrate strong coupling between a one-dimensional (1D) single-atom array and a high-finesse miniature cavity. The atom array is obtained by loading single atoms into a 1D optical tweezer array with dimensions of 1×11. Therefore, a deterministic number of atoms is obtained, and the atom number is determined by imaging the atom array on a CCD camera in real time. By precisely controlling the position and spacing of the atom array in the high finesse Fabry-Perot cavity, all the atoms in the array are strongly coupled to the cavity simultaneously. The vacuum Rabi splitting spectra are discriminated for deterministic atom numbers from 1 to 8, and the sqrt[N] dependence of the collective enhancement of the coupling strength on atom number N is validated at the single-atom level.
Collapse
Affiliation(s)
- Yanxin Liu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhihui Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Pengfei Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Qinxia Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Qing Fan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Shijun Guan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Gang Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Pengfei Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Tiancai Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
22
|
Pan Y, Li L, Zhou X, Huang D, Shen Z, Wang J, Li C, Guo G. Feedback and compensation scheme to suppress the thermal effects from a dipole trap beam for the optical fiber microcavity. OPTICS EXPRESS 2022; 30:46280-46293. [PMID: 36558585 DOI: 10.1364/oe.472022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Cavity quantum electrodynamics (cavity QED) with neutral atoms is a promising platform for quantum information processing and optical fiber Fabry-Pérot microcavity with small mode volume is an important integrant for the large light-matter coupling strength. To transport cold atoms to the microcavity, a high-power optical dipole trap (ODT) beam perpendicular to the cavity axis is commonly used. However, the overlap between the ODT beam and the cavity mirrors causes thermal effects inducing a large cavity shift at the locking wavelength and a differential cavity shift at the probe wavelength which disturbs the cavity resonance. Here, we develop a feedback and compensation scheme to maintain the optical fiber microcavity resonant with the lasers at the locking and probe wavelengths simultaneously. The large cavity shift of 210 times the cavity linewidth, which makes the conventional PID scheme ineffective can be suppressed actively by a PIID feedback scheme with an additional I parameter. Differential cavity shift at the probe wavelength can be understood from the photothermal refraction and thermal expansion effects on the mirror coatings and be passively compensated by changing the frequency of the locking laser. A further normal-mode splitting measurement demonstrates the strong coupling between 85Rb atoms and cavity mode after the thermal effects are suppressed, which also confirms successful delivery and trapping of atoms into the optical cavity. This scheme can solve the thermal effects of the high-power ODT beam and will be helpful to cavity QED experimental research.
Collapse
|
23
|
Qasymeh M, Eleuch H. High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide. Sci Rep 2022; 12:16352. [PMID: 36175489 PMCID: PMC9522659 DOI: 10.1038/s41598-022-20733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Quantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks. A large number of incoherent photons are thermally generated within the microwave frequency spectrum. The closeness of the transmitted quantum state to the source-generated quantum state at the input of the transmission link (measured by the transmission fidelity) degrades due to the presence of the incoherent photons. Hence, high-fidelity quantum microwave transmission has long been considered to be infeasible without refrigeration. In this study, we propose a novel method for high-fidelity quantum microwave transmission using a room-temperature lossy waveguide. The proposed scheme consists of connecting two cryogenic nodes (i.e., a transmitter and a receiver) by the room-temperature lossy microwave waveguide. First, cryogenic preamplification is implemented prior to transmission. Second, at the receiver side, a cryogenic loop antenna is placed inside the output port of the waveguide and coupled to an LC harmonic oscillator located outside the waveguide. The loop antenna converts quantum microwave fields to a quantum voltage across the coupled LC harmonic oscillator. Noise photons are induced across the LC oscillator including the source generated noise, the preamplification noise, the thermal occupation of the waveguide, and the fluctuation-dissipation noise. The loop antenna detector at the receiver is designed to extensively suppress the induced photons across the LC oscillator. The signal transmittance is maintained intact by providing significant preamplification gain. Our calculations show that high-fidelity quantum transmission (i.e., more than [Formula: see text]) is realized based on the proposed scheme for transmission distances reaching 100 m.
Collapse
Affiliation(s)
- Montasir Qasymeh
- Electrical and Computer Engineering Department, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
| | - Hichem Eleuch
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates
- Institute for Quantum Science and Engineering, Texas AM University, College Station, TX, 77843, USA
| |
Collapse
|
24
|
Efficient generation of entangled multiphoton graph states from a single atom. Nature 2022; 608:677-681. [PMID: 36002484 PMCID: PMC9402438 DOI: 10.1038/s41586-022-04987-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
The central technological appeal of quantum science resides in exploiting quantum effects, such as entanglement, for a variety of applications, including computing, communication and sensing1. The overarching challenge in these fields is to address, control and protect systems of many qubits against decoherence2. Against this backdrop, optical photons, naturally robust and easy to manipulate, represent ideal qubit carriers. However, the most successful technique so far for creating photonic entanglement3 is inherently probabilistic and, therefore, subject to severe scalability limitations. Here we report the implementation of a deterministic protocol4–6 for the creation of photonic entanglement with a single memory atom in a cavity7. We interleave controlled single-photon emissions with tailored atomic qubit rotations to efficiently grow Greenberger–Horne–Zeilinger (GHZ) states8 of up to 14 photons and linear cluster states9 of up to 12 photons with a fidelity lower bounded by 76(6)% and 56(4)%, respectively. Thanks to a source-to-detection efficiency of 43.18(7)% per photon, we measure these large states about once every minute, which is orders of magnitude faster than in any previous experiment3,10–13. In the future, this rate could be increased even further, the scheme could be extended to two atoms in a cavity14,15 or several sources could be quantum mechanically coupled16, to generate higher-dimensional cluster states17. Overcoming the limitations encountered by probabilistic schemes for photonic entanglement generation, our results may offer a way towards scalable measurement-based quantum computation18,19 and communication20,21. Using a single memory atom in a cavity, a deterministic protocol is implemented to efficiently grow Greenberger–Horne–Zeilinger and linear cluster states by means of single-photon emissions.
Collapse
|
25
|
Luo XY, Yu Y, Liu JL, Zheng MY, Wang CY, Wang B, Li J, Jiang X, Xie XP, Zhang Q, Bao XH, Pan JW. Postselected Entanglement between Two Atomic Ensembles Separated by 12.5 km. PHYSICAL REVIEW LETTERS 2022; 129:050503. [PMID: 35960556 DOI: 10.1103/physrevlett.129.050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Quantum internet gives the promise of getting all quantum resources connected, and it will enable applications far beyond a localized scenario. A prototype is a network of quantum memories that are entangled and well separated. In this Letter, we report the establishment of postselected entanglement between two atomic quantum memories physically separated by 12.5 km directly. We create atom-photon entanglement in one node and send the photon to a second node for storage via electromagnetically induced transparency. We harness low-loss transmission through a field-deployed fiber of 20.5 km by making use of frequency down-conversion and up-conversion. The final memory-memory entanglement is verified to have a fidelity of 90% via retrieving to photons. Our experiment makes a significant step forward toward the realization of a practical metropolitan-scale quantum network.
Collapse
Affiliation(s)
- Xi-Yu Luo
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yong Yu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Long Liu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | | | - Chao-Yang Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bin Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jun Li
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xiao Jiang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xiu-Ping Xie
- Jinan Institute of Quantum Technology, Jinan 250101, China
| | - Qiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Jinan Institute of Quantum Technology, Jinan 250101, China
| | - Xiao-Hui Bao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
26
|
van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Malik P, Seubert M, Bauer T, Rosenfeld W, Zhang W, Becher C, Weinfurter H. Entangling single atoms over 33 km telecom fibre. Nature 2022; 607:69-73. [PMID: 35794269 PMCID: PMC9259499 DOI: 10.1038/s41586-022-04764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
Quantum networks promise to provide the infrastructure for many disruptive applications, such as efficient long-distance quantum communication and distributed quantum computing1,2. Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation3,4 and loophole-free tests of Bell's inequality5,6, recently, entanglement distribution has also been achieved over telecom fibres and analysed retrospectively7,8. Yet, to fully use entanglement over long-distance quantum network links it is mandatory to know it is available at the nodes before the entangled state decays. Here we demonstrate heralded entanglement between two independently trapped single rubidium atoms generated over fibre links with a length up to 33 km. For this, we generate atom-photon entanglement in two nodes located in buildings 400 m line-of-sight apart and to overcome high-attenuation losses in the fibres convert the photons to telecom wavelength using polarization-preserving quantum frequency conversion9. The long fibres guide the photons to a Bell-state measurement setup in which a successful photonic projection measurement heralds the entanglement of the atoms10. Our results show the feasibility of entanglement distribution over telecom fibre links useful, for example, for device-independent quantum key distribution11-13 and quantum repeater protocols. The presented work represents an important step towards the realization of large-scale quantum network links.
Collapse
Affiliation(s)
- Tim van Leent
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Matthias Bock
- Department of Physics, Saarland University, Saarbrücken, Germany
- Institute of Experimental Physics, University of Innsbruck, Innsbruck, Austria
| | - Florian Fertig
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Robert Garthoff
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Sebastian Eppelt
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Yiru Zhou
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Pooja Malik
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Matthias Seubert
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Tobias Bauer
- Department of Physics, Saarland University, Saarbrücken, Germany
| | - Wenjamin Rosenfeld
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany
- Munich Center for Quantum Science and Technology, Munich, Germany
| | - Wei Zhang
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany.
- Munich Center for Quantum Science and Technology, Munich, Germany.
- School of Physics, Xi'An Jiao Tong University, Xi'An, ShannXi, China.
| | - Christoph Becher
- Department of Physics, Saarland University, Saarbrücken, Germany.
| | - Harald Weinfurter
- Faculty of Physics, Ludwig-Maximilians-University of Munich, Munich, Germany.
- Munich Center for Quantum Science and Technology, Munich, Germany.
- Max-Planck Institute for Quantum Optics, Garching, Germany.
| |
Collapse
|
27
|
Ma S, Zhu C, Quan D, Nie M. A Distributed Architecture for Secure Delegated Quantum Computation. ENTROPY 2022; 24:e24060794. [PMID: 35741515 PMCID: PMC9223277 DOI: 10.3390/e24060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
In this paper, we propose a distributed secure delegated quantum computation protocol, by which an almost classical client can delegate a (dk)-qubit quantum circuit to d quantum servers, where each server is equipped with a 2k-qubit register that is used to process only k qubits of the delegated quantum circuit. None of servers can learn any information about the input and output of the computation. The only requirement for the client is that he or she has ability to prepare four possible qubits in the state of (|0〉+eiθ|1〉)/2, where θ∈{0,π/2,π,3π/2}. The only requirement for servers is that each pair of them share some entangled states (|0〉|+〉+|1〉|−〉)/2 as ancillary qubits. Instead of assuming that all servers are interconnected directly by quantum channels, we introduce a third party in our protocol that is designed to distribute the entangled states between those servers. This would simplify the quantum network because the servers do not need to share a quantum channel. In the end, we show that our protocol can guarantee unconditional security of the computation under the situation where all servers, including the third party, are honest-but-curious and allowed to cooperate with each other.
Collapse
Affiliation(s)
- Shuquan Ma
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China; (S.M.); (D.Q.)
| | - Changhua Zhu
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China; (S.M.); (D.Q.)
- Collaborative Innovation Center of Quantum Information of Shaanxi Province, Xidian University, Xi’an 710071, China
- Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China;
- Correspondence:
| | - Dongxiao Quan
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China; (S.M.); (D.Q.)
| | - Min Nie
- Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China;
- School of Communications and Information Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
| |
Collapse
|
28
|
Ma L, Lei X, Yan J, Li R, Chai T, Yan Z, Jia X, Xie C, Peng K. High-performance cavity-enhanced quantum memory with warm atomic cell. Nat Commun 2022; 13:2368. [PMID: 35501315 PMCID: PMC9061733 DOI: 10.1038/s41467-022-30077-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractHigh-performance quantum memory for quantized states of light is a prerequisite building block of quantum information technology. Despite great progresses of optical quantum memories based on interactions of light and atoms, physical features of these memories still cannot satisfy requirements for applications in practical quantum information systems, since all of them suffer from trade-off between memory efficiency and excess noise. Here, we report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell in which a scheme of optimizing the spatial and temporal modes based on the time-reversal approach is applied. The memory efficiency up to 67 ± 1% is directly measured and a noise level close to quantum noise limit is simultaneously reached. It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities. Thus the realized quantum memory platform has been capable of preserving quantized optical states, and is ready to be applied in quantum information systems, such as distributed quantum logic gates and quantum-enhanced atomic magnetometry.
Collapse
|
29
|
Abstract
The extraordinary advance in quantum computation leads us to believe that, in the not-too-distant future, quantum systems will surpass classical systems. Moreover, the field’s rapid growth has resulted in the development of many critical tools, including programmable machines (quantum computers) that execute quantum algorithms and the burgeoning field of quantum machine learning, which investigates the possibility of faster computation than traditional machine learning. In this paper, we provide a thorough examination of quantum computing from the perspective of a physicist. The purpose is to give laypeople and scientists a broad but in-depth understanding of the area. We also recommend charts that summarize the field’s diversions to put the whole field into context.
Collapse
|
30
|
Jin B, Mishra D, Argyropoulos C. Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. NANOSCALE 2021; 13:19903-19914. [PMID: 34806742 DOI: 10.1039/d1nr05379e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous parametric down-conversion (SPDC) is one of the most versatile nonlinear optical techniques for the generation of entangled and correlated single-photon pairs. However, it suffers from very poor efficiency leading to extremely weak photon generation rates. Here we propose a plasmonic metasurface design based on silver nanostripes combined with a bulk lithium niobate (LiNbO3) crystal to realize a new scalable, ultrathin, and efficient SPDC source. By coinciding fundamental and higher order resonances of the metasurface with the generated signal and idler frequencies, respectively, the electric field in the nonlinear media is significantly boosted. This leads to a substantial enhancement in the SPDC process which, subsequently, by using the quantum-classical correspondence principle, translates to very high photon-pair generation rates. The emitted radiation is highly directional and perpendicular to the metasurface in contrast to relevant dielectric structures. The incorporation of circular polarized excitation further increases the photon-pair generation efficiency. The presented work will lead to the design of new efficient ultrathin SPDC single-photon nanophotonic sources working at room temperature that are expected to be critical components in free-space quantum optical communications. In a more general context, our findings can have various applications in the emerging field of quantum plasmonics.
Collapse
Affiliation(s)
- Boyuan Jin
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Dhananjay Mishra
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Christos Argyropoulos
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
31
|
Pompili M, Hermans SLN, Baier S, Beukers HKC, Humphreys PC, Schouten RN, Vermeulen RFL, Tiggelman MJ, Dos Santos Martins L, Dirkse B, Wehner S, Hanson R. Realization of a multinode quantum network of remote solid-state qubits. Science 2021; 372:259-264. [PMID: 33859028 DOI: 10.1126/science.abg1919] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 11/02/2022]
Abstract
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
Collapse
Affiliation(s)
- M Pompili
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - S L N Hermans
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - S Baier
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - H K C Beukers
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - P C Humphreys
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - R N Schouten
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - R F L Vermeulen
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - M J Tiggelman
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - L Dos Santos Martins
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - B Dirkse
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - S Wehner
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - R Hanson
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands. .,Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| |
Collapse
|
32
|
Hunger D. Quantum logic at a distance. Science 2021; 371:576. [PMID: 33542128 DOI: 10.1126/science.abg1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David Hunger
- Physikalisches Institut, Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede Strasse 1 76131 Karlsruhe, Germany.
| |
Collapse
|
33
|
Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, Rempe G. A quantum-logic gate between distant quantum-network modules. Science 2021; 371:614-617. [PMID: 33542133 DOI: 10.1126/science.abe3150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
The big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk-free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits. Here we experimentally realize such a gate over a distance of 60 meters. We employ an ancillary photon that we successively reflect from two remote qubit modules, followed by a heralding photon detection, which triggers a final qubit rotation. We use the gate for remote entanglement creation of all four Bell states. Our nonlocal quantum-logic gate could be extended both to multiple qubits and many modules for a tailor-made multi-qubit computing register.
Collapse
Affiliation(s)
- Severin Daiss
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
| | - Stefan Langenfeld
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Stephan Welte
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Emanuele Distante
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.,ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Philip Thomas
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Lukas Hartung
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Olivier Morin
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Gerhard Rempe
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|