1
|
Seiler AR, Schleff EJ, Gamsky OM, Stark AY, Yanoviak SP. Effects of simulated squirrel branch landings on ants and other arboreal arthropods. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:42. [PMID: 40434541 DOI: 10.1007/s00114-025-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Wind, rain, and the activities of vertebrates frequently dislodge arthropods from tree surfaces, resulting in arthropod "rain" beneath trees. The probability of falling likely differs among taxa based on their adhesive capacities and ability to anticipate disturbance. We quantified the motion of red oak (Quercus rubra Linnaeus [Fagales: Fagaceae]) leaves, and the composition of arthropods dislodged from woody vegetation, following disturbance mimicking branch landings by eastern gray squirrels (Sciurus carolinensis Gmelin [Rodentia: Sciuridae]). Simulated squirrel landings caused terminal leaves on red oak branches to move rapidly (up to 100 cm s-1) upward and inward toward the tree trunk during the first 50 ms, and dislodged 30% of the arthropods present on a branch. The composition of fallen arthropods was similar to those that remained on the branches, but the proportion dislodged differed among taxa. We used a small catapult to test the effect of leaf movement on the adhesive capabilities of workers of the carpenter ant Camponotus pennsylvanicus DeGeer (Hymenoptera: Formicidae). Arboreal ants presumably anticipate disturbance; thus, they were either "warned" or "unwarned" before each launch. Most ants (98%) were dislodged by the catapult. Warning did not affect the average (± SE) initial velocity (126.0 ± 72.0 cm s-1) or maximum height (22.8 ± 9.3 cm) of launched ants. However, both variables were positively associated with ant mass. The results illustrate the limited ability of many arboreal arthropods to avoid the consequences of a common natural hazard and improve our understanding of the challenges imposed by an arboreal lifestyle.
Collapse
Affiliation(s)
- A R Seiler
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY, 40207, USA
| | - E J Schleff
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY, 40207, USA
| | - O M Gamsky
- Department of Biology, Bellarmine University, 2001 Newburg Road, Louisville, KY, 40205, USA
| | - A Y Stark
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA
| | - S P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY, 40207, USA.
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.
| |
Collapse
|
2
|
Hou L, Bertrand OC, Mudannayake HN, Rolian C, Cote S. Semicircular canal morphology in Rodentia and its relationship to locomotion. J Anat 2025. [PMID: 40329528 DOI: 10.1111/joa.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Anatomical structures vary among mammals with different locomotor behaviours, including sensory structures such as the semicircular canals (SCCs) in the inner ear. Recent SCC research has examined various mammalian groups, but there has been a lack of research on rodents, the most speciose and diverse mammalian order. In this study, an extant sample of 98 rodent SCCs from 56 species across seven different locomotor behaviour categories (arboreal, fossorial, gliding, ricochetal, semiaquatic, semifossorial, terrestrial) was used to understand the correlations between SCC morphology and locomotion in rodents. Morphological correlates considered include the radius of curvature (R), overall 3-dimensional shape, and angles between pairs of canals (orthogonality). Our results show that agile arboreal taxa have larger R for their body size, and fossorial taxa have smaller R for their body size. Shape among specialized locomotor behaviours (arboreal, gliding vs. fossorial) can be differentiated, while other "generalist" categories overlap in morphospace. Specialized locomotor categories can be predicted with greater precision and sensitivity, while other generalist categories tend to be miscategorized as terrestrial. Angles between canals are not consistent across locomotor categories, and more agile groups do not have more orthogonal angles, contrary to our predictions. SCC R and overall shape are robust indicators of specialized locomotor behaviours and can be informative in reconstructing the behaviour of fossil rodents.
Collapse
Affiliation(s)
- Lily Hou
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Hiruni N Mudannayake
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Campbell Rolian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Susanne Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Kumar S, Tiwari I, Ortega-Jimenez VM, Dillman AR, He D, Hu Y, Bhamla S. Reversible kink instability drives ultrafast jumping in nematodes and soft robots. Sci Robot 2025; 10:eadq3121. [PMID: 40267223 DOI: 10.1126/scirobotics.adq3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature previously hypothesized but not substantiated to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched α-shaped loop over a slow timescale [Formula: see text] (1 second), and then rapidly open it [Formula: see text] (10 microseconds), achieving heights of 20 body lengths and generating power of ∼104 watts per kilogram. Using a bioinspired physical model [termed the soft jumping model (SoftJM)], we explored the mechanisms and implications of this kink. EPNs control their takeoff direction by adjusting their head position and center of mass, a mechanism verified through phase maps of jump directions in numerical simulations and SoftJM experiments. Our findings reveal that the reversible kink instability at the point of highest curvature on the ventral side enhances energy storage using the nematode's limited muscular force. We investigated the effect of the aspect ratio on kink instability and jumping performance using SoftJM and quantified EPN cuticle stiffness with atomic force microscopy measurements, comparing these findings with those of Caenorhabditis elegans. This investigation led to a stiffness-modified SoftJM design with a carbon fiber backbone, achieving jumps of ∼25 body lengths. Our study reveals how harnessing kink instabilities, a typical failure mode, enables bidirectional jumping in soft robots on complex substrates like sand, offering an approach for designing limbless robots for controlled jumping, locomotion, and even planetary exploration.
Collapse
Affiliation(s)
- Sunny Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ishant Tiwari
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Victor M Ortega-Jimenez
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Integrative Biology, University of California, Berkeley, CA 947206, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Dongjing He
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhang Hu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Lee SD, Wang S, Kuang D, Wang EK, Yim JK, Hunt NH, Fearing RS, Stuart HS, Full RJ. Free-ranging squirrels perform stable, above-branch landings by balancing using leg force and nonprehensile foot torque. J Exp Biol 2025; 228:jeb249934. [PMID: 40013580 PMCID: PMC11993264 DOI: 10.1242/jeb.249934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025]
Abstract
For gap-crossing agility, arboreal animals require the ability to stabilize dynamic landings on branches. Despite lacking a prehensile grip, squirrels achieve stable landings using a palmar grasp. We investigated the landing dynamics of free-ranging fox squirrels (Sciurus niger) to uncover strategies for stable, above-branch landings. Using high-speed video and force-torque measurements in the sagittal plane, we quantified landing kinetics across gap distances. Squirrels rapidly managed >80% of the landing energy with their forelimbs. With larger gaps, peak leg force and foot torque increased. Alignment between forelimbs, velocity and force also increased, likely reducing joint moment. We tested control hypotheses based on an extensible pendulum model used in a physical, hopping robot named Salto. Squirrels stabilized off-target landings by modulating leg force and foot torque. To correct for undershooting, squirrels generated pull-up torques and reduced leg force. For overshooting, squirrels generated braking torques and increased leg force. Embodying control principles in leg and foot design can enable stable landings in sparse environments for animals and robots alike, even those lacking prehensile grasps.
Collapse
Affiliation(s)
- Sebastian D. Lee
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USA
| | - Stanley Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Duyi Kuang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric K. Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin K. Yim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathaniel H. Hunt
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Ronald S. Fearing
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720-1740, USA
| | - Hannah S. Stuart
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USA
| | - Robert J. Full
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-1740, USA
| |
Collapse
|
5
|
Yim JK, Wang EK, Lee SD, Hunt NH, Full RJ, Fearing RS. Monopedal robot branch-to-branch leaping and landing inspired by squirrel balance control. Sci Robot 2025; 10:eadq1949. [PMID: 40106660 DOI: 10.1126/scirobotics.adq1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Locomotors traversing arboreal environments must often leap across large gaps to land on small-diameter supports. Balancing these dynamic landings is challenging because of high incident momentum, restricted foothold options, and reduced capacity to produce reaction torques on narrow supports. We hypothesized that leg length control to enhance branch reaction control authority would markedly expand the range of successful landing conditions, drawing on the same powerful leg actuation required for leaping. Exploring this balance strategy, the monopedal robot Salto-1P demonstrates branch-to-branch leaps, including some upright balanced landings, despite negligible grasping torque. We also compared this landing strategy with the landings of squirrels, which similarly lack the grip strength found in other arboreal species. We demonstrate that greater radial force control reduces the inertial body torque and/or grasping torque at the support required to balance a given landing. Adding simple radial force balance control strategies to conventional balance controllers greatly expands potential landing conditions, increasing the range of initial angular momentum that can be balanced by 230 and 470% across ranges of landing angles for low-order models of the robot and squirrel, respectively.
Collapse
Affiliation(s)
- Justin K Yim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric K Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian D Lee
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Nathaniel H Hunt
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Robert J Full
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ronald S Fearing
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Boulinguez-Ambroise G, Boyer DM, Dunham NT, Yapuncich GS, Bradley-Cronkwright M, Zeininger A, Schmitt D, Young JW. Biomechanical and morphological determinants of maximal jumping performance in callitrichine monkeys. J Exp Biol 2024; 227:jeb247413. [PMID: 39210868 DOI: 10.1242/jeb.247413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Jumping is a crucial behavior in fitness-critical activities including locomotion, resource acquisition, courtship displays and predator avoidance. In primates, paleontological evidence suggests selection for enhanced jumping ability during their early evolution. However, our interpretation of the fossil record remains limited, as no studies have explicitly linked levels of jumping performance with interspecific skeletal variation. We used force platform analyses to generate biomechanical data on maximal jumping performance in three genera of callitrichine monkeys falling along a continuum of jumping propensity: Callimico (relatively high propensity jumper), Saguinus (intermediate jumping propensity) and Callithrix (relatively low propensity jumper). Individuals performed vertical jumps to perches of increasing height within a custom-built tower. We coupled performance data with high-resolution micro-CT data quantifying bony features thought to reflect jumping ability. Levels of maximal performance between species - e.g. maximal take-off velocity of the center of mass (CoM) - parallel established gradients of jumping propensity. Both biomechanical analysis of jumping performance determinants (e.g. CoM displacement, maximal force production and peak mechanical power during push-off) and multivariate analyses of bony hindlimb morphology highlight different mechanical strategies among taxa. For instance, Callimico, which has relatively long hindlimbs, followed a strategy of fully extending of the limbs to maximize CoM displacement - rather than force production - during push-off. In contrast, relatively shorter-limbed Callithrix depended mostly on relatively high push-off forces. Overall, these results suggest that leaping performance is at least partially associated with correlated anatomical and behavioral adaptations, suggesting the possibility of improving inferences about performance in the fossil record.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, OH 44272, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Noah T Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, USA
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Gabriel S Yapuncich
- Medical Education Administration, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27710, USA
| | | | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, OH 44272, USA
| |
Collapse
|
7
|
Brink KJ, Kim SK, Sommerfeld JH, Amazeen PG, Stergiou N, Likens AD. Pink noise promotes sooner state transitions during bimanual coordination. Proc Natl Acad Sci U S A 2024; 121:e2400687121. [PMID: 39042677 PMCID: PMC11294992 DOI: 10.1073/pnas.2400687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The seemingly straightforward task of tying one's shoes requires a sophisticated interplay of joints, muscles, and neural pathways, posing a formidable challenge for researchers studying the intricacies of coordination. A widely accepted framework for measuring coordinated behavior is the Haken-Kelso-Bunz (HKB) model. However, a significant limitation of this model is its lack of accounting for the diverse variability structures inherent in the coordinated systems it frequently models. Variability is a pervasive phenomenon across various biological and physical systems, and it changes in healthy adults, older adults, and pathological populations. Here, we show, both empirically and with simulations, that manipulating the variability in coordinated movements significantly impacts the ability to change coordination patterns-a fundamental feature of the HKB model. Our results demonstrate that synchronized bimanual coordination, mirroring a state of healthy variability, instigates earlier transitions of coordinated movements compared to other variability conditions. This suggests a heightened adaptability when movements possess a healthy variability. We anticipate our study to show the necessity of adapting the HKB model to encompass variability, particularly in predictive applications such as neuroimaging, cognition, skill development, biomechanics, and beyond.
Collapse
Affiliation(s)
- Kolby J. Brink
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE68182
| | - Seung Kyeom Kim
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE68182
| | - Joel H. Sommerfeld
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE68182
| | | | - Nikolaos Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE68182
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki57001, Greece
| | - Aaron D. Likens
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE68182
| |
Collapse
|
8
|
Janisch J, Myers LC, Schapker N, Kirven J, Shapiro LJ, Young JW. Pump and sway: Wild primates use compliant supports as a tool to augment leaping in the canopy. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24914. [PMID: 38515235 DOI: 10.1002/ajpa.24914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Despite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance. MATERIALS AND METHODS We recorded wild colobine monkeys crossing gaps in the canopy and quantitatively tracked the kinematics of both the monkey and the compliant support during behavioral sequences. We also empirically measured the compliance of a sample of locomotor supports in the monkeys' natural habitat, allowing us to quantify the resonant properties of substrates used during leaping. RESULTS Analyses of three recordings show that adult red colobus monkeys (Piliocolobus tephrosceles) use branch compliance to their advantage by actively pumping branches before leaping, augmenting their vertical velocity at take-off. Quantitative modeling of branch resonance periods, based on empirical measurements of support compliance, suggests that monkeys specifically employed branch pumping on relatively thin branches with protracted periods of oscillation. Finally, an additional four recordings show that both red colobus and black and white colobus monkeys (Colobus guereza) utilize tree swaying to cross large gaps, augmenting horizontal velocity at take-off. DISCUSSION This deliberate branch manipulation to produce a mechanical effect for stronger propulsion is consistent with the framework of instrumental problem-solving. To our knowledge, this is the first study of wild primates which quantitatively shows how compliant branches can be used advantageously to augment locomotor performance.
Collapse
Affiliation(s)
- Judith Janisch
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lydia C Myers
- Department of Anthropology, University of Texas at Austin, Austin, Texas, USA
| | - Nicole Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Jack Kirven
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Liza J Shapiro
- Department of Anthropology, University of Texas at Austin, Austin, Texas, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
9
|
Wang Z, Feng Y, Wang B, Yuan J, Zhang B, Song Y, Wu X, Li L, Li W, Dai Z. Device for Measuring Contact Reaction Forces during Animal Adhesion Landing/Takeoff from Leaf-like Compliant Substrates. Biomimetics (Basel) 2024; 9:141. [PMID: 38534826 DOI: 10.3390/biomimetics9030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
A precise measurement of animal behavior and reaction forces from their surroundings can help elucidate the fundamental principle of animal locomotion, such as landing and takeoff. Compared with stiff substrates, compliant substrates, like leaves, readily yield to loads, presenting grand challenges in measuring the reaction forces on the substrates involving compliance. To gain insight into the kinematic mechanisms and structural-functional evolution associated with arboreal animal locomotion, this study introduces an innovative device that facilitates the quantification of the reaction forces on compliant substrates, like leaves. By utilizing the stiffness-damping characteristics of servomotors and the adjustable length of a cantilever structure, the substrate compliance of the device can be accurately controlled. The substrate was further connected to a force sensor and an acceleration sensor. With the cooperation of these sensors, the measured interaction force between the animal and the compliant substrate prevented the effects of inertial force coupling. The device was calibrated under preset conditions, and its force measurement accuracy was validated, with the error between the actual measured and theoretical values being no greater than 10%. Force curves were measured, and frictional adhesion coefficients were calculated from comparative experiments on the landing/takeoff of adherent animals (tree frogs and geckos) on this device. Analysis revealed that the adhesion force limits were significantly lower than previously reported values (0.2~0.4 times those estimated in previous research). This apparatus provides mechanical evidence for elucidating structural-functional relationships exhibited by animals during locomotion and can serve as an experimental platform for optimizing the locomotion of bioinspired robots on compliant substrates.
Collapse
Affiliation(s)
- Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute, Shenzhen 518063, China
| | - Yiping Feng
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Bingcheng Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Baowen Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yi Song
- College of Mechanical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xuan Wu
- Robotics Laboratory China Nanhu Academy of Electronics and Information Technology, Jiaxing 314000, China
| | - Lei Li
- Robotics Laboratory China Nanhu Academy of Electronics and Information Technology, Jiaxing 314000, China
| | - Weipeng Li
- Robotics Laboratory China Nanhu Academy of Electronics and Information Technology, Jiaxing 314000, China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
10
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
11
|
Graham M, Socha JJ. Dynamic gap crossing in Dendrelaphis, the sister taxon of flying snakes. J Exp Biol 2023; 226:jeb245094. [PMID: 37671466 DOI: 10.1242/jeb.245094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Arboreal animals commonly use dynamic gap-crossing behaviors such as jumping. In snakes, however, most species studied to date only employ the quasi-static cantilever crawl, which involves a whole-body reach. One exception is the paradise tree snake (Chrysopelea paradisi), which exhibits kinematic changes as gap distance increases, culminating in dynamic behaviors that are kinematically indistinguishable from those used to launch glides. Because Chrysopelea uses dynamic behaviors when bridging gaps without gliding, we hypothesized that such dynamic behaviors evolved ancestrally to Chrysopelea. To test this predicted occurrence of dynamic behaviors in closely related taxa, we studied gap bridging locomotion in the genus Dendrelaphis, which is the sister lineage of Chysopelea. We recorded 20 snakes from two species (D. punctulatus and D. calligastra) crossing gaps of increasing size, and analyzed their 3D kinematics. We found that, like C. paradisi, both species of Dendrelaphis modulate their use of dynamic behaviors in response to gap distance, but Dendrelaphis exhibit greater inter-individual variation. Although all three species displayed the use of looped movements, the highly stereotyped J-loop movement of Chrysopelea was not observed in Dendrelaphis. These results support the hypothesis that Chrysopelea may have co-opted and refined an ancestral behavior for crossing gaps for the novel function of launching a glide. Overall, these data demonstrate the importance of gap distance in governing behavior and kinematics during arboreal gap crossing.
Collapse
Affiliation(s)
- Mal Graham
- Wild Animal Initiative, Inc., Minneapolis, MN 55437, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Ortega-Jimenez VM, Jusufi A, Brown CE, Zeng Y, Kumar S, Siddall R, Kim B, Challita EJ, Pavlik Z, Priess M, Umhofer T, Koh JS, Socha JJ, Dudley R, Bhamla MS. Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots. BIOINSPIRATION & BIOMIMETICS 2023; 18:051001. [PMID: 37552773 DOI: 10.1088/1748-3190/acdb1c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/02/2023] [Indexed: 08/10/2023]
Abstract
Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.
Collapse
Affiliation(s)
- Victor M Ortega-Jimenez
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Ardian Jusufi
- Soft Kinetic Group, Engineering Sciences Department, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
- University of Zurich, Institutes for Neuroinformatics and Palaeontology, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Macquarie University, Sydney, NSW 2109, Australia
| | - Christian E Brown
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
| | - Yu Zeng
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Sunny Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Robert Siddall
- Aerial Robotics Lab, Imperial College of London, London, United Kingdom
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - Elio J Challita
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Zoe Pavlik
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Meredith Priess
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Thomas Umhofer
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Robert Dudley
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| |
Collapse
|
13
|
Boulinguez-Ambroise G, Dunham N, Phelps T, Mazonas T, Nguyen P, Bradley-Cronkwright M, Boyer DM, Yapuncich GS, Zeininger A, Schmitt D, Young JW. Jumping performance in tree squirrels: Insights into primate evolution. J Hum Evol 2023; 180:103386. [PMID: 37209637 DOI: 10.1016/j.jhevol.2023.103386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA.
| | - Noah Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, 44109, OH, USA; Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, 44106, OH, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Thomas Mazonas
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Peter Nguyen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | | | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Gabriel S Yapuncich
- Medical Education Administration, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, 27710, NC, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| |
Collapse
|
14
|
Rickman J, Burtner AE, Linden TJ, Santana SE, Law CJ. Size And Locomotor Ecology Have Differing Effects on the External and Internal Morphologies of Squirrel (Rodentia: Sciuridae) Limb Bones. Integr Org Biol 2023; 5:obad017. [PMID: 37361915 PMCID: PMC10286724 DOI: 10.1093/iob/obad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.
Collapse
Affiliation(s)
| | | | - T J Linden
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - S E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
15
|
Clifton G, Stark AY, Li C, Gravish N. The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric. J Exp Biol 2023; 226:307149. [PMID: 37083141 DOI: 10.1242/jeb.245261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Outside laboratory conditions and human-made structures, animals rarely encounter flat surfaces. Instead, natural substrates are uneven surfaces with height variation that ranges from the microscopic scale to the macroscopic scale. For walking animals (which we define as encompassing any form of legged movement across the ground, such as walking, running, galloping, etc.), such substrate 'roughness' influences locomotion in a multitude of ways across scales, from roughness that influences how each toe or foot contacts the ground, to larger obstacles that animals must move over or navigate around. Historically, the unpredictability and variability of natural environments has limited the ability to collect data on animal walking biomechanics. However, recent technical advances, such as more sensitive and portable cameras, biologgers, laboratory tools to fabricate rough terrain, as well as the ability to efficiently store and analyze large variable datasets, have expanded the opportunity to study how animals move under naturalistic conditions. As more researchers endeavor to assess walking over rough terrain, we lack a consistent approach to quantifying roughness and contextualizing these findings. This Review summarizes existing literature that examines non-human animals walking on rough terrain and presents a metric for characterizing the relative substrate roughness compared with animal size. This framework can be applied across terrain and body scales, facilitating direct comparisons of walking over rough surfaces in animals ranging in size from ants to elephants.
Collapse
Affiliation(s)
| | | | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
16
|
Aucone E, Kirchgeorg S, Valentini A, Pellissier L, Deiner K, Mintchev S. Drone-assisted collection of environmental DNA from tree branches for biodiversity monitoring. Sci Robot 2023; 8:eadd5762. [PMID: 36652506 DOI: 10.1126/scirobotics.add5762] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protection and restoration of the biosphere is crucial for human resilience and well-being, but the scarcity of data on the status and distribution of biodiversity puts these efforts at risk. DNA released into the environment by organisms, i.e., environmental DNA (eDNA), can be used to monitor biodiversity in a scalable manner if equipped with the appropriate tool. However, the collection of eDNA in terrestrial environments remains a challenge because of the many potential surfaces and sources that need to be surveyed and their limited accessibility. Here, we propose to survey biodiversity by sampling eDNA on the outer branches of tree canopies with an aerial robot. The drone combines a force-sensing cage with a haptic-based control strategy to establish and maintain contact with the upper surface of the branches. Surface eDNA is then collected using an adhesive surface integrated in the cage of the drone. We show that the drone can autonomously land on a variety of branches with stiffnesses between 1 and 103 newton/meter without prior knowledge of their structural stiffness and with robustness to linear and angular misalignments. Validation in the natural environment demonstrates that our method is successful in detecting animal species, including arthropods and vertebrates. Combining robotics with eDNA sampling from a variety of unreachable aboveground substrates can offer a solution for broad-scale monitoring of biodiversity.
Collapse
Affiliation(s)
- Emanuele Aucone
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Steffen Kirchgeorg
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland.,Ecosystems and Landscape Evolution Group, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Kristy Deiner
- Environmental DNA Group, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Stefano Mintchev
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
17
|
Parker PRL, Abe ETT, Beatie NT, Leonard ESP, Martins DM, Sharp SL, Wyrick DG, Mazzucato L, Niell CM. Distance estimation from monocular cues in an ethological visuomotor task. eLife 2022; 11:e74708. [PMID: 36125119 PMCID: PMC9489205 DOI: 10.7554/elife.74708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect gap jumping success, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice altered their head positioning and performed more vertical head movements, consistent with a shift from using stereopsis to other monocular cues, such as motion or position parallax. Finally, optogenetic suppression of primary visual cortex impaired task performance under both binocular and monocular conditions when optical fiber placement was localized to binocular or monocular zone V1, respectively. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.
Collapse
Affiliation(s)
- Philip RL Parker
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elliott TT Abe
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Natalie T Beatie
- Institute of Neuroscience, University of OregonEugeneUnited States
| | | | - Dylan M Martins
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Shelby L Sharp
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - David G Wyrick
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Luca Mazzucato
- Institute of Neuroscience, University of OregonEugeneUnited States
- Department of Mathematics, University of OregonEugeneUnited States
| | - Cristopher M Niell
- Institute of Neuroscience, University of OregonEugeneUnited States
- Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
18
|
Green L, Tingley D, Rinzel J, Buzsáki G. Action-driven remapping of hippocampal neuronal populations in jumping rats. Proc Natl Acad Sci U S A 2022; 119:e2122141119. [PMID: 35737843 PMCID: PMC9245695 DOI: 10.1073/pnas.2122141119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current dominant view of the hippocampus is that it is a navigation "device" guided by environmental inputs. Yet, a critical aspect of navigation is a sequence of planned, coordinated actions. We examined the role of action in the neuronal organization of the hippocampus by training rats to jump a gap on a linear track. Recording local field potentials and ensembles of single units in the hippocampus, we found that jumping produced a stereotypic behavior associated with consistent electrophysiological patterns, including phase reset of theta oscillations, predictable global firing-rate changes, and population vector shifts of hippocampal neurons. A subset of neurons ("jump cells") were systematically affected by the gap but only in one direction of travel. Novel place fields emerged and others were either boosted or attenuated by jumping, yet the theta spike phase versus animal position relationship remained unaltered. Thus, jumping involves an action plan for the animal to traverse the same route as without jumping, which is faithfully tracked by hippocampal neuronal activity.
Collapse
Affiliation(s)
- Laura Green
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
| | - David Tingley
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003
- Courant Institute for Mathematical Sciences, New York University, New York, NY 10012
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016
| |
Collapse
|
19
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
Affiliation(s)
- Nicole M Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
20
|
The socioeconomics of food hoarding in wild squirrels. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Rosenbaum DA, Sauerberger KS. Deciding What to Do: Observations From A Psycho-Motor Laboratory, Including The Discovery of Pre-Crastination. Behav Processes 2022; 199:104658. [DOI: 10.1016/j.beproc.2022.104658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
|
22
|
Gilmore RO. Show your work: Tools for open developmental science. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 62:37-59. [PMID: 35249685 DOI: 10.1016/bs.acdb.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since grade school, students of many subjects have learned to "show their work" in order to receive full credit for assignments. Many of the reasons for students to show their work extend to the conduct of scientific research. And yet multiple barriers make it challenging to share and show the products of scientific work beyond published findings. This chapter discusses some of these barriers and how web-based data repositories help overcome them. The focus is on Databrary.org, a data library specialized for storing and sharing video data with a restricted community of institutionally approved investigators. Databrary was designed by and for developmental researchers, and so its features and policies reflect many of the specific challenges faced by this community, especially those associated with sharing video and related identifiable data. The chapter argues that developmental science poses some of the most interesting, challenging, and important questions in all of science, and that by openly sharing much more of the products and processes of our work, developmental scientists can accelerate discovery while making our scholarship much more robust and reproducible.
Collapse
Affiliation(s)
- Rick O Gilmore
- Department of Psychology, The Pennsylvania State University, Databrary.org, University Park, PA, United States.
| |
Collapse
|
23
|
Pagnon D, Faity G, Maldonado G, Daout Y, Grosprêtre S. What Makes Parkour Unique? A Narrative Review Across Miscellaneous Academic Fields. Sports Med 2022; 52:1029-1042. [PMID: 35089536 DOI: 10.1007/s40279-022-01642-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 11/30/2022]
Abstract
Parkour is a growing sport that mostly involves jumping, vaulting over obstacles, and climbing in a non-dedicated setting. The authors gathered all known relevant literature across miscellaneous academic fields in order to define parkour with regard to other sports disciplines. Parkour is a lifestyle sport, and as such provides an alternative to mainstream sports, away from strict rules, standardized settings, and necessary competitions. Traceurs (parkour adepts) consider the city as a playground and as an outlet for their creativity, but they also have a strong taste for hard and individualized challenges. They usually train on non-specific structures, at ground level. Although their social background is not clear, they are mostly young and male. Traceurs are stronger than recreational athletes, especially in eccentric exercises. However, their endurance skills may be below average. One of the core specificities of parkour is its precision constraint at landing, which turns a standing long jump into a precision jump, regulated in flight so as to prepare for landing. The running precision jump follows the same landing pattern, and its flight phase contrasts with long jump techniques. Injuries, which are not more frequent than in other sports, often occur at landing and to lower limb extremities. This risk is mitigated by targeting the landing area with the forefoot instead of letting the heel hit the ground like in gymnastics, or with rolling in order to dissipate the impact. Overall, parkour focuses on adaptability to new environments, which leads to specific techniques that have not yet been extensively addressed by the literature.
Collapse
Affiliation(s)
- David Pagnon
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 700 Av. Centrale, 38400, Saint-Martin-d'Hères, France.
- PRESS (Pôle de Ressources et d'Expertise Sportive et Scientifique), Fédération de Parkour, Strasbourg, France.
| | - Germain Faity
- PRESS (Pôle de Ressources et d'Expertise Sportive et Scientifique), Fédération de Parkour, Strasbourg, France
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Galo Maldonado
- PRESS (Pôle de Ressources et d'Expertise Sportive et Scientifique), Fédération de Parkour, Strasbourg, France
- Arts Et Métiers ParisTech/Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - Yann Daout
- PRESS (Pôle de Ressources et d'Expertise Sportive et Scientifique), Fédération de Parkour, Strasbourg, France
- , Lausanne, Switzerland
| | - Sidney Grosprêtre
- PRESS (Pôle de Ressources et d'Expertise Sportive et Scientifique), Fédération de Parkour, Strasbourg, France
- EA4660, C3S Culture Sport Health Society, University of Franche-Comté, Besançon, France
| |
Collapse
|
24
|
Biewener AA, Bomphrey RJ, Daley MA, Ijspeert AJ. Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics. Proc Biol Sci 2022; 289:20212492. [PMID: 35042414 PMCID: PMC8767207 DOI: 10.1098/rspb.2021.2492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Andrew A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University
| | - Richard J Bomphrey
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Auke J Ijspeert
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Abstract
Leaping squirrels show that locomotion entails perceiving and innovating possibilities for action from moment to moment
Collapse
Affiliation(s)
- Karen E Adolph
- Department of Psychology, New York University, New York, NY, USA.
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|