1
|
Walker JS, Bzdek BR. Rapid and Sensitive Chemical Analysis of Individual Picolitre Droplets by Mass Spectrometry. Anal Chem 2025; 97:854-861. [PMID: 39719369 PMCID: PMC11740182 DOI: 10.1021/acs.analchem.4c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
Aerosol droplets are unique microcompartments containing microscopic amounts of material and exhibiting surprising chemical reactivity. Although a diverse set of tools exists to characterize the chemical composition of individual submicron particles in air, comparatively fewer approaches can chemically analyze individual, airborne picolitre droplets. We describe a novel approach for mass spectrometric analysis of individual aqueous picolitre droplets (∼2-180 pL volume) containing down to ∼1 pg analyte mass per droplet. Individual droplets are generated using a microdroplet dispenser, imparted a small amount of net charge, and guided to the inlet of a high-resolution mass spectrometer using a linear quadrupole-electrodynamic balance. Analyte molecules within the aqueous droplet are ionized using droplet assisted ionization, where droplet breakup within the mass spectrometer inlet leads to generation of molecular ions. This single droplet mass spectrometry approach is demonstrated for small molecules and proteins. The approach generates clean mass spectra, permits timing of droplet delivery for chemical analysis, and, by avoiding a separate ionization stage, avoids potential artifacts arising from current electrospray-based approaches for picolitre droplet analysis. It is anticipated this approach will permit exploration of the factors governing accelerated chemical reactions in aerosol droplets and will be suitable for sensitive analysis of particularly precious samples in different application domains.
Collapse
Affiliation(s)
- Jim S. Walker
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Bryan R. Bzdek
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
2
|
Heitland J, Lee JC, Ban L, Abma GL, Fortune WG, Fielding HH, Yoder BL, Signorell R. Valence Electronic Structure of Interfacial Phenol in Water Droplets. J Phys Chem A 2024; 128:7396-7406. [PMID: 39182189 PMCID: PMC11382284 DOI: 10.1021/acs.jpca.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and "on" water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck-Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1-0.2 eV.
Collapse
Affiliation(s)
- Jonas Heitland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jong Chan Lee
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Grite L Abma
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - William G Fortune
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Helen H Fielding
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Brown JB, Qian Y, Wang H, Zhang T, Huang-Fu ZC, Rao Y. Quantitative Signal Analysis of Sum-Frequency Scattering Experiments from Aerosol Surfaces. Anal Chem 2024; 96:13607-13615. [PMID: 39126390 DOI: 10.1021/acs.analchem.4c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Droplet interfaces are instrumental in processes of biology, engineering, production, and environmental systems. The chemical and physical properties of heterogeneous interfaces are known to be different from those of their underlying bulk phases, and different again when considering the curved surface of submicron aerosol droplets. The recently developed technique of vibrational sum-frequency scattering (VSFS) spectroscopy from airborne particles has emerged as an interface-specific method for the in situ analysis of this unique system. While the technique has shown promise in debut works, a quantitative analysis of the VSFS system has not yet been performed. Here we provide a comprehensive analysis of a VSFS spectrometer with reference to the well-documented planar analog. We decompose the VSFS signal into coherent and incoherent as well as resonant and nonresonant components as a function of incident pulse delay time. We then quantify and compare resonant and nonresonant VSFS and VSFG experimental data using the same laser and detection systems. Using the air/water interface as a guide, we show that the resonant and nonresonant contributions to the SF responses are comparable for the two systems by extracting second-order susceptibilities and hyperpolarizabilities, and using them to estimate single-particle susceptibilities. A quantitative analysis of the signal detection systems for the scattering and planar geometries is made, and conversion efficiencies for VSFG, VSFS, and other nonlinear scattering experiments are compared. Lastly, the possibility of a low-repetition (1 kHz) VSFS spectrometer is considered, determining that it may be possible with modern laser technology but is inevitably less efficient than a high-repetition (100 kHz) system. Though this multistep analysis we obtain a better understanding of the components of the VSFS signal from aerosol particles, further validate the feasibility of the experiments, and provide insight to those wishing to conduct similar experiments and how they may be improved.
Collapse
Affiliation(s)
- Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
4
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
5
|
Bain A, Lalemi L, Croll Dawes N, Miles REH, Prophet AM, Wilson KR, Bzdek BR. Surfactant Partitioning Dynamics in Freshly Generated Aerosol Droplets. J Am Chem Soc 2024; 146:16028-16038. [PMID: 38822805 PMCID: PMC11177314 DOI: 10.1021/jacs.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Aerosol droplets are unique microcompartments with relevance to areas as diverse as materials and chemical synthesis, atmospheric chemistry, and cloud formation. Observations of highly accelerated and unusual chemistry taking place in such droplets have challenged our understanding of chemical kinetics in these microscopic systems. Due to their large surface-area-to-volume ratios, interfacial processes can play a dominant role in governing chemical reactivity and other processes in droplets. Quantitative knowledge about droplet surface properties is required to explain reaction mechanisms and product yields. However, our understanding of the compositions and properties of these dynamic, microscopic interfaces is poor compared to our understanding of bulk processes. Here, we measure the dynamic surface tensions of 14-25 μm radius (11-65 pL) droplets containing a strong surfactant (either sodium dodecyl sulfate or octyl-β-D-thioglucopyranoside) using a stroboscopic imaging approach, enabling observation of the dynamics of surfactant partitioning to the droplet-air interface on time scales of 10s to 100s of microseconds after droplet generation. The experimental results are interpreted with a state-of-the-art kinetic model accounting for the unique high surface-area-to-volume ratio inherent to aerosol droplets, providing insights into both the surfactant diffusion and adsorption kinetics as well as the time-dependence of the interfacial surfactant concentration. This study demonstrates that microscopic droplet interfaces can take up to many milliseconds to reach equilibrium. Such time scales should be considered when attempting to explain observations of accelerated chemistry in microcompartments.
Collapse
Affiliation(s)
- Alison Bain
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lara Lalemi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Nathan Croll Dawes
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Rachael E. H. Miles
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alexander M. Prophet
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Wilson
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
6
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
7
|
Ban L, Tang H, Heitland J, West CW, Yoder BL, Thanopulos I, Signorell R. Ion imaging of spatially inhomogeneous nanoplasmas in NaCl particles. NANOSCALE 2024; 16:5695-5705. [PMID: 38407309 PMCID: PMC10939055 DOI: 10.1039/d3nr06368b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Studying photoemission from free, unsupported aerosol particles is a powerful method for gaining insight into light-matter interactions at the nanoscale. We used single-shot velocity map imaging to experimentally measure kinetic energy and angular distributions of ions emitted following interaction of sub-micrometer NaCl particles with femtosecond pulses of near infrared (NIR, 800 nm) and ultraviolet (UV, 266 nm) light. We combined this with time-dependent simulations of light propagation through the particles and a rate equation approach to computationally address the origin of the observed ion emission. For both NIR and UV pulses, ion emission is caused by the formation of an under-dense nanoplasma with similar densities, although using an order of magnitude weaker UV intensities. Such conditions result in remarkably similar ion fragments with similar kinetic energies, and no obvious influence of the plasma formation mechanism (photoionization or collisional ionization). Our data suggests that Coulomb explosion does not play a significant role for ion emission, and we discuss alternative mechanisms that can lead to material ablation from under-dense nanoplasma. Finally, we show how finite size effects play an important role in photoemission through generation of spatially inhomogeneous nanoplasmas, which result in asymmetric ion emission that depends on particle size and laser wavelength. By utilizing the single-particle information available from our experiments, we show how finite size effects and inhomogeneous nanoplasma formation can be exploited to retrieve the size and orientation of individual submicrometer aerosol particles.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Hanchao Tang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Jonas Heitland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Christopher W West
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| | - Ioannis Thanopulos
- Department of Materials Science, University of Patras, Eupalinou 5, 26504 Rio, Patras, Greece
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
| |
Collapse
|
8
|
Wang W, Liu Y, Wang T, Ge Q, Li K, Liu J, You W, Wang L, Xie L, Fu H, Chen J, Zhang L. Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-Water Interface of Microdroplets. J Am Chem Soc 2024; 146:6580-6590. [PMID: 38427385 DOI: 10.1021/jacs.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
9
|
Sader M, Prieto-Grosso M, Suhr M, Choël M, Visez N, Moreau M, Billon G, Gómez-Castaño JA, Tobón YA. Direct photodegradation of internally mixed sodium chloride and malonic acid single aerosols: Impact of the photoproducts on the hygroscopic properties of the particles. CHEMOSPHERE 2024; 349:140795. [PMID: 38016525 DOI: 10.1016/j.chemosphere.2023.140795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sea-salt aerosols (SSA) are one of the key natural aerosols in our atmosphere, consisting predominantly of sodium chloride (NaCl). Throughout their atmospheric transport, these aerosols undergo complex internal mixing, giving rise to a rich variety of inorganic and organic species, including dicarboxylic acids. This study investigates firstly the composition and deliquescence properties of coarse particles containing pure malonic acid (MA2, CH2(COOH)2) and internally mixed NaCl and MA2, by means of an acoustic levitation system coupled with a Raman microspectrometer. Secondly, we report here the first experimental observation and characterization of the products arising from photochemical reactions under UV-Visible irradiation (338 ≤ λ ≤ 414 nm) in the absence of an oxidant under acoustic levitation conditions in MA2 and NaCl/MA2 aerosols. Furthermore, the impact of photodegradation on the hygroscopic properties of these particles is examined. We confirmed the irreversible formation of monosodium malonate (NaMA, HOOCCH2COONa), which coexists with NaCl or MA2 on non-irradiated particles. We also demonstrated the formation of oxalic acid (OA2, HOOC-COOH) within irradiated MA2 droplets and the appearance of glyoxylic acid (GlyA, HCOCOOH) in NaCl containing droplets. The photolysis process exerts a marked effect on the hygroscopic properties of the particles, resulting in a shift in deliquescence transitions toward higher relative humidity (RH) values. This study contributes to the understanding of the intricate physicochemical processes involved in SSA during their atmospheric transport. Likewise, this work sheds light on the impacts of these types of aerosols on cloud formation and climate change.
Collapse
Affiliation(s)
- Mikel Sader
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Manuel Prieto-Grosso
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Sede Tunja, Avenida Central Del Norte, 150003, Boyacá, Colombia
| | - Madeleine Suhr
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Marie Choël
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Nicolas Visez
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Myriam Moreau
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Jovanny A Gómez-Castaño
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Sede Tunja, Avenida Central Del Norte, 150003, Boyacá, Colombia
| | - Yeny A Tobón
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France.
| |
Collapse
|
10
|
Brown JB, Qian Y, Huang-Fu ZC, Zhang T, Wang H, Rao Y. In Situ Probing of the Surface Properties of Droplets in the Air. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37497860 DOI: 10.1021/acs.langmuir.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Surface properties of nanodroplets and microdroplets are intertwined with their immense applicability in biology, medicine, production, catalysis, the environment, and the atmosphere. However, many means for analyzing droplets and their surfaces are destructive, non-interface-specific, not conducted under ambient conditions, require sample substrates, conducted ex situ, or a combination thereof. For these reasons, a technique for surface-selective in situ analyses under any condition is necessary. This feature article presents recent developments in second-order nonlinear optical scattering techniques for the in situ interfacial analysis of aerosol droplets in the air. First, we describe the abundant utilization of such droplets across industries and how their unique surface properties lead to their ubiquitous usage. Then, we describe the fundamental properties of droplets and their surfaces followed by common methods for their study. We next describe the fundamental principles of sum-frequency generation (SFG) spectroscopy, the Langmuir adsorption model, and how they are used together to describe adsorption processes at planar liquid and droplet surfaces. We also discuss the history of developments of second-order scattering from droplets suspended in dispersive media and introduce second-harmonic scattering (SHS) and sum-frequency scattering (SFS) spectroscopies. We then go on to outline the developments of SHS, electronic sum-frequency scattering (ESFS), and vibrational sum-frequency scattering (VSFS) from droplets in the air and discuss the fundamental insights about droplet surfaces that the techniques have provided. Finally, we describe some of the areas of nonlinear scattering from airborne droplets which need improvement as well as potential future directions and utilizations of SHS, ESFS, and VSFS throughout environmental systems, interfacial chemistry, and fundamental physics. The goal of this feature article is to spread knowledge about droplets and their unique surface properties as well as introduce second-order nonlinear scattering to a broad audience who may be unaware of recent progress and advancements in their applicability.
Collapse
Affiliation(s)
- Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Wang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
11
|
Wang J, Huang D, Chen F, Chen J, Jiang H, Zhu Y, Chen C, Zhao J. Rapid Redox Cycling of Fe(II)/Fe(III) in Microdroplets during Iron-Citric Acid Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4434-4442. [PMID: 36883325 DOI: 10.1021/acs.est.2c07897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fe(III) and carboxylic acids are common compositions in atmospheric microdroplet systems like clouds, fogs, and aerosols. Although photochemical processes of Fe(III)-carboxylate complexes have been extensively studied in bulk aqueous solution, relevant information on the dynamic microdroplet system, which may be largely different from the bulk phase, is rare. With the help of the custom-made ultrasonic-based dynamic microdroplet photochemical system, this study examines the photochemical process of Fe(III)-citric acid complexes in microdroplets for the first time. We find that when the degradation extent of citric acid is similar between the microdroplet system and the bulk solution, the significantly lower Fe(II) ratio is present in microdroplet samples due to the rapider reoxidation of photogenerated Fe(II). However, by replacing citric acid with benzoic acid, no much difference in the Fe(II) ratio between microdroplets and bulk solution is observed, which indicates distinct reoxidation pathways of Fe(II). Moreover, the presence of •OH scavenger, namely, methanol, greatly accelerates the reoxidation of photogenerated Fe(II) in both citric acid and benzoic acid situations. Further experiments reveal that the high availability of O2 and the citric acid- or methanol-derived carbon-centered radicals are responsible for the rapider reoxidation of Fe(II) in iron-citric acid microdroplets by prolonging the length of HO2•- and H2O2-involved radical reaction chains. The results in this study may provide a new understanding about iron-citric acid photochemistry in atmospheric liquid particles, which can further influence the photoactivity of particles and the formation of secondary organic aerosols.
Collapse
Affiliation(s)
- Jinzhao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengxia Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhua Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongyu Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Bogler S, Daellenbach KR, Bell DM, Prévôt ASH, El Haddad I, Borduas-Dedekind N. Singlet Oxygen Seasonality in Aqueous PM 10 is Driven by Biomass Burning and Anthropogenic Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15389-15397. [PMID: 36306277 DOI: 10.1021/acs.est.2c04554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.
Collapse
Affiliation(s)
- Sophie Bogler
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Nadine Borduas-Dedekind
- Department of Environmental Science Systems, ETH Zurich, Zurich 8092, Switzerland
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| |
Collapse
|
13
|
Rashid MH, Borca CN, Xto JM, Huthwelker T. X-Ray absorption spectroscopy on airborne aerosols. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1338-1350. [PMID: 36561554 PMCID: PMC9648630 DOI: 10.1039/d2ea00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Here we demonstrate a method for performing X-ray absorption spectroscopy (XAS) on airborne aerosols. XAS provides unique insight into elemental composition, chemical and phase state, local coordination and electronic structure of both crystalline and amorphous matter. The aerosol is generated from different salt solutions using a commercial atomizer and dried using a diffusion drier. Embedded in a carrier gas, the aerosol is guided into the experimental chamber for XAS analysis. Typical particle sizes range from some 10 to a few 100 nm. Inside the chamber the aerosol bearing gas is then confined into a region of about 1-2 cm3 in size, by a pure flow of helium, generating a stable free-flowing stream of aerosol. It is hit by a monochromatic X-ray beam, and the emitted fluorescent light is used for spectroscopic analysis. Using an aerosol generated from CaCl2, KCl, and (NH4)2SO4 salt solutions, we demonstrate the functionality of the system in studying environmentally relevant systems. In addition, we show that the detection limits are sufficient to also observe subtle spectroscopic signatures in XAS spectra with integration times of about 1-2 hours using a bright undulator beamline. This novel setup opens new research opportunities for studying the nucleation of new phases in multicomponent aerosol systems in situ, and for investigating (photo-) chemical reactions on airborne matter, as relevant to both atmospheric science and also for general chemical application.
Collapse
Affiliation(s)
- Muhammad H. Rashid
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Camelia N. Borca
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Jacinta M. Xto
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Source, Laboratory for FemtochemistryForschungsstrasse 111Villigen PSISwitzerland
| |
Collapse
|
14
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
15
|
Parmentier EA, Corral Arroyo P, Gruseck R, Ban L, David G, Signorell R. Charge Effects on the Photodegradation of Single Optically Trapped Oleic Acid Aerosol Droplets. J Phys Chem A 2022; 126:4456-4464. [PMID: 35767023 PMCID: PMC9289876 DOI: 10.1021/acs.jpca.2c01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
It has recently been
reported that reactions can occur faster in
microdroplets than in extended condensed matter. The electric charge
of droplets has also been suggested as a possible cause of this phenomenon.
Here, we investigate the influence of electric charges on the photodegradation
of single, optically trapped oleic acid aerosol droplets in the absence
of other reactive species. The temporal evolution of the chemical
composition and the size of droplets with charge states ranging from
0 to 104 elementary charges were retrieved from Raman spectra
and elastic light scattering, respectively. No influence of the droplet
charge was observed, either on the chemical composition or on the
kinetics. Based on a kinetic multilayer model, we propose a reaction
mechanism with the photoexcitation of oleic acid into an excited state,
subsequent decay into intermediates and further photoexcitation of
intermediates and their decay into nonvolatile and volatile products.
Collapse
Affiliation(s)
- Evelyne A Parmentier
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Pablo Corral Arroyo
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Richard Gruseck
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grégory David
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Bai Y, Luan P, Bai Y, Zare RN, Ge J. Enzyme-photo-coupled catalysis in gas-sprayed microdroplets. Chem Sci 2022; 13:8341-8348. [PMID: 35919726 PMCID: PMC9297532 DOI: 10.1039/d2sc02791g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Enzyme-photo-coupled catalysis produces fine chemicals by combining the high selectivity of an enzyme with the green energy input of sunlight. Operating a large-scale system, however, remains challenging because of the...
Collapse
Affiliation(s)
- Yunxiu Bai
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Pengqian Luan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory Shenzhen 518107 P. R. China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST) Shanghai 200237 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory Shenzhen 518107 P. R. China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School Shenzhen 518055 P. R. China
| |
Collapse
|