1
|
Silva MKDP, Nicoleti VYU, Rodrigues BDPP, Araujo ASF, Ellwanger JH, de Almeida JM, Lemos LN. Exploring deep learning in phage discovery and characterization. Virology 2025; 609:110559. [PMID: 40359589 DOI: 10.1016/j.virol.2025.110559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Bacteriophages, or bacterial viruses, play diverse ecological roles by shaping bacterial populations and also hold significant biotechnological and medical potential, including the treatment of infections caused by multidrug-resistant bacteria. The discovery of novel bacteriophages using large-scale metagenomic data has been accelerated by the accessibility of deep learning (Artificial Intelligence), the increased computing power of graphical processing units (GPUs), and new bioinformatics tools. This review addresses the recent revolution in bacteriophage research, ranging from the adoption of neural network algorithms applied to metagenomic data to the use of pre-trained language models, such as BERT, which have improved the reconstruction of viral metagenome-assembled genomes (vMAGs). This article also discusses the main aspects of bacteriophage biology using deep learning, highlighting the advances and limitations of this approach. Finally, prospects of deep-learning-based metagenomic algorithms and recommendations for future investigations are described.
Collapse
Affiliation(s)
| | - Vitória Yumi Uetuki Nicoleti
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | | | | | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - James Moraes de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | - Leandro Nascimento Lemos
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Gu Y, Xu J, Zhao Y, Zhang P, Zhang J, Yang W, Han X, Jin H, Zhang W, Wang Y, Yang Y, Shen X. Functional characterization of Mrr-family nuclease SLL1429 involved in MMC and phage resistance. Microbiol Res 2025; 296:128123. [PMID: 40037110 DOI: 10.1016/j.micres.2025.128123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Cyanobacteria, autotrophic prokaryotes capable of oxygenic photosynthesis, are important atmospheric carbon fixers of Earth and potential alternatives for producing green fuels and chemicals. However, they face significant environmental stress during growth, such as Ultraviolet radiation, salt, and cyanophage exposure, which can impact their physiology and growth. Nucleases, such as Mrr (Methylated adenine Recognition and Restriction) endonuclease, play key roles in stress response, DNA repair, or anti-phage functions, but these in cyanobacteria remains underexplored. The SLL1429 protein with Mrr/NA-iREase1 domain was predicted to play a role as a nuclease in stress resistance in cyanobacteria. In this study, our findings indicate that SLL1429 is a PD-(D/E)XK superfamily nuclease with DNase activities towards various DNA structures, including dsDNA, Holliday junction, Flap and Flap derivatives. The nuclease activity of SLL1429 is dependent on the Mrr domain. However, unlike classic Mrr, SLL1429 recognizes and cleaves both methylated and unmethylated DNA substrates. Notably, SLL1429 plays a role in Mitomycin C (MMC) resistance in Synechocystis sp. PCC6803 and anti-phage activity in E. coli. In view of the above, SLL1429 of Synechocystis sp. PCC6803 has been identified as a new stress-resistant nuclease. This discovery provides novel perspectives on the mechanism of environmental adaption in cyanobacteria and lays a theoretical foundation for further exploration of "microbial cell factory".
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd, Suzhou, Jiangsu 215299, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Legrand A, Demeure R, Chantharath A, Rey C, Baltenneck J, Gilchrist CL, Rocha JL, Loyer C, Picard L, Cimarelli A, Steinegger M, Rousset F, Sudmant PH, Etienne L. Ancient convergence with prokaryote defense and recent adaptations to lentiviruses in primates characterize the ancestral immune factors SAMD9s. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.19.654893. [PMID: 40475432 PMCID: PMC12139748 DOI: 10.1101/2025.05.19.654893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Human SAMD9 and SAMD9L are duplicated genes that encode innate immune proteins restricting poxviruses and lentiviruses, such as HIV, and implicated in life-threatening genetic diseases and cancer. Here, we combined structural similarity searches, phylogenetics and population genomics with experimental assays of SAMD9/9L functions to resolve the evolutionary and functional dynamics of these immune proteins, spanning from prokaryotes to primates. We discovered structural analogs of SAMD9/9L in the anti-bacteriophage defense system Avs, resulting from convergent evolution. Further, the predicted nuclease active site was conserved in bacterial analogs and was essential for cell death functions, suggesting a fundamental role in defense across different life kingdoms. Despite this ancestral immunity, we identified genomic signatures of evolutionary arms-races in mammals, with remarkable gene copy number variations targeted by natural selection. We further unveiled that the absence of SAMD9 in bonobos corresponds to a recent gene loss still segregating in the population. Finally, we found that chimp and bonobo SAMD9Ls have enhanced anti-HIV-1 functions, and that bonobo-specific SAMD9L polymorphisms confer increased anti-HIV-1 activity to human SAMD9L without compromising its effect on cell translation. These SAMD9/9L adaptations likely resulted from strong viral selective pressures, including by primate lentiviruses, and could contribute to lentiviral resistance in bonobos. Altogether, this study elucidates the interplay between ancient immune convergence across kingdoms and species-specific adaptations within the Avs9 and SAMD9/9L antiviral shared immunity.
Collapse
Affiliation(s)
- Alexandre Legrand
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Rémi Demeure
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Amandine Chantharath
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Julie Baltenneck
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | | | - Joana L. Rocha
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Léa Picard
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Francois Rousset
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025; 6:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
5
|
Silas S, Carion H, Makarova KS, Laderman ES, Todeschini T, Kumar P, Johnson M, Bocek M, Nobrega FL, Koonin EV, Bondy-Denomy J. Activation of bacterial programmed cell death by phage inhibitors of host immunity. Mol Cell 2025; 85:1838-1851.e10. [PMID: 40315827 DOI: 10.1016/j.molcel.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
Bacterial and archaeal viruses are replete with diverse uncharacterized accessory genes (AGs), which likely interface with host processes. However, large-scale discovery of virus AG functions remains challenging. Here, we developed an integrated computational and experimental discovery platform to identify viral AGs and assign functions. We show that multiple AGs activate unexpected programmed cell death (PCD) activity of distinct restriction-modification (R-M) systems. We describe an exapted type I R-M decoy that kills the host upon sensing several different anti-defense AGs and a self-guarded type III R-M system that restricts phages but also induces PCD when bound by anti-R-M proteins. Other phage counter-defense genes additionally activate non-R-M-based abortive infection systems encoded by prophages. This defense strategy creates a conundrum: lose AGs and be exposed to immunity or keep AGs and trigger PCD. Strategies employed by viruses to avoid this double bind could be an important factor in virus evolution that remains to be explored.
Collapse
Affiliation(s)
- Sukrit Silas
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology, J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Héloïse Carion
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eric S Laderman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas Todeschini
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Matthew Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Bocek
- Twist Biosciences, South San Francisco, CA 94080, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Conte AN, Ruchel ME, Ridgeway SM, Kibby EM, Nagy TA, Whiteley AT. DnaJ mediates phage sensing by the bacterial NLR-related protein bNACHT25. PLoS Biol 2025; 23:e3003203. [PMID: 40446071 PMCID: PMC12169576 DOI: 10.1371/journal.pbio.3003203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 06/16/2025] [Accepted: 05/06/2025] [Indexed: 06/18/2025] Open
Abstract
Bacteria encode a wide range of antiphage systems and a subset of these proteins are homologous to components of the human innate immune system. Mammalian nucleotide-binding and leucine-rich repeat containing proteins (NLRs) and bacterial NLR-related proteins use a central NACHT domain to link detection of infection with initiation of an antimicrobial response. Bacterial NACHT proteins provide defense against both DNA and RNA phages. Here we investigate the mechanism of phage detection by the bacterial NLR-related protein bNACHT25 in E. coli. bNACHT25 was specifically activated by Emesvirus ssRNA phages and analysis of MS2 phage escaper mutants that evaded detection revealed a critical role for Coat Protein (CP). A genetic assay showed CP was sufficient to activate bNACHT25 but the two proteins did not directly interact. Instead, we found bNACHT25 requires the host chaperone DnaJ to detect CP and protect against phage. Our data support a model in which bNACHT25 detects a wide range of phages using an indirect mechanism that may involve guarding a host cell process rather than binding a specific phage-derived molecule.
Collapse
Affiliation(s)
- Amy N. Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Madison E. Ruchel
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biology, Front Range Community College, Longmont, Colorado, United States of America
| | - Samantha M. Ridgeway
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
7
|
Hör J. Advancing RNA phage biology through meta-omics. Nucleic Acids Res 2025; 53:gkaf314. [PMID: 40263712 PMCID: PMC12014289 DOI: 10.1093/nar/gkaf314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Bacteriophages with RNA genomes are among the simplest biological entities on Earth. Since their discovery in the 1960s, they have been used as important models to understand the principal processes of life, including translation and the genetic code. While RNA phages were generally thought of as rare oddities in nature, meta-omics methods are rapidly changing this simplistic view by studying diverse biomes with unprecedented resolution. Metatranscriptomics dramatically expanded the number of known RNA phages from tens to tens of thousands, revealed their widespread abundance, and discovered several new families of potential RNA phages with largely unknown hosts, biology, and environmental impact. At the same time, (meta)genomic analyses of bacterial hosts are discovering an arsenal of defense systems bacteria employ to protect themselves from predation, whose functions in immunity against RNA phages we are only beginning to understand. Here, I review how meta-omics approaches are advancing the field of RNA phage biology with a focus on the discovery of new RNA phages and how bacteria might fight them.
Collapse
Affiliation(s)
- Jens Hör
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
8
|
Zilberzwige-Tal S, Altae-Tran H, Kannan S, Wilkinson ME, Vo SCDT, Strebinger D, Edmonds KK, Yao CCJ, Mears KS, Shmakov SA, Makarova KS, Macrae RK, Koonin EV, Zhang F. Reprogrammable RNA-targeting CRISPR systems evolved from RNA toxin-antitoxins. Cell 2025; 188:1925-1940.e20. [PMID: 39970912 DOI: 10.1016/j.cell.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/12/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Despite ongoing efforts to study CRISPR systems, the evolutionary origins giving rise to reprogrammable RNA-guided mechanisms remain poorly understood. Here, we describe an integrated sequence/structure evolutionary tracing approach to identify the ancestors of the RNA-targeting CRISPR-Cas13 system. We find that Cas13 likely evolved from AbiF, which is encoded by an abortive infection-linked gene that is stably associated with a conserved non-coding RNA (ncRNA). We further characterize a miniature Cas13, classified here as Cas13e, which serves as an evolutionary intermediate between AbiF and other known Cas13s. Despite this relationship, we show that their functions substantially differ. Whereas Cas13e is an RNA-guided RNA-targeting system, AbiF is a toxin-antitoxin (TA) system with an RNA antitoxin. We solve the structure of AbiF using cryoelectron microscopy (cryo-EM), revealing basic structural alterations that set Cas13s apart from AbiF. Finally, we map the key structural changes that enabled a non-guided TA system to evolve into an RNA-guided CRISPR system.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Han Altae-Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Soumya Kannan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max E Wilkinson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Chau-Duy-Tam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Strebinger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - KeHuan K Edmonds
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chun-Chen Jerry Yao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kepler S Mears
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Haudiquet M, Chakravarti A, Zhang Z, Ramirez JL, Herrero Del Valle A, Olinares PDB, Lavenir R, Ahmed MA, de la Cruz MJ, Chait BT, Sternberg SH, Bernheim A, Patel D. Structural basis for Lamassu-based antiviral immunity and its evolution from DNA repair machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646746. [PMID: 40236079 PMCID: PMC11996555 DOI: 10.1101/2025.04.02.646746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bacterial immune systems exhibit remarkable diversity and modularity, as a consequence of the continuous selective pressures imposed by phage predation. Despite recent mechanistic advances, the evolutionary origins of many antiphage immune systems remain elusive, especially for those that encode homologs of the Structural Maintenance of Chromosomes (SMC) superfamily, which are essential for chromosome maintenance and DNA repair across domains of life. Here, we elucidate the structural basis and evolutionary emergence of Lamassu, a bacterial immune system family featuring diverse effectors but a core conserved SMC-like sensor. Using cryo-EM, we determined structures of the Vibrio cholerae Lamassu complex in both apo- and dsDNA-bound states, revealing unexpected stoichiometry and topological architectures. We further demonstrate how Lamassu specifically senses dsDNA in vitro and phage replication origins in vivo , thereby triggering the formation of LmuA tetramers that activate the Cap4 nuclease domain. Our findings reveal that Lamassu evolved via exaptation of the bacterial Rad50-Mre11 DNA repair system to form a compact, modular sensor for viral replication, exemplifying how cellular machinery can be co-opted for novel immune functions.
Collapse
|
10
|
Rish AD, Fosuah E, Shen Z, Marathe IA, Wysocki VH, Fu TM. Architecture remodeling activates the HerA-DUF anti-phage defense system. Mol Cell 2025; 85:1189-1201.e5. [PMID: 40010344 DOI: 10.1016/j.molcel.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Leveraging AlphaFold models and integrated experiments, we characterized the HerA-DUF4297 (DUF) anti-phage defense system, focusing on DUF's undefined biochemical functions. Guided by structure-based genomic analyses, we found DUF homologs to be universally distributed across diverse bacterial immune systems. Notably, one such homolog, Cap4, is a nuclease. Inspired by this evolutionary clue, we tested DUF's nuclease activity and observed that DUF cleaves DNA substrates only when bound to its partner protein HerA. To dissect the mechanism of DUF activation, we determined the structures of DUF and HerA-DUF. Although DUF forms large oligomeric assemblies both alone and with HerA, oligomerization alone was insufficient to elicit nuclease activity. Instead, HerA binding induces a profound architecture remodeling that propagates throughout the complex. This remodeling reconfigures DUF into an active nuclease capable of robust DNA cleavage. Together, we highlight an architecture remodeling-driven mechanism that may inform the activation of other immune systems.
Collapse
Affiliation(s)
- Anthony D Rish
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth Fosuah
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ila A Marathe
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Program of OSBP, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
11
|
Tang D, Liu T, Chen Y, Zhu Z, Chen H, Chen Q, Yu Y. DUF4297 and HerA form abortosome to mediate bacterial immunity against phage infection. Mol Cell 2025; 85:1176-1188.e5. [PMID: 40010342 DOI: 10.1016/j.molcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/11/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Immune receptors form higher-order complexes known as inflammasomes in animals and resistosomes in plants to mediate immune signaling. Here, we report a similar bacterial protein complex, DUF4297-HerA, which induces abortive infection to mediate anti-phage immunity by coupling nuclease and ATPase activities. Therefore, we name this defense system "Hailibu" after a hunter in a popular folk tale who sacrifices himself to save his village. Cryoelectron microscopy (cryo-EM) results reveal that DUF4297 and HerA assemble into a higher-order complex, reminiscent of apoptosome, inflammasome, or resistosome, which we refer to as an abortosome. By capturing cryo-EM structures of the pre-loading, DNA-loading, and DNA-transporting states during Hailibu abortosome processing of DNA, we propose that DNA substrates are loaded through the HerA hexamer, with adenosine triphosphate (ATP) hydrolysis providing the energy to transport DNA substrates to the clustered DUF4297 Cap4 nuclease domains for degradation. This study demonstrates the existence of analogous multiprotein complexes in innate immunity across the kingdoms of life.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yijun Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixuan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yamei Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Cui Y, Dai Z, Ouyang Y, Fu C, Wang Y, Chen X, Yang K, Zheng S, Wang W, Tao P, Guan Z, Zou T. Bacterial Hachiman complex executes DNA cleavage for antiphage defense. Nat Commun 2025; 16:2604. [PMID: 40097437 PMCID: PMC11914072 DOI: 10.1038/s41467-025-57851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Bacteria have developed a variety of immune systems to combat phage infections. The Hachiman system is a novel prokaryotic antiphage defense system comprising HamA and HamB proteins, which contains the DUF1837 and helicase domains, respectively. However, the defense mechanism remains only partially understood. Here, we present the cryo-electron microscopy (cryo-EM) structure of the Hachiman defense system featuring a fusion of Cap4 nuclease domain within HamA. Further structure analysis indicates that the DUF1837 domain on HamA resembles the PD-(D/E)XK nuclease but lacks active sites. Bioinformatics analysis reveals that catalytically inactive DUF1837 domains often recruit other functional domains to fulfill anti-phage defense. HamA interacts with HamB to form a heterodimer HamAB to mediate ATP hydrolysis and execute DNA cleavage, thus implementing antiphage defense. Our findings elucidate the structural basis of the Hachiman defense complex, highlighting the critical roles of the helicase and nuclease in prokaryotic immunity.
Collapse
Affiliation(s)
- Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhikang Dai
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yufei Ouyang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Fu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xueting Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Kaiyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuyue Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenwen Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Wang Y, Tian Y, Yang X, Yu F, Zheng J. Filamentation activates bacterial Avs5 antiviral protein. Nat Commun 2025; 16:2408. [PMID: 40069208 PMCID: PMC11897194 DOI: 10.1038/s41467-025-57732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Bacterial antiviral STANDs (Avs) are evolutionarily related to the nucleotide-binding oligomerization domain (NOD)-like receptors widely distributed in immune systems across animals and plants. EfAvs5, a type 5 Avs from Escherichia fergusonii, contains an N-terminal SIR2 effector domain, a NOD, and a C-terminal sensor domain, conferring protection against diverse phage invasions. Despite the established roles of SIR2 and STAND in prokaryotic and eukaryotic immunity, the mechanism underlying their collaboration remains unclear. Here we present cryo-EM structures of EfAvs5 filaments, elucidating the mechanisms of dimerization, filamentation, filament bundling, ATP binding, and NAD+ hydrolysis, all of which are crucial for anti-phage defense. The SIR2 and NOD domains engage in intra- and inter-dimer interaction to form an individual filament, while the outward C-terminal sensor domains contribute to bundle formation. Filamentation potentially stabilizes the dimeric SIR2 configuration, thereby activating the NADase activity of EfAvs5. Furthermore, we identify the nucleotide kinase gp1.7 of phage T7 as an activator of EfAvs5, demonstrating its ability to induce filamentation and NADase activity. Together, we uncover the filament assembly of Avs5 as a unique mechanism to switch enzyme activities and perform anti-phage defenses.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Lin T, Liu L, Zeng L, Zhao C, Xiao S, Ma H, Li J, Mao F, Qin Y, Zhang Y, Zhang Y, Xiang Z, Yu Z. ChNLRC4, a cytoplasmic pattern recognition receptor, activates the pyroptosis signaling pathway in Mollusca. Int J Biol Macromol 2025; 296:139632. [PMID: 39793815 DOI: 10.1016/j.ijbiomac.2025.139632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
NLR inflammasomes recognize pathogen-associated molecular patterns (PAMPs), triggering Caspase-1 activation and leading to gasdermin D (GSDMD)-mediated pyroptosis, a crucial immune response in mammals. The functional GSDME-mediated pyroptosis has been reported in invertebrates, yet the existence of an NLR-Caspase-GSDME axis mediating pyroptosis signaling cascades remains unclear. In this study, we reported an NLRC4 homolog named ChNLRC4, a pattern recognition receptor from the oyster Crassostrea hongkongensis that is able to bind to LPS and Lys-type PGN through its LRR domain. ChNLRC4 interacted with ChCaspase-1 through CARD-CARD domain homotypic interactions and enhanced ChCaspase-1 activity. Additionally, overexpression of ChNLRC4 promoted ChCaspase-1-mediated cleavage of ChGSDME, leading to pyroptosis in HEK293T cells. Furthermore, knockdown of chnlrc4 resulted in a significant reduction in the death rate of hemocytes, immune infiltration of hemocytes, cilium shedding, and bacterial clearance. Collectively, this study provides insight into the role of NLR within the pyroptosis signaling pathway in oysters.
Collapse
Affiliation(s)
- Tianxiang Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Mao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehuan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Xiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Zhu K, Shang K, Wang L, Yu X, Hua L, Zhang W, Qin B, Wang J, Gao X, Zhu H, Cui S. Activation of the bacterial defense-associated sirtuin system. Commun Biol 2025; 8:297. [PMID: 39994439 PMCID: PMC11850899 DOI: 10.1038/s42003-025-07743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The NADase activity of the defense-associated sirtuins (DSRs) is activated by the phage tail tube protein (TTP). Herein, we report cryo-EM structures of a free-state Bacillus subtilis DSR2 tetramer and a fragment of the tetramer, a phage SPR tail tube, and two DSR2-TTP complexes. DSR2 contains an N-terminal SIR2 domain, a middle domain (MID) and a C-terminal domain (CTD). The DSR2 CTD harbors the α-solenoid tandem-repeats like the HEAT-repeat proteins. DSR2 assembles into a tetramer with four SIR2 clustered at the center, and two intertwined MID-CTD chains flank the SIR2 core. SPR TTPs self-assemble into a tube-like complex. Upon DSR2 binding, the D1 domain of SPR TTP is captured between the HEAT-repeats domains of DSR2, which conflicts with TTPs self-assembly. Binding of TTPs induces conformational changes in DSR2 tetramer, resulting in increase of the NAD+ pocket volume in SIR2, thus activates the NADase activity and leads to cellular NAD+ depletion.
Collapse
Affiliation(s)
- Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Shang
- Yanan medical college of Yanan university, Yanan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lei Hua
- Yanan medical college of Yanan university, Yanan, China
| | - Weihe Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Yamashita W, Chihara K, Azam AH, Kondo K, Ojima S, Tamura A, Imanaka M, Nobrega FL, Takahashi Y, Watashi K, Tsuneda S, Kiga K. Phage engineering to overcome bacterial Tmn immunity in Dhillonvirus. Commun Biol 2025; 8:290. [PMID: 39987292 PMCID: PMC11846954 DOI: 10.1038/s42003-025-07730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
Bacteria possess numerous defense systems against phage infections, which limit phage infectivity and pose challenges for phage therapy. This study aimed to engineer phages capable of evading these defense systems, using the Tmn defense system as a model. We identified an anti-Tmn protein in the ΦSMS22 phage from the Dhillonvirus genus that inhibits Tmn function in Escherichia coli. Introducing this gene into the Tmn-sensitive ΦKSS9 phage enabled it to evade Tmn immunity. Additionally, we found that a single mutation in the nmad5 gene, a DNA modification enzyme in Dhillonvirus, prevented Tmn from sensing phage infection. By mutating the nmad5 gene in the Tmn-sensitive Dhillonvirus, we demonstrated that engineering phages to evade bacterial sensing mechanisms is another viable strategy. These two phage engineering approaches-introducing anti-defense genes and mutating sensing-related genes-present a promising strategy for establishing effective phage therapy by neutralizing bacterial defense systems.
Collapse
Affiliation(s)
- Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Matthew Imanaka
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Phage Therapy Institute, Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
- Phage Therapy Institute, Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
18
|
Loeff L, Walter A, Rosalen GT, Jinek M. DNA end sensing and cleavage by the Shedu anti-phage defense system. Cell 2025; 188:721-733.e17. [PMID: 39742808 DOI: 10.1016/j.cell.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA. Here, we report cryoelectron microscopy (cryo-EM) structures of apo- and double-stranded DNA (dsDNA)-bound tetrameric SduA assemblies, revealing that the N-terminal domains of SduA form a clamp that recognizes free DNA ends. End binding positions the DNA over the PD-(D/E)XK nuclease domain, resulting in dsDNA nicking at a fixed distance from the 5' end. The end-directed DNA nicking activity of Shedu prevents propagation of linear DNA in vivo. Finally, we show that phages escape Shedu immunity by suppressing their recombination-dependent DNA replication pathway. Taken together, these results define the antiviral mechanism of Shedu systems, underlining the paradigm that recognition of pathogen-specific nucleic acid structures is a conserved feature of innate immunity across all domains of life.
Collapse
Affiliation(s)
- Luuk Loeff
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Alexander Walter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
20
|
Rousset F, Osterman I, Scherf T, Falkovich AH, Leavitt A, Amitai G, Shir S, Malitsky S, Itkin M, Savidor A, Sorek R. TIR signaling activates caspase-like immunity in bacteria. Science 2025; 387:510-516. [PMID: 39883761 DOI: 10.1126/science.adu2262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR). This molecule specifically activates the bacterial caspase-like protease, which then indiscriminately degrades cellular proteins to halt phage replication. The TIR-caspase defense system, which we denote as type IV Thoeris, is abundant in bacteria and efficiently protects against phage propagation. Our study highlights the diversity of TIR-produced immune signaling molecules and demonstrates that cell death regulated by proteases of the caspase family is an ancient mechanism of innate immunity.
Collapse
Affiliation(s)
- François Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alla H Falkovich
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sapir Shir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Baca CF, Marraffini LA. Nucleic acid recognition during prokaryotic immunity. Mol Cell 2025; 85:309-322. [PMID: 39824170 PMCID: PMC11750177 DOI: 10.1016/j.molcel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
Parasitic elements often spread to hosts through the delivery of their nucleic acids to the recipient. This is particularly true for the primary parasites of bacteria, bacteriophages (phages) and plasmids. Although bacterial immune systems can sense a diverse set of infection signals, such as a protein unique to the invader or the disruption of natural host processes, phage and plasmid nucleic acids represent some of the most common molecules that are recognized as foreign to initiate defense. In this review, we will discuss the various elements of invader nucleic acids that can be distinguished by bacterial host immune systems as "non-self" and how this signal is relayed to activate an immune response.
Collapse
Affiliation(s)
- Christian F Baca
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
23
|
Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, Cury J, Feng Y, Bondy-Denomy J, Bernheim A. Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. Nucleic Acids Res 2025; 53:gkae1171. [PMID: 39657785 PMCID: PMC11724313 DOI: 10.1093/nar/gkae1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The co-evolution of prokaryotes, phages and mobile genetic elements (MGEs) has driven the diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences and are typically small, creating a challenge to detect anti-defense homologs across prokaryotic and phage genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired sequence. Here, we developed 'AntiDefenseFinder'-a free open-source tool and web service that detects 156 anti-defense systems of one or more proteins in any genomic sequence. Using this dataset, we identified 47 981 anti-defense systems distributed across prokaryotes and their viruses. We found that some genes co-localize in 'anti-defense islands', including Escherichia coli T4 and Lambda phages, although many appear standalone. Eighty-nine per cent anti-defense systems localize only or preferentially in MGE. However, >80% of anti-Pycsar protein 1 (Apyc1) resides in nonmobile regions of bacterial genomes. Evolutionary analysis and biochemical experiments revealed that Apyc1 likely originated in bacteria to regulate cyclic nucleotide (cNMP) signaling, but phage co-opted Apyc1 to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions and a deeper understanding of host-pathogen arms race.
Collapse
Affiliation(s)
- Florian Tesson
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Linlin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan W Rd, Haidian District, 100091 Beijing, China
| | - Matthew Johnson
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Rémi Planel
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 25-28 rue du Docteur Roux, 75015,Paris, France
| | - Jean Cury
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Aude Bernheim
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
24
|
Shen W, Wu T, Liu Q, Ke B. Analysis of regulatory patterns of NLRP3 corpuscles and related genes and the role of macrophage polarization in atherosclerosis based on online database. Mol Genet Genomics 2024; 300:7. [PMID: 39725776 DOI: 10.1007/s00438-024-02216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis. We identified differential expression in 20 genes, five of which were significantly upregulated: P2RX7, CASP1, CD36, GBP5, and PYCARD. We also observed a strong positive association between P2RX7 and PYCARD and as a notable negative association between RELA and CD36. Furthermore, our analysis revealed a clear association between the expression of inflammasome-associated genes and immune cell infiltration in disease specimens. To diagnose AS, a logistic regression model based on six inflammasome-related genes, achieved an Area under the curve of 0.996, indicating excellent diagnostic performance. Genomic enrichment analysis indicated that inflammasome-related genes were primarily involved in various pathways, such as hypertrophic cardiomyopathy and ribosomal function. To validate our findings, we confirmed the expression of risk genes in AS cells using qRT-PCR and Western blot techniques. Additionally, we observed a shift toward M2 polarization in THP-1 macrophages upon P2RX7 knockdown, further supporting our findings.
Collapse
Affiliation(s)
- Wen Shen
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
| | - Tao Wu
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China
| | - Qiang Liu
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China
- Department of Cardiovascular Medicne, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Ben Ke
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|
25
|
Conte AN, Ruchel ME, Ridgeway SM, Kibby EM, Nagy TA, Whiteley AT. Phage detection by a bacterial NLR-related protein is mediated by DnaJ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597415. [PMID: 38895412 PMCID: PMC11185742 DOI: 10.1101/2024.06.04.597415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteria encode a wide range of antiphage systems and a subset of these proteins are homologous to components of the human innate immune system. Mammalian nucleotide-binding and leucine-rich repeat containing proteins (NLRs) and bacterial NLR-related proteins use a central NACHT domain to link detection of infection with initiation of an antimicrobial response. Bacterial NACHT proteins provide defense against both DNA and RNA phages. Here we determine the mechanism of RNA phage detection by the bacterial NLR-related protein bNACHT25 in E. coli. bNACHT25 was specifically activated by Emesvirus ssRNA phages and analysis of MS2 phage escaper mutants that evaded detection revealed a critical role for Coat Protein (CP). A genetic assay confirmed CP was sufficient to activate bNACHT25 but the two proteins did not directly interact. Instead, we found bNACHT25 requires the host chaperone DnaJ to detect CP. Our data suggest that bNACHT25 detects a wide range of phages by guarding a host cell process rather than binding a specific phage-derived molecule.
Collapse
Affiliation(s)
- Amy N. Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Madison E. Ruchel
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Department of Biology, Front Range Community College, Longmont, CO, USA
| | | | - Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
26
|
Kibby EM, Robbins LK, Deep A, Min NK, Whalen LA, Nagy TA, Freeborn L, Corbett KD, Whiteley AT. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629029. [PMID: 39763729 PMCID: PMC11702601 DOI: 10.1101/2024.12.17.629029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Immune systems must rapidly sense viral infections to initiate antiviral signaling and protect the host. Bacteria encode >100 distinct viral (phage) defense systems and each has evolved to sense crucial components or activities associated with the viral lifecycle. Here we used a high-throughput AlphaFold-multimer screen to discover that a bacterial NLR-related protein directly senses multiple phage proteins, thereby limiting immune evasion. Phages encoded as many as 5 unrelated activators that were predicted to bind the same interface of a C-terminal sensor domain. Genetic and biochemical assays confirmed activators bound to the bacterial NLR-related protein at high affinity, induced oligomerization, and initiated signaling. This work highlights how in silico strategies can identify complex protein interaction networks that regulate immune signaling across the tree of life.
Collapse
Affiliation(s)
- Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Laurel K. Robbins
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nathan K. Min
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lindsay A. Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Layla Freeborn
- Research Computing, Office of Information Technology, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
27
|
Delcourte L, Sanchez C, Morvan E, Berbon M, Grélard A, Saragaglia C, Dakhli T, Thore S, Bardiaux B, Habenstein B, Kauffmann B, Saupe SJ, Loquet A. NMR resonance assignment of the cell death execution domain BELL2 from multicellular bacterial signalosomes. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:159-164. [PMID: 38907837 DOI: 10.1007/s12104-024-10183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.
Collapse
Affiliation(s)
- Loic Delcourte
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Corinne Sanchez
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Estelle Morvan
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Axelle Grélard
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Claire Saragaglia
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Thierry Dakhli
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Stéphane Thore
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Benjamin Bardiaux
- Institut Pasteur, Bacterial Transmembrane Systems Unit, Université Paris Cité, CNRS, UMR3528, Paris, France
| | - Birgit Habenstein
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Brice Kauffmann
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Sven J Saupe
- University of Bordeaux, CNRS, UMR5095, Bordeaux, France.
| | - Antoine Loquet
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France.
| |
Collapse
|
28
|
Vassallo CN, Doering CR, Laub MT. Anti-viral defence by an mRNA ADP-ribosyltransferase that blocks translation. Nature 2024; 636:190-197. [PMID: 39443800 PMCID: PMC11618068 DOI: 10.1038/s41586-024-08102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Host-pathogen conflicts are crucibles of molecular innovation1,2. Selection for immunity to pathogens has driven the evolution of sophisticated immunity mechanisms throughout biology, including in bacterial defence against bacteriophages3. Here we characterize the widely distributed anti-phage defence system CmdTAC, which provides robust defence against infection by the T-even family of phages4. Our results support a model in which CmdC detects infection by sensing viral capsid proteins, ultimately leading to the activation of a toxic ADP-ribosyltransferase effector protein, CmdT. We show that newly synthesized capsid protein triggers dissociation of the chaperone CmdC from the CmdTAC complex, leading to destabilization and degradation of the antitoxin CmdA, with consequent liberation of the CmdT ADP-ribosyltransferase. Notably, CmdT does not target a protein, DNA or structured RNA, the known targets of other ADP-ribosyltransferases. Instead, CmdT modifies the N6 position of adenine in GA dinucleotides within single-stranded RNAs, leading to arrest of mRNA translation and inhibition of viral replication. Our work reveals a novel mechanism of anti-viral defence and a previously unknown but broadly distributed class of ADP-ribosyltransferases that target mRNA.
Collapse
Affiliation(s)
| | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
29
|
Murtazalieva K, Mu A, Petrovskaya A, Finn RD. The growing repertoire of phage anti-defence systems. Trends Microbiol 2024; 32:1212-1228. [PMID: 38845267 DOI: 10.1016/j.tim.2024.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 12/06/2024]
Abstract
The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Khalimat Murtazalieva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Andre Mu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aleksandra Petrovskaya
- Nencki Institute of Experimental Biology, Warsaw, Poland; University of Copenhagen, Copenhagen, Denmark
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| |
Collapse
|
30
|
Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, Uskevich V, Bespiatykh D, Letarova M, Efimov A, Kuznetsov A, Shitikov E, Pushkar D, Letarov A, Zurabov F. Isolation, Characterization, and Unlocking the Potential of Mimir124 Phage for Personalized Treatment of Difficult, Multidrug-Resistant Uropathogenic E. coli Strain. Int J Mol Sci 2024; 25:12755. [PMID: 39684465 DOI: 10.3390/ijms252312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Alla Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Yuriy Kupriyanov
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Ruslan Gabdrakhmanov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Marina Gurkova
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Eugene Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Ilya Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Viktoria Uskevich
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Maria Letarova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Dmitry Pushkar
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Fedor Zurabov
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| |
Collapse
|
31
|
Weralupitiya C, Eccersall S, Meisrimler CN. Shared signals, different fates: Calcium and ROS in plant PRR and NLR immunity. Cell Rep 2024; 43:114910. [PMID: 39471173 DOI: 10.1016/j.celrep.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
Lacking an adaptive immune system, plants rely on innate immunity comprising two main layers: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), both utilizing Ca2+ influx and reactive oxygen species (ROS) for signaling. PTI, mediated by pattern-recognition receptors (PRRs), responds to conserved pathogen- or damage-associated molecular patterns. Some pathogens evade PTI using effectors, triggering plants to activate ETI. At the heart of ETI are nucleotide-binding leucine-rich repeat receptors (NLRs), which detect specific pathogen effectors and initiate a robust immune response. NLRs, equipped with a nucleotide-binding domain and leucine-rich repeats, drive a potent immune reaction starting with pronounced, prolonged cytosolic Ca2+ influx, followed by increased ROS levels. This sequence of events triggers the hypersensitive response-a localized cell death designed to limit pathogen spread. This intricate use of Ca2+ and ROS highlights the crucial role of NLRs in supplementing the absence of an adaptive immune system in plant innate immunity.
Collapse
Affiliation(s)
| | - Sophie Eccersall
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Claudia-Nicole Meisrimler
- University of Canterbury, School of Biological Science, Christchurch, New Zealand; Biomolecular Interaction Centre, Christchurch, New Zealand.
| |
Collapse
|
32
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Hobbs SJ, Kranzusch PJ. Nucleotide Immune Signaling in CBASS, Pycsar, Thoeris, and CRISPR Antiphage Defense. Annu Rev Microbiol 2024; 78:255-276. [PMID: 39083849 DOI: 10.1146/annurev-micro-041222-024843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
35
|
Zhang T, Cepauskas A, Nadieina A, Thureau A, Coppieters 't Wallant K, Martens C, Lim DC, Garcia-Pino A, Laub MT. A bacterial immunity protein directly senses two disparate phage proteins. Nature 2024; 635:728-735. [PMID: 39415022 PMCID: PMC11578894 DOI: 10.1038/s41586-024-08039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages1-6. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands7-11. Here we demonstrate that the antiphage defence protein CapRelSJ46 in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRelSJ46 during infection, and we demonstrate that such phages can fully evade CapRelSJ46 defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anastasiia Nadieina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Aurelien Thureau
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | - Daniel C Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Rish AD, Fosuah E, Shen Z, Marathe IA, Wysocki VH, Fu TM. Topological rearrangements activate the HerA-DUF anti-phage defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620088. [PMID: 39484427 PMCID: PMC11527107 DOI: 10.1101/2024.10.24.620088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Leveraging the rich structural information provided by AlphaFold, we used integrated experimental approaches to characterize the HerA-DUF4297 (DUF) anti-phage defense system, in which DUF is of unknown function. To infer the function of DUF, we performed structure-guided genomic analysis and found that DUF homologs are universally present in bacterial immune defense systems. One notable homolog of DUF is Cap4, a universal effector with nuclease activity in CBASS, the most prevalent anti-phage system in bacteria. To test the inferred nuclease function of DUF, we performed biochemical experiments and discovered that the DUF only exhibits activity against DNA substrates when it is bound by HerA. To understand how HerA activates DUF, we determined the structures of DUF and the HerA-DUF complex. DUF forms large oligomeric assemblies with or without HerA, suggesting that oligomerization per se is not sufficient for DUF activation. Instead, DUF activation requires dramatic topological rearrangements that propagate from HerA to the entire HerA-DUF complex, leading to reorganization of DUF for effective DNA cleavage. We further validated these structural insights by structure- guided mutagenesis. Together, these findings reveal dramatic topological rearrangements throughout the HerA-DUF complex, challenge the long-standing dogma that protein oligomerization alone activates immune signaling, and may inform the activation mechanism of CBASS.
Collapse
|
37
|
Wang Y, Wang C, Guan Z, Cao J, Xu J, Wang S, Cui Y, Wang Q, Chen Y, Yin Y, Zhang D, Liu H, Sun M, Jin S, Tao P, Zou T. DNA methylation activates retron Ec86 filaments for antiphage defense. Cell Rep 2024; 43:114857. [PMID: 39395169 DOI: 10.1016/j.celrep.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
Retrons are a class of multigene antiphage defense systems typically consisting of a retron reverse transcriptase, a non-coding RNA, and a cognate effector. Although triggers for several retron systems have been discovered recently, the complete mechanism by which these systems detect invading phages and mediate defense remains unclear. Here, we focus on the retron Ec86 defense system, elucidating its modes of activation and mechanisms of action. We identified a phage-encoded DNA cytosine methyltransferase (Dcm) as a trigger of the Ec86 system and demonstrated that Ec86 is activated upon multicopy single-stranded DNA (msDNA) methylation. We further elucidated the structure of a tripartite retron Ec86-effector filament assembly that is primed for activation by Dcm and capable of hydrolyzing nicotinamide adenine dinucleotide (NAD+). These findings provide insights into the retron Ec86 defense mechanism and underscore an emerging theme of antiphage defense through supramolecular complex assemblies.
Collapse
Affiliation(s)
- Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangshuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqi Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Patel KM, Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. mBio 2024; 15:e0011124. [PMID: 39287445 PMCID: PMC11481870 DOI: 10.1128/mbio.00111-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein, AdfB, as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.IMPORTANCEThe global bacterial pathogen Vibrio cholerae causes an estimated 1 to 4 million cases of cholera each year. Thus, studying the factors that influence its persistence as a pathogen is of great importance. One such influence is the lytic phage ICP1, as once infected by ICP1, V. cholerae is destroyed. To date, we have observed that the phage ICP1 shapes V. cholerae evolution through the flux of anti-phage bacterial immune systems. Here, we probe clinical V. cholerae isolates for novel anti-phage immune systems that can inhibit ICP1 and discover the toxin-antitoxin system DarTG as a potent inhibitor. Our results underscore the importance of V. cholerae and ICP1 surveillance to elaborate novel means by which V. cholerae can persist in both the human host and aquatic reservoir in the face of ICP1.
Collapse
Affiliation(s)
- Kishen M. Patel
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
39
|
Gibbs KD, LeRoux M. Bacteria renew an OLD protein to cleave host tRNAs and block phage translation. Cell Host Microbe 2024; 32:1639-1641. [PMID: 39389024 DOI: 10.1016/j.chom.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Anti-phage defenses must rapidly sense and respond to diverse viruses. A recent pair of papers in Nature reveal via structural and functional assays how the PARIS defense system, a recently discovered toxin-antitoxin system, senses phage-associated molecular patterns (PhAMPs), thereby activating an endonuclease toxin that cleaves tRNA to block phage replication.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Michele LeRoux
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
40
|
Wilkinson ME, Li D, Gao A, Macrae RK, Zhang F. Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA. Science 2024; 386:eadq3977. [PMID: 39208082 PMCID: PMC12039810 DOI: 10.1126/science.adq3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Gao
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Deep A, Liang Q, Enustun E, Pogliano J, Corbett KD. Architecture and activation mechanism of the bacterial PARIS defence system. Nature 2024; 634:432-439. [PMID: 39112702 PMCID: PMC11479591 DOI: 10.1038/s41586-024-07772-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/02/2024] [Indexed: 08/17/2024]
Abstract
Bacteria and their viruses (bacteriophages or phages) are engaged in an intense evolutionary arms race1-5. While the mechanisms of many bacterial antiphage defence systems are known1, how these systems avoid toxicity outside infection yet activate quickly after infection is less well understood. Here we show that the bacterial phage anti-restriction-induced system (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefence protein Ocr. Using cryo-electron microscopy, we show that AriA is related to SMC-family ATPases but assembles into a distinctive homohexameric complex through two oligomerization interfaces. In uninfected cells, the AriA hexamer binds to up to three monomers of AriB, maintaining them in an inactive state. After Ocr binding, the AriA hexamer undergoes a structural rearrangement, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease, the activation of which arrests cell growth and inhibits phage propagation by globally inhibiting protein translation through specific cleavage of a lysine tRNA. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defence system triggered by a phage counterdefence protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.
Collapse
Affiliation(s)
- Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Qishan Liang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Eray Enustun
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Osterman I, Samra H, Rousset F, Loseva E, Itkin M, Malitsky S, Yirmiya E, Millman A, Sorek R. Phages reconstitute NAD + to counter bacterial immunity. Nature 2024; 634:1160-1167. [PMID: 39322677 DOI: 10.1038/s41586-024-07986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Bacteria defend against phage infection through a variety of antiphage defence systems1. Many defence systems were recently shown to deplete cellular nicotinamide adenine dinucleotide (NAD+) in response to infection, by cleaving NAD+ into ADP-ribose (ADPR) and nicotinamide2-7. It was demonstrated that NAD+ depletion during infection deprives the phage of this essential molecule and impedes phage replication. Here we show that a substantial fraction of phages possess enzymatic pathways allowing reconstitution of NAD+ from its degradation products in infected cells. We describe NAD+ reconstitution pathway 1 (NARP1), a two-step pathway in which one enzyme phosphorylates ADPR to generate ADPR pyrophosphate (ADPR-PP), and the second enzyme conjugates ADPR-PP and nicotinamide to generate NAD+. Phages encoding NARP1 can overcome a diverse set of defence systems, including Thoeris, DSR1, DSR2, SIR2-HerA and SEFIR, all of which deplete NAD+ as part of their defensive mechanism. Phylogenetic analyses show that NARP1 is primarily encoded on phage genomes, suggesting a phage-specific function in countering bacterial defences. A second pathway, NARP2, allows phages to overcome bacterial defences by building NAD+ using metabolites different from ADPR-PP. Our findings reveal a unique immune evasion strategy in which viruses rebuild molecules depleted by defence systems, thus overcoming host immunity.
Collapse
Affiliation(s)
- Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Hadar Samra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Loseva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Boyd C, Seed K. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. Nucleic Acids Res 2024; 52:10431-10446. [PMID: 39149900 PMCID: PMC11417361 DOI: 10.1093/nar/gkae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery and virion components results in inhibition of ICP1's lifecycle. PLEs are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Cury J, Haudiquet M, Hernandez Trejo V, Mordret E, Hanouna A, Rotival M, Tesson F, Bonhomme D, Ofir G, Quintana-Murci L, Benaroch P, Poirier EZ, Bernheim A. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 2024; 32:1594-1607.e5. [PMID: 39208803 DOI: 10.1016/j.chom.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.
Collapse
Affiliation(s)
- Jean Cury
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Matthieu Haudiquet
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France; Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Veronica Hernandez Trejo
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Ernest Mordret
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Anael Hanouna
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Delphine Bonhomme
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gal Ofir
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Philippe Benaroch
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Enzo Z Poirier
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France.
| |
Collapse
|
45
|
Payne L, Jackson S, Pinilla-Redondo R. Supramolecular assemblies in bacterial immunity: an emerging paradigm. Trends Microbiol 2024; 32:828-831. [PMID: 38942717 DOI: 10.1016/j.tim.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
The study of bacterial immune systems has recently gained momentum, revealing a fascinating trend: many systems form large supramolecular assemblies. Here, we examine the potential mechanisms underpinning the evolutionary success of these structures, draw parallels to eukaryotic immunity, and offer fresh perspectives to stimulate future research into bacterial immunity.
Collapse
Affiliation(s)
- Leighton Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Shomar H, Georjon H, Feng Y, Olympio B, Guillaume M, Tesson F, Cury J, Wu F, Bernheim A. Viperin immunity evolved across the tree of life through serial innovations on a conserved scaffold. Nat Ecol Evol 2024; 8:1667-1679. [PMID: 38965412 DOI: 10.1038/s41559-024-02463-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Evolutionary arms races between cells and viruses drive the rapid diversification of antiviral genes in diverse life forms. Recent discoveries have revealed the existence of immune genes that are shared between prokaryotes and eukaryotes and show molecular and mechanistic similarities in their response to viruses. However, the evolutionary dynamics underlying the conservation and adaptation of these antiviral genes remain mostly unexplored. Here, we show that viperins constitute a highly conserved family of immune genes across diverse prokaryotes and eukaryotes and identify mechanisms by which they diversified in eukaryotes. Our findings indicate that viperins are enriched in Asgard archaea and widely distributed in all major eukaryotic clades, suggesting their presence in the last eukaryotic common ancestor and their acquisition in eukaryotes from an archaeal lineage. We show that viperins maintain their immune function by producing antiviral nucleotide analogues and demonstrate that eukaryotic viperins diversified through serial innovations on the viperin gene, such as the emergence and selection of substrate specificity towards pyrimidine nucleotides, and through partnerships with genes maintained through genetic linkage, notably with nucleotide kinases. These findings unveil biochemical and genomic transitions underlying the adaptation of immune genes shared by prokaryotes and eukaryotes. Our study paves the way for further understanding of the conservation of immunity across domains of life.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
- Generare Bioscience, Paris, France
| | - Yanlei Feng
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Bismarck Olympio
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Marie Guillaume
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Florian Tesson
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Jean Cury
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Fabai Wu
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China.
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France.
| |
Collapse
|
47
|
He L, Miguel-Romero L, Patkowski JB, Alqurainy N, Rocha EPC, Costa TRD, Fillol-Salom A, Penadés JR. Tail assembly interference is a common strategy in bacterial antiviral defenses. Nat Commun 2024; 15:7539. [PMID: 39215040 PMCID: PMC11364771 DOI: 10.1038/s41467-024-51915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Many bacterial immune systems recognize phage structural components to activate antiviral responses, without inhibiting the function of the phage component. These systems can be encoded in specific chromosomal loci, known as defense islands, and in mobile genetic elements such as prophages and phage-inducible chromosomal islands (PICIs). Here, we identify a family of bacterial immune systems, named Tai (for 'tail assembly inhibition'), that is prevalent in PICIs, prophages and P4-like phage satellites. Tai systems protect their bacterial host population from other phages by blocking the tail assembly step, leading to the release of tailless phages incapable of infecting new hosts. To prevent autoimmunity, some Tai-positive phages have an associated counter-defense mechanism that is expressed during the phage lytic cycle and allows for tail formation. Interestingly, the Tai defense and counter-defense genes are organized in a non-contiguous operon, enabling their coordinated expression.
Collapse
Affiliation(s)
- Lingchen He
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura Miguel-Romero
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alfred Fillol-Salom
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain.
| |
Collapse
|
48
|
Wang S, Kuang S, Song H, Sun E, Li M, Liu Y, Xia Z, Zhang X, Wang X, Han J, Rao VB, Zou T, Tan C, Tao P. The role of TIR domain-containing proteins in bacterial defense against phages. Nat Commun 2024; 15:7384. [PMID: 39191765 DOI: 10.1038/s41467-024-51738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Toll/interleukin-1 receptor (TIR) domain-containing proteins play a critical role in immune responses in diverse organisms, but their function in bacterial systems remains to be fully elucidated. This study, focusing on Escherichia coli, addresses how TIR domain-containing proteins contribute to bacterial immunity against phage attack. Through an exhaustive survey of all E. coli genomes available in the NCBI database and testing of 32 representatives of the 90% of the identified TIR domain-containing proteins, we found that a significant proportion (37.5%) exhibit antiphage activities. These defense systems recognize a variety of phage components, thus providing a sophisticated mechanism for pathogen detection and defense. This study not only highlights the robustness of TIR systems in bacterial immunity, but also draws an intriguing parallel to the diversity seen in mammalian Toll-like receptors (TLRs), enriching our understanding of innate immune mechanisms across life forms and underscoring the evolutionary significance of these defense strategies in prokaryotes.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sirong Kuang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haiguang Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuepeng Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ziwei Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiumin Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Tingting Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
49
|
Yutin N, Tolstoy I, Mutz P, Wolf YI, Krupovic M, Koonin EV. DNA polymerase swapping in Caudoviricetes bacteriophages. Virol J 2024; 21:200. [PMID: 39187833 PMCID: PMC11348598 DOI: 10.1186/s12985-024-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Viruses with double-stranded (ds) DNA genomes in the realm Duplodnaviria share a conserved structural gene module but show a broad range of variation in their repertoires of DNA replication proteins. Some of the duplodnaviruses encode (nearly) complete replication systems whereas others lack (almost) all genes required for replication, relying on the host replication machinery. DNA polymerases (DNAPs) comprise the centerpiece of the DNA replication apparatus. The replicative DNAPs are classified into 4 unrelated or distantly related families (A-D), with the protein structures and sequences within each family being, generally, highly conserved. More than half of the duplodnaviruses encode a DNAP of family A, B or C. We showed previously that multiple pairs of closely related viruses in the order Crassvirales encode DNAPs of different families. METHODS Groups of phages in which DNAP swapping likely occurred were identified as subtrees of a defined depth in a comprehensive evolutionary tree of tailed bacteriophages that included phages with DNAPs of different families. The DNAP swaps were validated by constrained tree analysis that was performed on phylogenetic tree of large terminase subunits, and the phage genomes encoding swapped DNAPs were aligned using Mauve. The structures of the discovered unusual DNAPs were predicted using AlphaFold2. RESULTS We identified four additional groups of tailed phages in the class Caudoviricetes in which the DNAPs apparently were swapped on multiple occasions, with replacements occurring both between families A and B, or A and C, or between distinct subfamilies within the same family. The DNAP swapping always occurs "in situ", without changes in the organization of the surrounding genes. In several cases, the DNAP gene is the only region of substantial divergence between closely related phage genomes, whereas in others, the swap apparently involved neighboring genes encoding other proteins involved in phage genome replication. In addition, we identified two previously undetected, highly divergent groups of family A DNAPs that are encoded in some phage genomes along with the main DNAP implicated in genome replication. CONCLUSIONS Replacement of the DNAP gene by one encoding a DNAP of a different family occurred on many independent occasions during the evolution of different families of tailed phages, in some cases, resulting in very closely related phages encoding unrelated DNAPs. DNAP swapping was likely driven by selection for avoidance of host antiphage mechanisms targeting the phage DNAP that remain to be identified, and/or by selection against replicon incompatibility.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, Cury J, Feng Y, Bondy-Denomy J, Bernheim A. Exploring the diversity of anti-defense systems across prokaryotes, phages, and mobile genetic elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608784. [PMID: 39229129 PMCID: PMC11370490 DOI: 10.1101/2024.08.21.608784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The co-evolution of prokaryotes, phages, and mobile genetic elements (MGEs) over the past billions of years has driven the emergence and diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences, and are typically small, creating a challenge to detect anti-defense homologs across the prokaryotic genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired genome or MGE. Here, we developed "AntiDefenseFinder" - a free open-source tool and web service that detects 156 anti-defense systems (of one or more proteins) in any genomic sequence. Using this dataset, we identified 47,981 anti-defense systems distributed across prokaryotes, phage, and MGEs. We found that some genes co-localize in "anti-defense islands", including E. coli T4 and Lambda phages, although many are standalone. Out of the 112 systems detected in bacteria, 100 systems localize only or preferentially in prophages, plasmids, phage satellites, integrons, and integrative and conjugative elements. However, over 80% of anti-Pycsar protein 1 (Apyc1) resides in non-mobile regions of bacteria. Evolutionary and functional analyses revealed that Apyc1 likely originated in bacteria to regulate cNMP signaling, but was co-opted multiple times by phages to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions, and a deeper understanding of host-pathogen arms race.
Collapse
Affiliation(s)
- Florian Tesson
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Linlin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Matthew Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rémi Planel
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean Cury
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aude Bernheim
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| |
Collapse
|