1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Amjadi MA, Özdemir YC, Ramezani M, Jakab K, Megyes M, Bibak A, Salehi Z, Hayatmehar Z, Taheri MH, Moradi H, Zargari P, Hasanpour A, Jahani V, Sharifi AM, Egyed B, Mende BG, Tavallaie M, Szécsényi-Nagy A. Ancient DNA indicates 3,000 years of genetic continuity in the Northern Iranian Plateau, from the Copper Age to the Sassanid Empire. Sci Rep 2025; 15:16530. [PMID: 40360796 PMCID: PMC12075576 DOI: 10.1038/s41598-025-99743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, we present new ancient DNA data from prehistoric and historic populations of the Iranian Plateau. By analysing 50 samples from nine archaeological sites across Iran, we report 23 newly sequenced mitogenomes and 13 nuclear genomes, spanning 4700 BCE to 1300 CE. We integrate an extensive reference sample set of previously published ancient DNA datasets from Western and South-Central Asia, enhancing our understanding of genetic continuity and diversity within ancient Iranian populations. A new Early Chalcolithic sample, predating all other Chalcolithic genomes from Iran, demonstrates mostly Early Neolithic Iranian genetic ancestry. This finding reflects long-term cultural and biological continuity in and around the Zagros area, alongside evidence of some western genetic influence. Our sample selection prioritizes northern Iran, with a particular focus on the Achaemenid, Parthian, and Sassanid periods (355 BCE-460 CE). The genetic profiles of historical samples from this region position them as intermediates on an east-west genetic cline across the Persian Plateau. They also exhibit strong connections to local and South-Central Asian Bronze Age populations, underscoring enduring genetic connections across these regions. Diachronic analyses of uniparental lineages on the Iranian Plateau further highlight population stability from prehistoric to modern times.
Collapse
Affiliation(s)
- Motahareh Ala Amjadi
- Doctoral School of Biology, ELTE-Eötvös Loránd University, Budapest, Hungary.
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary.
| | - Yusuf Can Özdemir
- Doctoral School of Biology, ELTE-Eötvös Loránd University, Budapest, Hungary
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | | | - Kristóf Jakab
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Melinda Megyes
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Arezoo Bibak
- Department of Archaeology, University of Tehran, Tehran, Iran
| | | | - Zahra Hayatmehar
- Faculty of Management and Financial Science, Department of Management, Khatam University, Tehran, Iran
| | - Mohammad Hossein Taheri
- Laboratoire Archéorient, Université Lumière Lyon 2, Maison de l'Orient et de la Méditerranée, Lyon, France
| | - Hossein Moradi
- Iranian Centre for Archaeological Research (ICAR), Tehran, Iran
| | - Peyman Zargari
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Ata Hasanpour
- Research Institute for Cultural Heritage and Tourism, Lurestan, Iran
| | - Vali Jahani
- Research Institute for Cultural Heritage and Tourism, Gilan, Iran
| | | | - Balázs Egyed
- Department of Genetics, ELTE-Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | | | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary.
- MTA-BTK Lendület 'Momentum' Bioarchaeology Research Group, Budapest, Hungary.
| |
Collapse
|
3
|
Ediev DM. Demographics of genetic admixture and expansion. Biosystems 2025; 251:105455. [PMID: 40090457 DOI: 10.1016/j.biosystems.2025.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/08/2024] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
We explore the dynamics of genetic admixture and expansion, as well as language assimilation, through mathematical-demographic modeling. Our primary goal is to address the population-genetics 'paradox' wherein autosomes and allosomes present markedly different, if not contradictory, pictures of past migrations. We demonstrate that this paradox may find a purely demographic explanation, as single-sex and two-sex reproduction models exhibit markedly distinct dynamics. We illustrate that the three processes-allosomal expansion, autosomal admixture, and language assimilation-occur at significantly different modes, potentially explaining the varied outcomes of these processes upon the completion of ethnogenetic transitions. Our research offers valuable insights into the intricate interplay between demography, genetics, and social organization, providing implications for historical scenarios and enhancing our understanding of the long-term consequences of migration and social cohesion.
Collapse
Affiliation(s)
- Dalkhat M Ediev
- Population and Just Societies Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria; Mathematics Department, North-Caucasian State Academy, Karachay-Cherkessia, Stavroploskaya str. 35, Cherkessk, 369000, Russia; Demography Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia.
| |
Collapse
|
4
|
Li H, Wang B, Yang X, Yang X, He H, Wang R, Wang CC. Ancient genomes shed light on the genetic history of the Iron Age to historical central Xinjiang, northwest China. BMC Biol 2025; 23:93. [PMID: 40189540 PMCID: PMC11974207 DOI: 10.1186/s12915-025-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The genetic profile of the population in Xinjiang, northwest China, has been shaped by interregional movement and admixture since the Bronze Age. However, the detailed and intraregional population history of Xinjiang, especially central Xinjiang, has been unsolved due to uneven sample distribution. RESULTS Here, we reported the ancient genomes from 8 individuals between the Iron Age and the historical period in central Xinjiang. We observed an east-west admixed ancestry profile and a degree of genetic continuity between the Iron Age and historical central Xinjiang individuals. Furthermore, these central Xinjiang individuals harboured ancestry related to ancient farmers of the Yellow River. We also identified a temporal change of the Yellow River farmers-related ancestry in central Xinjiang, showing an increase the Yelllow River affinity from Iron Age to Historical Era. CONCLUSIONS The finding indicated that the genetic structure of the central Xinjiang population since the Iron Age could have resulted from immigration from northern China, which was attributed to geopolitical factors. Hence, our results indicated that the geopolitical change with the deepening of Central Plains' management has influenced the genetic profile of central Xinjiang.
Collapse
Affiliation(s)
- Haijun Li
- School of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China.
| | - Baitong Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China.
| | - Xiaoyu Yang
- School of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chuan-Chao Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Chen H, Xu S. Population genomics advances in frontier ethnic minorities in China. SCIENCE CHINA. LIFE SCIENCES 2025; 68:961-973. [PMID: 39643831 DOI: 10.1007/s11427-024-2659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024]
Abstract
China, with its large geographic span, possesses rich genetic diversity across vast frontier regions in addition to the Han Chinese majority. Importantly, demographic events and various natural and cultural environments in Chinese frontier regions have shaped the genomic diversity of ethnic minorities via local adaptations. Thus, insights into the genetic diversity and adaptive evolution of these under-represented ethnic groups are crucial for understanding evolutionary scenarios and biomedical implications in East Asian populations. Here, we focus on ethnic minorities in Chinese frontier regions and review research advances regarding genomic diversity, genetic structure, population history, genetic admixture, and local adaptation. We first provide an overview of the extensive genetic diversity across populations in different Chinese frontier regions. Next, we summarize research progress regarding genetic ancestry, demographic history, the adaptive process, and the archaic identification of multiple ethnic minorities in different Chinese frontier regions. Finally, we discuss the gaps and opportunities in genomic studies of Chinese populations and the need for a more comprehensive understanding of genomic diversity and the evolution of populations of East Asian ancestry in the post-genomic era.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
6
|
He G, Yao H, Duan S, Luo L, Sun Q, Tang R, Chen J, Wang Z, Sun Y, Li X, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Wang CC, Liu B, Hu L, Liu C, Wang M. Pilot work of the 10K Chinese People Genomic Diversity Project along the Silk Road suggests a complex east-west admixture landscape and biological adaptations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:914-933. [PMID: 39862346 DOI: 10.1007/s11427-024-2748-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Genomic sources from China are underrepresented in the population-specific reference database. We performed whole-genome sequencing or genome-wide genotyping on 1,207 individuals from four linguistically diverse groups (1,081 Sinitic, 56 Mongolic, 40 Turkic, and 30 Tibeto-Burman people) living in North China included in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) to characterize the genetic architecture and adaptative history of ethnic groups in the Silk Road Region of China. We observed a population split between Northwest Chinese minorities (NWCMs) and Han Chinese since the Upper Paleolithic and later Neolithic genetic differentiation within NWCMs. The observed population substructures among ethnically/linguistically diverse NWCMs suggested that differentiated admixture events contributed to the differences in their genomic and phenotypic diversity. We estimated that the Dongxiang, Tibetan, and Yugur people inherited more than 10% of the Western Eurasian ancestry, which is much greater than that of the Salar and Tu people (<7%), while Han neighbors showed less West Eurasian ancestry (∼1%-3%). Male-biased admixture introduced Western Eurasian ancestry in the Dongxiang, Tibetan, and Yugur populations. We found that the eastern-western admixture in NWCMs occurred ∼800-1,100 years ago, coinciding with intensive economic and cultural exchanges during the Tang and Song dynasties. Additionally, we identified the signatures of natural selection associated with cardiovascular system diseases or lipid metabolism and developmental/neurogenetic disorders. Moreover, the EPAS1 gene showed relatively high population branch statistic values in NWCMs. The well-fitted demographical models presented the vast landscape of complex admixture processes of the Silk Road people, and the newly reported functionally important variations suggested the importance of including ethnolinguistically diverse populations in Chinese genetic studies for uncovering the genetic basis of complex traits/diseases.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology, Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
- Institution of Genome Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
- Institution of Genome Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510220, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510220, China.
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
7
|
Nedoluzhko A, Vergasova E, Sharko F, Agapitova N, Kharitonov D, Sukhanova X, Pushkina O, Pankova S, Slobodova N, Boulygina E, Plotnikov N, Kim A, Uchaneva E, Pogodina N, Ilinskaya A, Rakitko A, Chugunov K, Ilinsky V. Ancient DNA analysis of elite nomadic warrior from Chinge-Tey I funerary commemorative complex in the "Valley of the Kings", Tuva. BMC Genomics 2025; 26:220. [PMID: 40045199 PMCID: PMC11884045 DOI: 10.1186/s12864-025-11361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND In the Ist millennium BC bearers of the Scythian-type nomadic cultures inhabited the steppes of Eurasia, from Northern China to the Carpathians. According to archaeological data, the origin of nomadic life style and economy can be traced to the eastern part of this steppe "corridor", primarily to the territory of the present-day Republic of Tuva in Russia. Here, in the Turan-Uyuk Basin, also known as the "Valley of the Kings", some of the earliest known Scythian-type archaeological sites called Arzhan-1, Arzhan-2, Chinge-Tey I, Tunnug 1 were studied. Each of them is a large-scale funerary commemorative complex with burials of tribal nomadic leaders, surrounded by graves of supposed members of their families or associates. All these people belonged to the societies which are associated with the earliest nomadic cultures in Asia. Representatives of similar cultures will later be known and described as the Scythians/the Saka in Assyrian, Achaemenid, and Greek sources. Arzhan 2 and Chinge-Tey I elite level sites as well as ordinary pastoralist burials of the early-Scythian period in Tuva are attributed to the Aldy-Bel archaeological culture of the Early Iron Age (8th- 6th century BC). Taking the first step to shed light on the genetic origin of Aldy-Bel elites, we carried out a comparative genome-wide analysis of an elite level person buried in grave 9 at Chinge-Tey I (7th- 6th centuries BC) and two published earlier genomes of individuals, whose burials (graves 14 and 22) accompanied the 'royal couple' (grave 5) at Arzhan-2. This study aims also at checking a hypothesis of genetic kinship between human individuals buried in the large-scale burial complexes of the "Valley of the Kings" and brings up the issue of possible dynastic connections of local elites, buried under different kurgans of the valley. RESULTS First, ancient DNA analysis of an elite nomadic warrior from Chinge-Tey I has been carried out, thus a third wide-genome dataset for Aldy-Bel culture- one of the earliest nomadic cultures in Asia, is presented in this study. Second, we undertook a comparative analysis of genome-wide data of three mentioned Aldy-Bel culture representatives and individuals of the other Bronze and Early Iron Age population groups of Asia to estimate their possible genetic connections. Then, kinship analysis was undertaken for these three Aldy-Bel culture individuals. Finally, mitochondrial and Y-chromosome haplogroups of Chinge-Tey princely person were compared to those of other Aldy-Bel culture representatives and to individuals of subsequent Scythian-type Uyuk-Sagly culture in Tuva. CONCLUSION (1) Generating the third wide-genome of the enabled us to undertake its comparison with two other genomes of Aldy-Bel culture representatives (Arzhan-2, graves 14 and 22) and with other Bronze and Early Iron Age population groups in Asia to trace the origin and genetic connection of Aldy-Bel population, representing one of the earliest Scythian-type nomadic group. (2) The results obtained show that the princely individual from Chinge-Tey I and two 'king's associates' from Arzhan-2 were genetically close to nomads of simultaneous Tasmola culture in Eastern and Central Kazakhstan and pastoralists buried in the Early Iron Age cemeteries of present-day Xinjiang (first of all, Abusanteer archaeological site). Aldy-Bel culture representatives appeared also close to individuals of the Middle Bronze Age Okunevo culture in the Minusinsk Basin. Besides, Aldy-Bel pastoralists turned out genetically close to nomads of the subsequent Uyuk-Sagly culture in Mongolia (5th - 3rd centuries BC). (3) Ancient DNA kinship analyses, undertaken for three Aldy-Bel culture individuals pointed out to the absence of their tribe kinship. (4) On the other hand, Chinge-Tey warrior's mitochondrial haplogroup G was previously described in two (graves 14 and 5) individuals from Arzhan-2, including a female individual from the "royal" tomb 5. This result provided a possibility of maternal kinship among this so called 'queen' from Arzhan-2 and the princely person from Chinge-Tey I. This possibility supported a hypothesis of their family ties suggested on archaeological materials. Y-chromosome haplogroup Q1b1, revealed for the princely person, was widely distributed among local people of Aldy-Bel and subsequent Uyuk-Sagly cultures.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- European University at St. Petersburg, 6/1A Gagarinskaya st, Saint-Petersburg, 191187, Russia.
| | | | - Fedor Sharko
- European University at St. Petersburg, 6/1A Gagarinskaya st, Saint-Petersburg, 191187, Russia
- ELGENE LLC, Malaya Kalitnikovskaya 16, Moscow, 109029, Russia
| | - Natalia Agapitova
- State Hermitage Museum, Dvortsovaya nab. 34, Saint-Petersburg, 190000, Russia
| | | | - Xenia Sukhanova
- Genotek Ltd, Nastavnicheskiy Lane 17-1, Moscow, 105120, Russia
| | - Olga Pushkina
- European University at St. Petersburg, 6/1A Gagarinskaya st, Saint-Petersburg, 191187, Russia
| | - Svetlana Pankova
- European University at St. Petersburg, 6/1A Gagarinskaya st, Saint-Petersburg, 191187, Russia
- State Hermitage Museum, Dvortsovaya nab. 34, Saint-Petersburg, 190000, Russia
| | - Natalia Slobodova
- HSE University, Profsoyuznaya st. 33, bld. 4, Moscow, 117418, Russia
| | | | | | - Anna Kim
- Genotek Ltd, Nastavnicheskiy Lane 17-1, Moscow, 105120, Russia
| | - Evgeniia Uchaneva
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, 3 University Emb., Saint-Petersburg, 199034, Russia
| | | | | | | | - Konstantin Chugunov
- State Hermitage Museum, Dvortsovaya nab. 34, Saint-Petersburg, 190000, Russia.
| | | |
Collapse
|
8
|
Gnecchi-Ruscone GA, Rácz Z, Liccardo S, Lee J, Huang Y, Traverso L, Radzevičiūtė R, Hajnal Z, Szécsényi-Nagy A, Gyuris B, Mateovics-László O, Bernert Z, Szeniczey T, Hajdu T, Mészáros B, Bálint M, Mende BG, Miller B, Samashev Z, Childebayeva A, Djansugurova L, Geary P, Ringbauer H, Vida T, Jeong C, Pohl W, Krause J, Hofmanová Z. Ancient genomes reveal trans-Eurasian connections between the European Huns and the Xiongnu Empire. Proc Natl Acad Sci U S A 2025; 122:e2418485122. [PMID: 39993190 PMCID: PMC11892651 DOI: 10.1073/pnas.2418485122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
The Huns appeared in Europe in the 370s, establishing an Empire that reshaped West Eurasian history. Yet until today their origins remain a matter of extensive debate. Traditional theories link them to the Xiongnu, the founders of the first nomadic empire of the Mongolian steppe. The Xiongnu empire dissolved, however, ~300 y before the Huns appeared in Europe, and there is little archaeological and historical evidence of Huns in the steppe during this time gap. Furthermore, despite the rich 5th to 6th centuries current era (CE) archaeological record of the Carpathian Basin, the cultural elements of connections with the steppe are limited to few findings and even fewer solitary eastern-type burials. In this study, we coanalyze archaeological evidence with 35 newly sequenced and published genomic data for a total of 370 individuals-from 5th to 6th century CE contexts in the Carpathian Basin including 10 Hun-period eastern-type burials, 2nd to 5th century sites across Central Asia and 2nd c. before current era (BCE) to 1st c. CE Xiongnu period sites across the Mongolian steppe. We find no evidence for the presence of a large eastern/steppe descent community among the Hun- and post-Hun-period Carpathian Basin population. We also observe a high genetic diversity among the eastern-type burials that recapitulates the variability observed across the Eurasian Steppe. This suggests a mixed origin of the incoming steppe conquerors. Nevertheless, long-shared genomic tracts provide compelling evidence of genetic lineages directly connecting some individuals of the highest Xiongnu-period elite with 5th to 6th century CE Carpathian Basin individuals, showing that some European Huns descended from them.
Collapse
Affiliation(s)
- Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno60200, Czechia
| | - Zsófia Rácz
- Institute of Archaeological Sciences, Eötvös Loránd University, Budapest1088, Hungary
| | - Salvatore Liccardo
- Institute of Austrian Historical Research, Faculty of Historical and Cultural Studies, University of Vienna, Wien1010, Austria
- Institute for Medieval Research, Division of Historical Identity Research, Austrian Academy of Sciences, Wien1010, Austria
| | - Juhyeon Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
- Institute for Data Innovation in Science, Biodata Science Center, Seoul National University, Seoul08826, Republic of Korea
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Zsuzsanna Hajnal
- Archaeological Department, Hungarian National Museum, Budapest1088, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Hungarian Research Network, UN-REN Research Centre for the Humanities, Budapest1097, Hungary
- Lendület “Momentum” Bioarchaeology Research Group, Budapest1097, Hungary
| | - Balázs Gyuris
- Institute of Archaeogenomics, Hungarian Research Network, UN-REN Research Centre for the Humanities, Budapest1097, Hungary
- Institute of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest1117, Hungary
| | | | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, Budapest1083, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, Budapest1117, Hungary
| | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest1117, Hungary
| | - Boglárka Mészáros
- Department of Prehistory and Migration Period, Budapest History Museum, Aquincum and Archaeological Park, Budapest1031, Hungary
| | | | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Hungarian Research Network, UN-REN Research Centre for the Humanities, Budapest1097, Hungary
| | - Bryan Miller
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI48109
- History of Art, University of Michigan, Ann Arbor, MI48109
| | - Zainolla Samashev
- State Historical and Cultural Museum-Reserve “Berel”, Zhambyl070906, Kazakhstan
- Branch of Institute of Archaeology by A.Kh. Margulan, Nur-Sultan010011, Kazakhstan
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Anthropology, University of Texas at Austin, Austin, TX78712
| | - Leyla Djansugurova
- Center of Paleogenetics and Ethnogenomics, Institute of Genetics and Physiology, Almaty050060, Kazakhstan
| | | | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Tivadar Vida
- Institute of Archaeological Sciences, Eötvös Loránd University, Budapest1088, Hungary
- Department of Historical Archaeology, Institute of Archaeology, Hungarian Research Network Research Centre for the Humanities, Budapest1097, Hungary
| | - Choongwon Jeong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
- Institute for Data Innovation in Science, Biodata Science Center, Seoul National University, Seoul08826, Republic of Korea
| | - Walter Pohl
- Institute of Austrian Historical Research, Faculty of Historical and Cultural Studies, University of Vienna, Wien1010, Austria
- Institute for Medieval Research, Division of Historical Identity Research, Austrian Academy of Sciences, Wien1010, Austria
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno60200, Czechia
| |
Collapse
|
9
|
Lazaridis I, Patterson N, Anthony D, Vyazov L, Fournier R, Ringbauer H, Olalde I, Khokhlov AA, Kitov EP, Shishlina NI, Ailincăi SC, Agapov DS, Agapov SA, Batieva E, Bauyrzhan B, Bereczki Z, Buzhilova A, Changmai P, Chizhevsky AA, Ciobanu I, Constantinescu M, Csányi M, Dani J, Dashkovskiy PK, Évinger S, Faifert A, Flegontov P, Frînculeasa A, Frînculeasa MN, Hajdu T, Higham T, Jarosz P, Jelínek P, Khartanovich VI, Kirginekov EN, Kiss V, Kitova A, Kiyashko AV, Koledin J, Korolev A, Kosintsev P, Kulcsár G, Kuznetsov P, Magomedov R, Mamedov AM, Melis E, Moiseyev V, Molnár E, Monge J, Negrea O, Nikolaeva NA, Novak M, Ochir-Goryaeva M, Pálfi G, Popovici S, Rykun MP, Savenkova TM, Semibratov VP, Seregin NN, Šefčáková A, Mussayeva RS, Shingiray I, Shirokov VN, Simalcsik A, Sirak K, Solodovnikov KN, Tárnoki J, Tishkin AA, Trifonov V, Vasilyev S, Akbari A, Brielle ES, Callan K, Candilio F, Cheronet O, Curtis E, Flegontova O, Iliev L, Kearns A, Keating D, Lawson AM, Mah M, Micco A, Michel M, Oppenheimer J, Qiu L, Workman JN, Zalzala F, Szécsényi-Nagy A, Palamara PF, Mallick S, Rohland N, Pinhasi R, Reich D. The genetic origin of the Indo-Europeans. Nature 2025; 639:132-142. [PMID: 39910300 PMCID: PMC11922553 DOI: 10.1038/s41586-024-08531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025]
Abstract
The Yamnaya archaeological complex appeared around 3300 BC across the steppes north of the Black and Caspian Seas, and by 3000 BC it reached its maximal extent, ranging from Hungary in the west to Kazakhstan in the east. To localize Yamnaya origins among the preceding Eneolithic people, we assembled ancient DNA from 435 individuals, demonstrating three genetic clines. A Caucasus-lower Volga (CLV) cline suffused with Caucasus hunter-gatherer1 ancestry extended between a Caucasus Neolithic southern end and a northern end at Berezhnovka along the lower Volga river. Bidirectional gene flow created intermediate populations, such as the north Caucasus Maikop people, and those at Remontnoye on the steppe. The Volga cline was formed as CLV people mixed with upriver populations of Eastern hunter-gatherer2 ancestry, creating hypervariable groups, including one at Khvalynsk. The Dnipro cline was formed when CLV people moved west, mixing with people with Ukraine Neolithic hunter-gatherer ancestry3 along the Dnipro and Don rivers to establish Serednii Stih groups, from whom Yamnaya ancestors formed around 4000 BC and grew rapidly after 3750-3350 BC. The CLV people contributed around four-fifths of the ancestry of the Yamnaya and, entering Anatolia, probably from the east, at least one-tenth of the ancestry of Bronze Age central Anatolians, who spoke Hittite4,5. We therefore propose that the final unity of the speakers of 'proto-Indo-Anatolian', the language ancestral to both Anatolian and Indo-European people, occurred in CLV people some time between 4400 BC and 4000 BC.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - David Anthony
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Hartwick College, Department of Anthropology, Oneonta, NY, USA.
| | - Leonid Vyazov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| | | | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, Bilbao, Spain
| | | | - Egor P Kitov
- Center of Human Ecology, Institute of Ethnology and Anthropology, Russian Academy of Science, Moscow, Russia
| | | | | | - Danila S Agapov
- Historical Ecological and Cultural Association Povolzje, Samara Regional Public Organization, Samara, Russia
| | - Sergey A Agapov
- Historical Ecological and Cultural Association Povolzje, Samara Regional Public Organization, Samara, Russia
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov, Russia
| | | | - Zsolt Bereczki
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | | | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andrey A Chizhevsky
- Institute of Archeology named after A. Kh. Khalikov Tatarstan Academy of Sciences, Kazan, Russia
| | - Ion Ciobanu
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
| | - Mihai Constantinescu
- Fr. I Rainer Institute of Anthropology, University of Bucharest, Bucharest, Romania
| | | | - János Dani
- Department of Archaeology, University of Szeged, Szeged, Hungary
- Déri Museum, Debrecen, Hungary
| | - Peter K Dashkovskiy
- Department of Regional Studies of Russia, National and State-Confessional Relations, Altai State University, Barnaul, Russia
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum-Hungarian National Museum Public Collection Centre, Budapest, Hungary
| | - Anatoly Faifert
- Research Institute GAUK RO "Don Heritage", Rostov-on-Don, Russia
| | - Pavel Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Alin Frînculeasa
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Mădălina N Frînculeasa
- Department of Geography, Faculty of Humanities, University Valahia of Târgoviște, Târgovişte, Romania
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Paweł Jarosz
- Department of Mountain and Highland Archaeology, Institute of Archaeology and Ethnology, Polish Academy of Science, Kraków, Poland
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Valeri I Khartanovich
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Eduard N Kirginekov
- State Autonomous Cultural Institution of the Republic of Khakassia "Khakassian National Museum of Local Lore named after L.R. Kyzlasova", Abakan, Russia
| | - Viktória Kiss
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Alexandera Kitova
- Centre for Egyptological Studies of the Russian Academy of Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Alexeiy V Kiyashko
- Department of Archaeology and History of the Ancient World, Southern Federal University, Rostov-on-Don, Russia
| | | | - Arkady Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel Kosintsev
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gabriella Kulcsár
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pavel Kuznetsov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rabadan Magomedov
- Institute of History, Archaeology and Ethnography, Dagestan Branch of the Russian Academy of Science, Makhachkala, Dagestan, Russia
| | - Aslan M Mamedov
- Institute of Archaeology named after A.Kh Margulan, Almaty, Kazakhstan
| | - Eszter Melis
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Erika Molnár
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Janet Monge
- Independent researcher, Philadelphia, PA, USA
| | - Octav Negrea
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Nadezhda A Nikolaeva
- Department of General History, Historical and Literary Institute of the State University of Education, Ministry of Education Moscow, Moscow, Russia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | | | - György Pálfi
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, Chișinău, Republic of Moldova
| | | | - Tatyana M Savenkova
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Vladimir P Semibratov
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Nikolai N Seregin
- Laboratory of Ancient and Medieval Archaeology of Eurasia, Altai State University, Barnaul, Russia
| | - Alena Šefčáková
- Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | | | | | - Vladimir N Shirokov
- Center for Stone Age Archeology, Institute of History and Archaeology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Angela Simalcsik
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
- Olga Necrasov Centre for Anthropological Research, Romanian Academy, Iași Branch, Iași, Romania
| | - Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Konstantin N Solodovnikov
- Tyumen Scientific Center of the Siberian Branch of Russian Academy of Sciences, Institute of Problems of Northern Development, Tyumen, Russia
| | | | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Viktor Trifonov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russia
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | - Ali Akbari
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Esther S Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Denise Keating
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Ma H, Zhou Y, Wang R, Yan F, Chen H, Qiu L, Zhao J, Jin L, Wang CC. Ancient genomes shed light on the long-term genetic stability in the Central Plain of China. Sci Bull (Beijing) 2025; 70:333-337. [PMID: 39164145 DOI: 10.1016/j.scib.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yawei Zhou
- School of Archaeology and Cultural Heritage, Zhengzhou University, Zhengzhou 450001, China.
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Fei Yan
- Institute of Cultural Relics and Archaeology of Sanmenxia, Sanmenxia 472001, China
| | - Haodong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Limin Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Wang R, Liu W, Wu Y, Ma H, Lv J, He H, Qiu L, Chen H, Zhao Y, Sun B, Wang CC. East and West admixture in eastern China of Tang Dynasty inferred from ancient human genomes. Commun Biol 2025; 8:219. [PMID: 39934375 PMCID: PMC11814302 DOI: 10.1038/s42003-025-07665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The ancestry composition and Sinicisation process of the descendants of the immigrants of Hu people living in ancient China are largely unknown due to the lack of genetic evidence. Tang Dynasty people in Fudamen cemetery () excavated from Shandong province in eastern China are believed to be related to the descendants of Hu people, as some of the individuals with the surnames An (). The genetic origin of the Fudamen population requires genetic clarification using ancient DNA data. Here we successfully obtain genome-wide SNP data for 17 Tang dynasty individuals from Fudamen cemetery. Based on autosomal data, although all Fudamen individuals show high levels of middle reaches of Yellow River-related ancestry as previously published historical period Shandong populations, 2 Fudamen individuals require ~5% Western Eurasian/Central Asian-related ancestry to describe their ancestry composition best. To the best of our knowledge, it is the first evidence of such ancestry in Shandong, the eastern part of today's China. Moreover, the admixture pattern is also reflected by the presence of both west and east Eurasian-specific mtDNA and Y chromosomal haplogroups in Fudamen people. The estimated admixture time is also consistent with periods when Sogdians and other non-Han populations were active in ancient China. These genomic findings suggest that intermarriage with Han Chinese involved the Sinicization process of the Hu people.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Wentao Liu
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, 250012, China
| | - Yiting Wu
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China
- Ministry of Education Key Laboratory of Archaeological Sciences and Technology, Shandong University, Qingdao, 266237, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing Lv
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China
- Ministry of Education Key Laboratory of Archaeological Sciences and Technology, Shandong University, Qingdao, 266237, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Limin Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Haodong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yongsheng Zhao
- Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
- Ministry of Education Key Laboratory of Archaeological Sciences and Technology, Shandong University, Qingdao, 266237, China.
| | - Bo Sun
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, 250012, China.
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Piffer D. Directional Selection and Evolution of Polygenic Traits in Eastern Eurasia: Insights from Ancient DNA. Twin Res Hum Genet 2025:1-20. [PMID: 39881595 DOI: 10.1017/thg.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245 ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits such as IQ, EA and autism spectrum disorder (ASD), alongside negative selection for anxiety and depression. The results for height were mixed and showed nonlinear relationships with Years Before Present (BP). These trends were partially mediated by genetic components linked to distinct ancestral populations. Regression models incorporating admixture, geography, and temporal variables were used to account for biases in population composition over time. Latitude showed a positive effect on ASD PGS, EA and height, while it had a negative effect on skin pigmentation scores. Additionally, latitude exhibited significant nonlinear effects on multiple phenotypes. The observed patterns highlight the influence of climate-mediated selection pressures on trait evolution. Spline regression revealed that several polygenic scores had nonlinear relationships with years BP. The findings provide evidence for complex evolutionary dynamics, with distinct selective pressures shaping phenotypic diversity across different timescales and environments.
Collapse
|
13
|
Wang M, Duan S, Sun Q, Liu K, Liu Y, Wang Z, Li X, Wei L, Liu Y, Nie S, Zhou K, Ma Y, Yuan H, Liu B, Hu L, Liu C, He G. YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database. BMC Biol 2025; 23:18. [PMID: 39838386 PMCID: PMC11752814 DOI: 10.1186/s12915-025-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications. OBJECTIVES This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort. This panel is intended to provide a new tool for forensic complex pedigree search and paternal biogeographical ancestry inference, as well as explore the general patterns of the fine-scale paternal evolutionary history of ethnolinguistically diverse Chinese populations. RESULTS The sequencing performance of the East Asian-specific Y-chromosomal panel, including 2999-core SNP variants, was found to be robust and reliable. The YHSeqY3000 panel was designed to capture the genetic diversity of Chinese paternal lineages from 3500 years ago, identifying 408 terminal lineages in 2097 individuals across 41 genetically and geographically distinct populations. We identified a fine-scale paternal substructure that was correlating with ancient population migrations and expansions. New evidence was provided for extensive gene flow events between minority ethnic groups and Han Chinese people, based on the integrative Chinese Paternal Genomic Diversity Database. CONCLUSIONS This work successfully integrated Y-chromosome-related basic genomic science with forensic and anthropological translational applications, emphasizing the necessity of comprehensively characterizing Y-chromosome genomic diversity from genomically under-representative populations. This is particularly important in the second phase of our population-specific medical or anthropological genomic cohorts, where dense sampling strategies are employed.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang, 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yan Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Yunhui Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
14
|
Mai LS, Zhang XP, Liu KJ, Ma PC, Li H, Sun J, Wei LH. Traces of Bronze Age globalization in East Asia: Insights from a revised phylogeography of the Y-chromosome haplogroup Q1a1a-M120. Ann Hum Genet 2025; 89:12-23. [PMID: 39319412 DOI: 10.1111/ahg.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE In this study, we aim to explore the genetic imprint of Bronze Age globalization in East Asia from a phylogeographic perspective by examining the Y-chromosome haplogroup Q1a1a-M120, and to identify key demographic processes involved in the formation of early China and the ancient Huaxia people. METHODS Over the past few decades, we have collected the sequences of 347 Y chromosomes from the haplogroup Q1a1a-M120. These sequences were utilized to analyze and reconstruct a highly revised phylogenetic tree with age estimates. And we analyzed the geographical distribution and spatial autocorrelation of nine major sub-branches of Q1a1a-M120. Finally, we observed the expansion of Q1a1a-M120 from the beginning of the Bronze Age in East Asia, along with the continuous dissemination of its sub-lineages among East Asian populations. RESULTS We suggest that certain sub-lineages played a significant role in the formation of states and early civilizations in China, as well as in the development of the ancient Huaxia people, who are the direct ancestors of the Han population. Overall, we propose that haplogroup Q-M120 played a role in the introduction of Bronze Age culture to the central region of East Asia. Therefore, it is haplogroup Q-M120, rather than the Western Eurasian paternal lineage, that expanded and contributed to the gene pool of the East Asian population. CONCLUSION In summary, the globalization of the Bronze Age led to large-scale population replacement and admixture across various regions of Eurasia; our findings highlight the unique demographic processes that occurred in East Asia during this period.
Collapse
Affiliation(s)
- La-Su Mai
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Xian-Peng Zhang
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Kai-Jun Liu
- School of International Tourism and culture, Guizhou Normal University, Guiyang, China
| | - Peng-Cheng Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Jin Sun
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Lan-Hai Wei
- Institute of Anthropology and Human Sciences, School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Zhabagin M, Tashkarayeva A, Bukayev A, Zhunussova A, Ponomarev G, Tayshanova S, Maxutova A, Adamov D, Balanovska E, Sabitov Z. Genetic Polymorphism of Y-Chromosome in Turkmen Population from Turkmenistan. Genes (Basel) 2024; 15:1501. [PMID: 39766769 PMCID: PMC11675605 DOI: 10.3390/genes15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the Y-chromosome genetic diversity of the Turkmen population in Turkmenistan, analyzing 23 Y-STR loci for the first time in a sample of 100 individuals. Combined with comparative data from Turkmen populations in Afghanistan, Iran, Iraq, Russia, and Uzbekistan, this analysis offers insights into the genetic structure and relationships among Turkmen populations across regions across Central Asia and the Near East. High haplotype diversity in the Turkmen of Turkmenistan is shaped by founder effects (lineage expansions) from distinct haplogroups, with haplogroups Q and R1a predominating. Subhaplogroups Q1a and Q1b identified in Turkmenistan trace back to ancient Y-chromosome lineages from the Bronze Age. Comparative analyses, including genetic distance (RST), median-joining network, and multidimensional scaling (MDS), highlight the genetic proximity of the Turkmen in Turkmenistan to those in Afghanistan and Iran, while Iraqi Turkmen display unique characteristics, aligning with Near Eastern populations. This study underscores the Central Asian genetic affinity across most Turkmen populations. It demonstrates the value of deep-sequencing Y-chromosome data in tracing the patrilineal history of Central Asia for future studies. These findings contribute to a more comprehensive understanding of Turkmen genetic ancestry and add new data to the ongoing study of Central Asian population genetics.
Collapse
Affiliation(s)
- Maxat Zhabagin
- National Center for Biotechnology, Astana 010000, Kazakhstan
- DNK Shejire LLP, Astana 010000, Kazakhstan
| | | | - Alizhan Bukayev
- National Center for Biotechnology, Astana 010000, Kazakhstan
| | | | | | | | - Albina Maxutova
- Kh. Dosmukhamedov Atyrau University, Atyrau 060000, Kazakhstan
| | - Dmitry Adamov
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Zhaxylyk Sabitov
- Kh. Dosmukhamedov Atyrau University, Atyrau 060000, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| |
Collapse
|
16
|
Lv M, Ma H, Wang R, Li H, Zhang X, Zhang W, Zeng Y, Qin Z, Zhai H, Lou Y, Lin Y, Tao L, He H, Yang X, Zhu K, Zhou Y, Wang CC. Ancient genomes from the Tang Dynasty capital reveal the genetic legacy of trans-Eurasian communication at the eastern end of Silk Road. BMC Biol 2024; 22:267. [PMID: 39567925 PMCID: PMC11577736 DOI: 10.1186/s12915-024-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Ancient Chang'an in the Tang Dynasty (618-907 AD) was one of the world's largest and most populated cities and acted as the eastern end of the world-famous Silk Road. However, little is known about the genetics of Chang'an people and whether the Western Regions-related gene flows have been prevalent in this cosmopolitan city. RESULTS Here, we present seven genomes from Xingfulindai (XFLD) sites dating to the Tang Dynasty in Chang'an. We observed that four of seven XFLD individuals (XFLD_1) were genetically homogenous with the Late Neolithic Wadian, Pingliangtai, and Haojiatai populations from the middle reaches of the Yellow River Basin (YR_LN), with no genetic influence from the Western Eurasian or other non-Yellow River-related lineages. The remaining three XFLD individuals were a mixture of YR_LN-related ancestry and ~ 3-15% Western Eurasian-related ancestry. Mixtures of XFLD_1 and Western Eurasian-related ancestry drove the main gradient of genetic variation in northern and central Shaanxi Province today. CONCLUSIONS Our study underlined the widespread distribution of the YR_LN-related ancestry alongside the Silk Road within the territory of China during the historical era and provided direct evidence of trans-Eurasian communication in Chang'an from a genetic perspective.
Collapse
Affiliation(s)
- Minglei Lv
- School of Archaeology and Cultural Heritage, Zhengzhou University, Zhengzhou , Henan, 450001, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Hui Li
- School of Archaeology and Cultural Heritage, Zhengzhou University, Zhengzhou , Henan, 450001, China
| | - Xiangyu Zhang
- Institute of Antiquities and Archaeology, Xi'an 710064, Shaanxi, China
| | - Wenbo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuding Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Ziwei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hongbo Zhai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yiqiang Lou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yukai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yawei Zhou
- School of Archaeology and Cultural Heritage, Zhengzhou University, Zhengzhou , Henan, 450001, China.
| | - Chuan-Chao Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Liu Y, Miao B, Li W, Hu X, Bai F, Abuduresule Y, Liu Y, Zheng Z, Wang W, Chen Z, Zhu S, Feng X, Cao P, Ping W, Yang R, Dai Q, Liu F, Tian C, Yang Y, Fu Q. Bronze Age cheese reveals human-Lactobacillus interactions over evolutionary history. Cell 2024; 187:5891-5900.e8. [PMID: 39326418 DOI: 10.1016/j.cell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (∼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi 830000, China
| | - Xingjun Hu
- Research Center for Governance of China's Northwest Frontier in the Historical Periods, School of History, Xinjiang University, Ürümqi 830046, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zequan Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yimin Yang
- Department of Archaeology and Anthropology, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Gyuris B, Vyazov L, Türk A, Flegontov P, Szeifert B, Langó P, Mende BG, Csáky V, Chizhevskiy AA, Gazimzyanov IR, Khokhlov AA, Kolonskikh AG, Matveeva NP, Ruslanova RR, Rykun MP, Sitdikov A, Volkova EV, Botalov SG, Bugrov DG, Grudochko IV, Komar O, Krasnoperov AA, Poshekhonova OE, Chikunova I, Sungatov F, Stashenkov DA, Zubov S, Zelenkov AS, Ringbauer H, Cheronet O, Pinhasi R, Akbari A, Rohland N, Mallick S, Reich D, Szécsényi-Nagy A. Long shared haplotypes identify the Southern Urals as a primary source for the 10th century Hungarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.599526. [PMID: 39091721 PMCID: PMC11291037 DOI: 10.1101/2024.07.21.599526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe. However, genome-wide ancient DNA from putative source populations has not been available to test alternative theories of their precise source. We generated genome-wide ancient DNA data for 131 individuals from candidate archaeological contexts in the Circum-Uralic region in present-day Russia. Our results tightly link the Magyars to people of the Early Medieval Karayakupovo archaeological horizon on both the European and Asian sides of the southern Urals. Our analyes show that ancestors of the people of the Karayakupovo archaeological horizon were established in the Southern Urals by the Iron Age and that their descendants persisted locally in the Volga-Kama region until at least the 14th century.
Collapse
Affiliation(s)
- Balázs Gyuris
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University; Budapest, Hungary
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Attila Türk
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
- Hungarian Prehistory Research group, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Péter Langó
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Hungarian Research Network (HUN-REN); Budapest, Hungary
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Andrey A Chizhevskiy
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | | | | | - Aleksandr G Kolonskikh
- R.G. Kuzeev Institute of Ethnological Studies, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | | | - Rida R Ruslanova
- National Museum of the Republic of Bashkortostan; Ufa, Republic of Bashkortostan, Russia
| | | | - Ayrat Sitdikov
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
- Department of Archaeology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - Elizaveta V Volkova
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | - Sergei G Botalov
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Dmitriy G Bugrov
- National Museum of Tatarstan Republic; Kazan, Republic of Tatarstan, Russia
| | - Ivan V Grudochko
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Oleksii Komar
- Institute of Archaeology, National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Alexander A Krasnoperov
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences; Izhevsk, Udmurt Republic, Russia
| | - Olga E Poshekhonova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Irina Chikunova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Flarit Sungatov
- Institute of History, Language and Literature, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | - Dmitrii A Stashenkov
- Samara Regional Museum of History and Local Lore named after P. V. Alabin; Samara, Russia
| | - Sergei Zubov
- Research Laboratory of Archeology, Samara National Research University; Samara, Russia
| | | | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology; Leipzig, Germany
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ali Akbari
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| |
Collapse
|
19
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
20
|
Wang M, Huang Y, Liu K, Wang Z, Zhang M, Yuan H, Duan S, Wei L, Yao H, Sun Q, Zhong J, Tang R, Chen J, Sun Y, Li X, Su H, Yang Q, Hu L, Yun L, Yang J, Nie S, Cai Y, Yan J, Zhou K, Wang C, Zhu B, Liu C, He G. Multiple Human Population Movements and Cultural Dispersal Events Shaped the Landscape of Chinese Paternal Heritage. Mol Biol Evol 2024; 41:msae122. [PMID: 38885310 PMCID: PMC11232699 DOI: 10.1093/molbev/msae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate the Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations that have shaped the Chinese paternal landscape. First, the expansion of early East Asians and millet farmers from the Yellow River Basin predominantly carrying O2/D subclades significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Second, the dispersal of rice farmers from the Yangtze River Valley carrying O1 and certain O2 sublineages reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Third, the Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourth, the J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot 010022, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan Cai
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Chuanchao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| |
Collapse
|
21
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
23
|
Lazaridis I, Patterson N, Anthony D, Vyazov L, Fournier R, Ringbauer H, Olalde I, Khokhlov AA, Kitov EP, Shishlina NI, Ailincăi SC, Agapov DS, Agapov SA, Batieva E, Bauyrzhan B, Bereczki Z, Buzhilova A, Changmai P, Chizhevsky AA, Ciobanu I, Constantinescu M, Csányi M, Dani J, Dashkovskiy PK, Évinger S, Faifert A, Flegontov PN, Frînculeasa A, Frînculeasa MN, Hajdu T, Higham T, Jarosz P, Jelínek P, Khartanovich VI, Kirginekov EN, Kiss V, Kitova A, Kiyashko AV, Koledin J, Korolev A, Kosintsev P, Kulcsár G, Kuznetsov P, Magomedov R, Malikovich MA, Melis E, Moiseyev V, Molnár E, Monge J, Negrea O, Nikolaeva NA, Novak M, Ochir-Goryaeva M, Pálfi G, Popovici S, Rykun MP, Savenkova TM, Semibratov VP, Seregin NN, Šefčáková A, Serikovna MR, Shingiray I, Shirokov VN, Simalcsik A, Sirak K, Solodovnikov KN, Tárnoki J, Tishkin AA, Trifonov V, Vasilyev S, Akbari A, Brielle ES, Callan K, Candilio F, Cheronet O, Curtis E, Flegontova O, Iliev L, Kearns A, Keating D, Lawson AM, Mah M, Micco A, Michel M, Oppenheimer J, Qiu L, Noah Workman J, Zalzala F, Szécsényi-Nagy A, Palamara PF, Mallick S, Rohland N, Pinhasi R, Reich D. The Genetic Origin of the Indo-Europeans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589597. [PMID: 38659893 PMCID: PMC11042377 DOI: 10.1101/2024.04.17.589597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David Anthony
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Hartwick College, Dept. of Anthropology, USA
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU,Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, Bilbao, Spain
| | | | - Egor P. Kitov
- Center of Human Ecology, Institute of Ethnology and Anthropology, Russian Academy of Science, Moscow, Russia
| | | | | | - Danila S. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Sergey A. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov, Russia
| | | | - Zsolt Bereczki
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | | | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andrey A. Chizhevsky
- Institute of Archeology named after A. Kh. Khalikov Tatarstan Academy of Sciences, Kazan, Russia
| | - Ion Ciobanu
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
| | - Mihai Constantinescu
- Fr. I Rainer Institute of Anthropology, University of Bucharest, Bucharest, Romania
| | | | - János Dani
- Department of Archaeology, University of Szeged, Szeged, Hungary
- Déri Museum, 4026 Debrecen, Hungary
| | - Peter K. Dashkovskiy
- Department of Regional Studies of Russia, National and State-Confessional Relations, Altai State University, Barnaul, Russia
| | - Sándor Évinger
- Hungarian Natural History Museum, Department of Anthropology, Budapest, Hungary
| | - Anatoly Faifert
- Research Institute GAUK RO “Don Heritage”, Rostov-on-Don, Russia
| | - Pavel N. Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Alin Frînculeasa
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Mădălina N. Frînculeasa
- Department of Geography, Faculty of Humanities, University Valahia of Târgoviște, Târgovişte, Romania
| | - Tamás Hajdu
- Eötvös Loránd University (Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Paweł Jarosz
- Department of Mountain and Highland Archaeology, Institute Archaeology and Ethnology Polish Academy of Science, Kraków, Poland
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Valeri I. Khartanovich
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Eduard N. Kirginekov
- State Autonomous Cultural Institution of the Republic of Khakassia “Khakassian National Museum of Local Lore named after L.R. Kyzlasova”, Republic of Khakassia, Abakan, Russia
| | - Viktória Kiss
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Alexandera Kitova
- Centre for Egyptological Studies of the Russian Academy of Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Alexeiy V. Kiyashko
- Department of Archaeology and History of the Ancient World of the Southern Federal University, Rostov-on-Don, Russia
| | | | - Arkady Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel Kosintsev
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gabriella Kulcsár
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pavel Kuznetsov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rabadan Magomedov
- Institute of History, Archaeology and Ethnography, Dagestan branch of the Russian Academy of Science, Makhachkala. Dagestan, Russia
| | | | - Eszter Melis
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Erika Molnár
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Janet Monge
- Independent Researcher, 106 Federal Street, Philadelphia PA, USA
| | - Octav Negrea
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Nadezhda A. Nikolaeva
- Department of General History, Historical and Literary Institute of the State University of Education, Ministry of Education Moscow, Moscow, Russia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Maria Ochir-Goryaeva
- Kalmyk Scientific Centre of the Russian Academy of Sciences, Elista, Republic of Kalmykia, Russia
| | - György Pálfi
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, Chișinău, Republic of Moldova
| | | | | | - Vladimir P. Semibratov
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Nikolai N. Seregin
- Laboratory of Ancient and Medieval Archaeology of Eurasia, Altai State University, Barnaul, Russia
| | - Alena Šefčáková
- Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | | | - Irina Shingiray
- University of Oxford, Faculty of History, Oxford, United Kingdom
| | - Vladimir N. Shirokov
- Center for Stone Age Archeology, Institute of History and Archaeology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Angela Simalcsik
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
- Olga Necrasov Centre for Anthropological Research, Romanian Academy, Iași Branch, Iași, Romania
| | - Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Konstantin N. Solodovnikov
- Tyumen Scientific Center of the Siberian Branch of Russian Academy of Sciences, Institute of Problems of Northern Development, Tyumen, Russia
| | | | - Alexey A. Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Viktov Trifonov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey Vasilyev
- Russian Academy of Sciences, Institute of Ethnology and Anthropology, Moscow, Russia
| | - Ali Akbari
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Esther S. Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Denise Keating
- School of Archaeology, University College Dublin, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J. Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Sun B, Andrades Valtueña A, Kocher A, Gao S, Li C, Fu S, Zhang F, Ma P, Yang X, Qiu Y, Zhang Q, Ma J, Chen S, Xiao X, Damchaabadgar S, Li F, Kovalev A, Hu C, Chen X, Wang L, Li W, Zhou Y, Zhu H, Krause J, Herbig A, Cui Y. Origin and dispersal history of Hepatitis B virus in Eastern Eurasia. Nat Commun 2024; 15:2951. [PMID: 38580660 PMCID: PMC10997587 DOI: 10.1038/s41467-024-47358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatitis B virus is a globally distributed pathogen and the history of HBV infection in humans predates 10000 years. However, long-term evolutionary history of HBV in Eastern Eurasia remains elusive. We present 34 ancient HBV genomes dating between approximately 5000 to 400 years ago sourced from 17 sites across Eastern Eurasia. Ten sequences have full coverage, and only two sequences have less than 50% coverage. Our results suggest a potential origin of genotypes B and D in Eastern Asia. We observed a higher level of HBV diversity within Eastern Eurasia compared to Western Eurasia between 5000 and 3000 years ago, characterized by the presence of five different genotypes (A, B, C, D, WENBA), underscoring the significance of human migrations and interactions in the spread of HBV. Our results suggest the possibility of a transition from non-recombinant subgenotypes (B1, B5) to recombinant subgenotypes (B2 - B4). This suggests a shift in epidemiological dynamics within Eastern Eurasia over time. Here, our study elucidates the regional origins of prevalent genotypes and shifts in viral subgenotypes over centuries.
Collapse
Affiliation(s)
- Bing Sun
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Aida Andrades Valtueña
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| | - Shizhu Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shuang Fu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pengcheng Ma
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xuan Yang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yulan Qiu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Quanchao Zhang
- School of archaeology, Jilin University, Changchun, 130021, China
| | - Jian Ma
- School of Cultural Heritage, Northwest University, Xi'an, 710069, China
| | - Shan Chen
- School of Archaeology and Museology, Liaoning University, Shenyang, 110136, China
| | - Xiaoming Xiao
- School of Archaeology and Museology, Liaoning University, Shenyang, 110136, China
| | | | - Fajun Li
- School of Sociology and Anthropology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Alexey Kovalev
- Department of archaeological heritage preservation, Institute of Archaeology of Russian Academy of Sciences, Moscow, 117292, Russia
| | - Chunbai Hu
- Institute of Cultural Relics and Archaeology, Inner Mongolia Autonomous Region, Hohhot, 010010, China
| | - Xianglong Chen
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing, 100101, China
| | - Lixin Wang
- Research Center for Chinese Frontier Archaeology of Jilin University, Jilin University, Changchun, 130012, China
| | - Wenying Li
- Xinjiang Institute of Cultural Relics and Archaeology, Ürümqi, 830011, China
| | - Yawei Zhou
- School of History, Zhengzhou University, Zhengzhou, 450066, China
| | - Hong Zhu
- Research Center for Chinese Frontier Archaeology of Jilin University, Jilin University, Changchun, 130012, China
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
Xiong J, Wang R, Chen G, Yang Y, Du P, Meng H, Ma M, Allen E, Tao L, Wang H, Jin L, Wang CC, Wen S. Inferring the demographic history of Hexi Corridor over the past two millennia from ancient genomes. Sci Bull (Beijing) 2024; 69:606-611. [PMID: 38184385 DOI: 10.1016/j.scib.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 01/08/2024]
Affiliation(s)
- Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guoke Chen
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou 730000, China
| | - Yishi Yang
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou 730000, China
| | - Panxin Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Minmin Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Wang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Fudan University, Shanghai 200433, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 201203, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
26
|
Sun Q, Wang M, Lu T, Duan S, Liu Y, Chen J, Wang Z, Sun Y, Li X, Wang S, Lu L, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Chen G, Wang CC, Liu C, He G, Tang R. Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations. BMC Biol 2024; 22:55. [PMID: 38448908 PMCID: PMC10918984 DOI: 10.1186/s12915-024-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.
Collapse
Affiliation(s)
- Qiuxia Sun
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Tao Lu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shaomei Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Liuyi Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Forensic Science Institute, Guangzhou, 510055, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
27
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
28
|
Lei H, Li J, Zhao B, Kou SH, Xiao F, Chen T, Wang SM. Evolutionary origin of germline pathogenic variants in human DNA mismatch repair genes. Hum Genomics 2024; 18:5. [PMID: 38287404 PMCID: PMC10823654 DOI: 10.1186/s40246-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mismatch repair (MMR) system is evolutionarily conserved for genome stability maintenance. Germline pathogenic variants (PVs) in MMR genes that lead to MMR functional deficiency are associated with high cancer risk. Knowing the evolutionary origin of germline PVs in human MMR genes will facilitate understanding the biological base of MMR deficiency in cancer. However, systematic knowledge is lacking to address the issue. In this study, we performed a comprehensive analysis to know the evolutionary origin of human MMR PVs. METHODS We retrieved MMR gene variants from the ClinVar database. The genomes of 100 vertebrates were collected from the UCSC genome browser and ancient human sequencing data were obtained through comprehensive data mining. Cross-species conservation analysis was performed based on the phylogenetic relationship among 100 vertebrates. Rescaled ancient sequencing data were used to perform variant calling for archeological analysis. RESULTS Using the phylogenetic approach, we traced the 3369 MMR PVs identified in modern humans in 99 non-human vertebrate genomes but found no evidence for cross-species conservation as the source for human MMR PVs. Using the archeological approach, we searched the human MMR PVs in over 5000 ancient human genomes dated from 45,045 to 100 years before present and identified a group of MMR PVs shared between modern and ancient humans mostly within 10,000 years with similar quantitative patterns. CONCLUSION Our study reveals that MMR PVs in modern humans were arisen within the recent human evolutionary history.
Collapse
Affiliation(s)
- Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianhui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
29
|
Zhang S, Zhang R, Yuan K, Yang L, Liu C, Liu Y, Ni X, Xu S. Reconstructing complex admixture history using a hierarchical model. Brief Bioinform 2024; 25:bbad540. [PMID: 38261339 PMCID: PMC10805183 DOI: 10.1093/bib/bbad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Various methods have been proposed to reconstruct admixture histories by analyzing the length of ancestral chromosomal tracts, such as estimating the admixture time and number of admixture events. However, available methods do not explicitly consider the complex admixture structure, which characterizes the joining and mixing patterns of different ancestral populations during the admixture process, and instead assume a simplified one-by-one sequential admixture model. In this study, we proposed a novel approach that considers the non-sequential admixture structure to reconstruct admixture histories. Specifically, we introduced a hierarchical admixture model that incorporated four ancestral populations and developed a new method, called HierarchyMix, which uses the length of ancestral tracts and the number of ancestry switches along genomes to reconstruct the four-way admixture history. By automatically selecting the optimal admixture model using the Bayesian information criterion principles, HierarchyMix effectively estimates the corresponding admixture parameters. Simulation studies confirmed the effectiveness and robustness of HierarchyMix. We also applied HierarchyMix to Uyghurs and Kazakhs, enabling us to reconstruct the admixture histories of Central Asians. Our results highlight the importance of considering complex admixture structures and demonstrate that HierarchyMix is a useful tool for analyzing complex admixture events.
Collapse
Affiliation(s)
- Shi Zhang
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Yang
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Chang Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Liu
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Xumin Ni
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032 , China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
30
|
Yang L, Zhang X, Hu Y, Zhu P, Li H, Peng Z, Xiang H, Zhou X, Zhao X. Ancient mitochondrial genome depicts sheep maternal dispersal and migration in Eastern Asia. J Genet Genomics 2024; 51:87-95. [PMID: 37330109 DOI: 10.1016/j.jgg.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Sheep have been one of the most important groups of animals since ancient times. However, the knowledge of their migration routes and genetic relationships is still poorly understood. To investigate sheep maternal migration histories alongside Eurasian communications routes, in this study, we obtain mitochondrial genomes (mitogenomes) from 17 sheep remains in 6 Chinese sites and 1 Uzbekistan site dated 4429-3100 years before present (BP). By obtaining the mitogenomes from the sheep (4429-3556 BP) found in the Tongtian Cave site in Xinjiang, Altai region of northwest China, our results support the emergence of haplogroup C sheep in Xinjiang as early as 4429-3556 BP. The combined phylogenetic analyses with extant ancient and modern sheep mitogenomes suggest that the Uzbekistan-Altai region may have been a migration hub for early sheep in eastern Asia. At least two migration events have taken place for sheep crossing Eurasia to China, one passing by Uzbekistan and Northwest China to the middle and lower reaches of the Yellow River at approximately 4000 BP and another following the Altai region to middle Inner Mongolia from 4429 BP to 2500 BP. Overall, this study provides further evidence for early sheep utilization and migration patterns in Eastern Asia.
Collapse
Affiliation(s)
- Liu Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yaning Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Piao Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Zhenyu Peng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China.
| | - Xinying Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal, Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Li X, Zhang X, Yu T, Ye L, Huang T, Chen Y, Liu S, Wen Y. Whole mitochondrial genome analysis in highland Tibetans: further matrilineal genetic structure exploration. Front Genet 2023; 14:1221388. [PMID: 38034496 PMCID: PMC10682103 DOI: 10.3389/fgene.2023.1221388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: The Qinghai-Tibet Plateau is one of the last terrestrial environments conquered by modern humans. Tibetans are among the few high-altitude settlers in the world, and understanding the genetic profile of Tibetans plays a pivotal role in studies of anthropology, genetics, and archaeology. Methods: In this study, we investigated the maternal genetic landscape of Tibetans based on the whole mitochondrial genome collected from 145 unrelated native Lhasa Tibetans. Molecular diversity indices, haplotype diversity (HD), Tajima's D and Fu's Fs were calculated and the Bayesian Skyline Plot was obtained to determining the genetic profile and population fluctuation of Lhasa Tibetans. To further explore the genetic structure of Lhasa Tibetans, we collected 107 East Asian reference populations to perform principal component analysis (PCA), multidimensional scaling (MDS), calculated Fst values and constructed phylogenetic tree. Results: The maternal genetic landscape of Tibetans showed obvious East Asian characteristics, M9a (28.28%), R (11.03%), F1 (12.41%), D4 (9.66%), N (6.21%), and M62 (4.14%) were the dominant haplogroups. The results of PCA, MDS, Fst and phylogenetic tree were consistent: Lhasa Tibetans clustered with other highland Tibeto-Burman speakers, there was obvious genetic homogeneity of Tibetans in Xizang, and genetic similarity between Tibetans and northern Han people and geographically adjacent populations was found. In addition, specific maternal lineages of Tibetans also be determined in this study. Discussion: In general, this study further shed light on long-time matrilineal continuity on the Tibetan Plateau and the genetic connection between Tibetans and millet famers in the Yellow River Basin, and further revealed that multiple waves of population interaction and admixture during different historical periods between lowland and highland populations shaped the maternal genetic profile of Tibetans.
Collapse
Affiliation(s)
- Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Yu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Shuhan Liu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
32
|
Halili B, Yang X, Wang R, Zhu K, Hai X, Wang CC. Inferring the population history of Kyrgyz in Xinjiang, Northwest China from genome-wide array genotyping. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:611-625. [PMID: 37310136 DOI: 10.1002/ajpa.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Xinjiang plays a vital role in the trans-Eurasian population migration, language diffusion, and culture and technology exchange. However, the underrepresentation of Xinjiang's genomes has hindered a more comprehensive understanding of Xinjiang's genetic structure and population history. MATERIALS AND METHODS We collected and genotyped 70 southern Xinjiang's Kyrgyz (SXJK) individuals and combined the data with modern and ancient Eurasians published. We used allele-frequency methods, including PCA, ADMIXTURE, f-statistics, qpWave/qpAdm, ALDER, Treemix, and haplotype-shared methods including shared-IBD segments, fineSTRUCTURE, and GLOBETROTTER to unveil the fine-scale population structure and reconstruct admixture history. RESULTS We identified genetic substructure within the SXJK population with subgroups showing different genetic affinities to West and East Eurasians. All SXJK subgroups were suggested to have close genetic relationships with surrounding Turkic-speaking groups that is, Uyghur, Kyrgyz from north Xinjiang and Tajikistan, and Chinese Kazakh, suggesting a shared ancestry among those populations. Outgroup-f3 and symmetrical f4 statistics showed a high genetic affinity of SXJK to present-day Tungusic, Mongolic-speaking populations and Ancient Northeast Asian (ANA) related groups. Allele sharing and haplotype sharing profiles revealed the east-west admixture pattern of SXJK. The qpAdm-based admixture models showed that SXJK derived ancestry from East Eurasian (ANA and East Asian, 42.7%-83.3%) and West Eurasian (Western Steppe herders and Central Asian, 16.7%-57.3%), the recent east-west admixture event could be traced to 1000 years ago based on ALDER and GLOBETROTTER analysis. DISCUSSION The high genetic affinity of SXJK to present-day Tungusic and Mongolic-speaking populations and short-shared IBD segments indicated their shared common ancestry. SXJK harbored a close genetic affinity to ANA-related populations, indicating the Northeast Asian origin of SXJK. The West and East Eurasian admixture models observed in SXJK further provided evidence of the dynamic admixture history in Xinjiang. The east-west admixture pattern and the identified ancestral makeup of SXJK suggested a genetic continuity from some Iron Age Xinjiang populations to present-day SXJK.
Collapse
Affiliation(s)
- Bubibatima Halili
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Qiu M, Liu R, Li X, Du L, Ruan Q, Pollard AM, Zhang S, Yuan X, Liu F, Li G, Li G, Jiao Z, Luo J, Chen S, Yang X, Wang Y, Han J, Chen F, Dong G. Earliest systematic coal exploitation for fuel extended to ~3600 B.P. SCIENCE ADVANCES 2023; 9:eadh0549. [PMID: 37494433 PMCID: PMC10371010 DOI: 10.1126/sciadv.adh0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Coal has long fueled human civilizations. The history of systematic coal fuel exploitation has been traced back to the late third millennium before present (post-2500 B.P.). Although sporadic combustion of coal for fuel was reported in some prehistoric archaeological sites, evidence for the systematic exploitation of coal for fuel before 2500 B.P. remains lacking. Here, we report comprehensive understanding for the earliest systematic exploitation of coal for fuel at the Jirentaigoukou site in Xinjiang, northwestern China, at ~3600 B.P. The main body of the site witnessed systematic exploitation of bituminous coals, illustrating a complete chaîne opératoire with selective mining, planned storage, and extensive combustion. Our results transform the knowledge of energy history by extending the upper limit of the systematic exploitation of coal for fuel by approximately a millennium, and provide a precedent of energy transition under intense conflict between social demand and environmental deterioration.
Collapse
Affiliation(s)
- Menghan Qiu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Ruiliang Liu
- The Department of Asia, British Museum, London, UK
| | - Xingyuan Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Linyao Du
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Qiurong Ruan
- Xinjiang Institute of Cultural Relics and Archaeology, Urumqi, China
| | - A Mark Pollard
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford, UK
| | - Shanjia Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Xiao Yuan
- Department of Archaeology and Museum Studies, School of History, Renmin University of China, Beijing, China
| | - Fengwen Liu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Gang Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Gaojun Li
- Key Laboratory of Surficial Geochemistry (Ministry of Education), Department of Earth and Planetary Sciences, Nanjing University, Nanjing, China
| | - Zhimin Jiao
- Key Laboratory of Surficial Geochemistry (Ministry of Education), Department of Earth and Planetary Sciences, Nanjing University, Nanjing, China
| | - Jiaming Luo
- Xinjiang Institute of Cultural Relics and Archaeology, Urumqi, China
| | - Shengqian Chen
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoyan Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Yongqiang Wang
- Xinjiang Institute of Cultural Relics and Archaeology, Urumqi, China
| | - Jianye Han
- Department of Archaeology and Museum Studies, School of History, Renmin University of China, Beijing, China
| | - Fahu Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
- Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Yu HX, Ao C, Wang XP, Zhang XP, Sun J, Li H, Liu KJ, Wei LH. The impacts of bronze age in the gene pool of Chinese: Insights from phylogeographics of Y-chromosomal haplogroup N1a2a-F1101. Front Genet 2023; 14:1139722. [PMID: 36968599 PMCID: PMC10036388 DOI: 10.3389/fgene.2023.1139722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives: Previous studies of archaeology and history suggested that the rise and prosperity of Bronze Age culture in East Asia had made essential contribution to the formation of early state and civilization in this region. However, the impacts in perspective of genetics remain ambiguous. Previous genetic researches indicated the Y-chromosome Q1a1a-M120 and N1a2a-F1101 may be the two most important paternal lineages among the Bronze Age people in ancient northwest China. Here, we investigated the 9,000-years history of haplogroup N1a2a-F1101 with revised phylogenetic tree and spatial autocorrelation analysis.Materials and Methods: In this study, 229 sequences of N1a2a-F1101 were analyzed. We developed a highly-revised phylogenetic tree with age estimates for N1a2a-F1101. In addition, we also explored the geographical distribution of sub-lineages of N1a2a-F1101, and spatial autocorrelation analysis was conducted for each sub-branch.Results: The initial differentiation location of N1a2a-F1101 and its most closely related branch, N1a2b-P43, a major lineage of Uralic-speaking populations in northern Eurasia, is likely the west part of northeast China. After ~4 thousand years of bottleneck effect period, haplgroup N1a2a-F1101 experienced continuous expansion during the Chalcolithic age (~ 4.5 kya to 4 kya) and Bronze age (~ 4 kya to 2.5 kya) in northern China. Ancient DNA evidence supported that this haplogroup is the lineage of ruling family of Zhou Dynasty (~ 3 kya-2.2 kya) of ancient China.Discussion: In general, we proposed that the Bronze Age people in the border area between the eastern Eurasian steppe and northern China not only played a key role in promoting the early state and civilization of China, but also left significant traces in the gene pool of Chinese people.
Collapse
Affiliation(s)
- Hui-Xin Yu
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Cheliger Ao
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Xiao-Peng Wang
- School of Management, Dalian University of Technology, Dalian, China
| | - Xian-Peng Zhang
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Jin Sun
- School of Literature and Media, Xingyi Normal University for Nationalities, Xingyi, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Kai-Jun Liu
- School of International Tourism and culture, Guizhou Normal University, Guiyang, China
- *Correspondence: Kai-Jun Liu, ; Lan-Hai Wei,
| | - Lan-Hai Wei
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
- *Correspondence: Kai-Jun Liu, ; Lan-Hai Wei,
| |
Collapse
|
35
|
Middle Holocene Siberian genomes reveal highly connected gene pools throughout North Asia. Curr Biol 2023; 33:423-433.e5. [PMID: 36638796 DOI: 10.1016/j.cub.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.
Collapse
|
36
|
Dai SS, Sulaiman X, Isakova J, Xu WF, Abdulloevich NT, Afanasevna ME, Ibrohimovich KB, Chen X, Yang WK, Wang MS, Shen QK, Yang XY, Yao YG, Aldashev AA, Saidov A, Chen W, Cheng LF, Peng MS, Zhang YP. The genetic echo of the Tarim mummies in modern Central Asians. Mol Biol Evol 2022; 39:6675590. [PMID: 36006373 PMCID: PMC9469894 DOI: 10.1093/molbev/msac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria–Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian–related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.
Collapse
Affiliation(s)
- Shan Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xierzhatijiang Sulaiman
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Jainagul Isakova
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Wei Fang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Najmudinov Tojiddin Abdulloevich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Manilova Elena Afanasevna
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Khudoidodov Behruz Ibrohimovich
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wei Kang Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ming Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Quan Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xing Yan Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resource, Yunnan Minzu University, Kunming 650504, China.,School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, China
| | - Yong Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Almaz A Aldashev
- Institute of Molecular Biology and Medicine, Bishkek 720040, Kyrgyzstan
| | - Abdusattor Saidov
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe 734025, Tajikistan
| | - Wei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650224, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650224, China
| | - Lu Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Min Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,KIZ/CUHK Joint Laboratory of Bio-resources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
37
|
Ma L, Wang R, Feng S, Yang X, Li J, Zhang Z, Zhan H, Wang Y, Xia Z, Wang CC, Kang L. Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibetan, one of the largest indigenous populations living in the high-altitude region of the Tibetan Plateau (TP), has developed a suite of physiological adaptation strategies to cope with the extreme highland environment in TP. Here, we reported genome-wide SNP data from 48 Kham-speaking Nagqu Tibetans and analyzed it with published data from 1,067 individuals in 167 modern and ancient populations to characterize the detailed Tibetan subgroup history and population substructure. Overall, the patterns of allele sharing and haplotype sharing suggested (1) the relatively genetic homogeny between the studied Nagqu Tibetans and ancient Nepalese as well as present-day core Tibetans from Lhasa, Nagqu, and Shigatse; and (2) the close relationship between our studied Kham-speaking Nagqu Tibetans and Kham-speaking Chamdo Tibetans. The fitted qpAdm models showed that the studied Nagqu Tibetans could be fitted as having the main ancestry from late Neolithic upper Yellow River millet farmers and deeply diverged lineages from Southern East Asians (represented by Upper Paleolithic Guangxi_Longlin and Laos_Hoabinhian), and a non-neglectable western Steppe herder-related ancestry (∼3%). We further scanned the candidate genomic regions of natural selection for our newly generated Nagqu Tibetans and the published core Tibetans via FST, iHS, and XP-EHH tests. The genes overlapping with these regions were associated with essential human biological functions such as immune response, enzyme activity, signal transduction, skin development, and energy metabolism. Together, our results shed light on the admixture and evolutionary history of Nagqu Tibetan populations.
Collapse
|
38
|
Fu Q. Insights into evolutionary dynamics of East Asians through Ancient DNA. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|