1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Volčanšek Š, Koceva A, Jensterle M, Janež A, Muzurović E. Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity. Diabetes Ther 2025; 16:1207-1227. [PMID: 40332747 DOI: 10.1007/s13300-025-01733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Precision diabetology is increasingly becoming diabetes phenotype-driven, whereby the specific hormonal imbalances involved are taken into consideration. Concomitantly, body weight-favorable therapeutic approaches are being dictated by the obesity pandemic, which extends to all diabetes subpopulations. Amylin, an anorexic neuroendocrine hormone co-secreted with insulin, is deficient in individuals with diabetes and plays an important role in postprandial glucose homeostasis, with additional potential cardiovascular and neuroprotective functions. Its actions include suppressing glucagon secretion, delaying gastric emptying, increasing energy expenditure and promoting satiety. While amylin holds promise as a therapeutic agent, its translation into clinical practice is hampered by complex receptor biology, the limitations of animal models, its amyloidogenic properties and pharmacokinetic challenges. In individuals with advanced β-cell dysfunction, supplementing insulin therapy with pramlintide, the first and currently only approved injectable short-acting selective analog of amylin, has demonstrated efficacy in enhancing both postprandial and overall glycemic control in both type 2 diabetes (T2D) and type 1 diabetes (T1D) without increasing the risk of hypoglycemia or weight gain. Current research focuses on several key strategies, from enhancing amylin stability by attaching polyethylene glycol or carbohydrate molecules to amylin, to developing oral amylin formulations to improve patients' convenience, as well as developing various combination therapies to enhance weight loss and glucose regulation by targeting multiple receptors in metabolic pathways. The novel synergistically acting glucagon-like peptide-1 (GLP-1) receptor agonist combined with the amylin agonist, CagriSema, shows promising results in both glucose regulation and weight management. As such, amylin agonists (combined with other members of the incretin class) could represent the elusive drug candidate to address the multi-hormonal dysregulations of diabetes subtypes and qualify as a precision medicine approach that surpasses the long overdue division into T1DM and T2DM. Further development of amylin-based therapies or delivery systems is crucial to fully unlock the therapeutic potential of this intriguing hormone.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Emir Muzurović
- Endocrinology Section, Department of Internal Medicine, Clinical Centre of Montenegro, Podgorica, Montenegro.
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
3
|
Drucker DJ. GLP-1-based therapies for diabetes, obesity and beyond. Nat Rev Drug Discov 2025:10.1038/s41573-025-01183-8. [PMID: 40281304 DOI: 10.1038/s41573-025-01183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/29/2025]
Abstract
Glucagon-like peptide 1 (GLP-1)-based therapies, such as semaglutide and tirzepatide, represent highly effective treatment options for people with type 2 diabetes and obesity, enabling effective control of glucose and weight loss, while reducing cardiovascular and renal morbidity and mortality. The success of these medicines has spurred development of next-generation GLP-1-based drugs, promising greater weight loss, improved tolerability and additional options for the route and frequency of dosing. This Review profiles established and emerging GLP-1-based medicines, discussing optimization of pharmacokinetics and tolerability, engagement of new therapeutically useful pathways and safety aspects. Structurally unique GLP-1-based medicines that achieve substantially greater and rapid weight loss may impact musculoskeletal health, providing a rationale for therapeutics that more selectively target adipose tissue loss while preserving muscle mass and strength. Ongoing clinical trials in peripheral vascular disease, neuropsychiatric and substance use disorders, metabolic liver disease, arthritis, hypertension and neurodegenerative disorders may broaden indications for GLP-1-based therapeutics.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Cao J, Belousoff MJ, Johnson RM, Keov P, Mariam Z, Deganutti G, Christopoulos G, Hick CA, Reedtz-Runge S, Glendorf T, Ballarín-González B, Raun K, Bayly-Jones C, Wootten D, Sexton PM. Structural and dynamic features of cagrilintide binding to calcitonin and amylin receptors. Nat Commun 2025; 16:3389. [PMID: 40204768 PMCID: PMC11982234 DOI: 10.1038/s41467-025-58680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Obesity is a major and increasingly prevalent chronic metabolic disease with numerous comorbidities. While recent incretin-based therapies have provided pharmaceutical inroads into treatment of obesity, there remains an ongoing need for additional medicines with distinct modes of action as independent or complementary therapeutics. Among the most promising candidates, supported by phase 1 and 2 clinical trials, is cagrilintide, a long-acting amylin and calcitonin receptor agonist. As such, understanding how cagrilintide functionally engages target receptors is critical for future development of this target class. Here, we determine structures of cagrilintide bound to Gs-coupled, active, amylin receptors (AMY1R, AMY2R, AMY3R) and calcitonin receptor (CTR) and compare cagrilintide interactions and the dynamics of receptor complexes with previously reported structures of receptors bound to rat amylin, salmon calcitonin or recently developed amylin-based peptides. These data reveal that cagrilintide has an amylin-like binding mode but, compared to other peptides, induces distinct conformational dynamics at calcitonin-family receptors that could contribute to its clinical efficacy.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, UK
| | - Peter Keov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | | | - George Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Caroline A Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Tine Glendorf
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | | | - Kirsten Raun
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | - Charles Bayly-Jones
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Kushnir J, Gumpper RH. Molecular Glues: A New Approach to Modulating GPCR Signaling Bias. Biochemistry 2025; 64:749-759. [PMID: 39900337 PMCID: PMC11840928 DOI: 10.1021/acs.biochem.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
G-protein-coupled receptors (GPCRs) transmit an extracellular chemical/biological signal across the cell membrane, stimulating an array of intracellular signaling cascades. Canonically, these extracellular signaling molecules bind to the endogenous ligand pocket (orthosteric pocket), which stabilizes either an active or inactive conformational ensemble of the receptor. However, recent structural evidence indicates that small molecules can mediate the protein-protein interactions between the GPCR and their intracellular transducers. These small molecules are reminiscent of molecular glues and can be powerful tools for modulating GPCR signaling bias. In this Perspective, we will investigate the current structural information available on molecular glues and how they modulate GPCR signaling bias. We also examine the prospects of molecular glues and GPCR drug/probe design.
Collapse
Affiliation(s)
- Jamie Kushnir
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7365, United
States
| | - Ryan H. Gumpper
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7365, United
States
| |
Collapse
|
6
|
Xie L, Lockhart C, Bowers SR, Klimov DK, Jafri MS. Structural Analysis of Amylin and Amyloid β Peptide Signaling in Alzheimer's Disease. Biomolecules 2025; 15:89. [PMID: 39858483 PMCID: PMC11763987 DOI: 10.3390/biom15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models. Replica exchange molecular dynamics simulation machine learning, as well as other computational analyses, were applied to improve the understanding of the amino acid residues in these amylin-based peptides. Comparisons were made between amylin, amylin-based peptides, and amyloid β. These studies converged on amylin residues 10Q, 28S, 29S, 30T, 31N, 32V, 33G, 34S, and 35N (residues 10 and 28-35) being ranked highest, meaning that they were the most likely to be involved in activating the same targets as amyloid β. Surprisingly, the amyloid β signaling domain most closely matched amylin residues 29-35 in the simulated structures. These findings suggest important residues that are structurally similar between amylin and amyloid β and are thus implicated in the activation of the amylin receptor.
Collapse
Affiliation(s)
- Longsheng Xie
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (L.X.); (C.L.)
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (L.X.); (C.L.)
| | - Steven R. Bowers
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (L.X.); (C.L.)
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (L.X.); (C.L.)
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (L.X.); (C.L.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Pfersdorf F, Romanazzi L, Rosenkilde MM, Gustavsson M. Regulation of the chemokine receptors CXCR4 and ACKR3 by receptor activity-modifying proteins. J Biol Chem 2025; 301:108055. [PMID: 39662834 PMCID: PMC11760809 DOI: 10.1016/j.jbc.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
The chemokine CXCL12 and its two cognate receptors-CXCR4 and ACKR3-are key players in various homeostatic and pathophysiological processes, including embryonic development, autoimmune diseases, tissue repair, and cancer. Recent reports identified an interaction of CXCR4 and ACKR3 with receptor activity-modifying proteins (RAMPs), and RAMP3 has been shown to facilitate ACKR3's recycling properties. Yet, the functional effects of RAMPs on the CXCL12 signaling axis remain largely elusive. Here, we characterize the effects of RAMPs on CXCR4 and ACKR3 function. We show that, in the absence of a ligand, RAMPs do not affect the cell membrane localization or constitutive internalization of the two receptors. RAMP3 inhibits ligand-stimulated internalization of ACKR3, which retains the receptor at the membrane and inhibits its ability to scavenge CXCL12. In addition, while cAMP inhibition by CXCR4 is unaffected by RAMPs, basal and ligand-stimulated β-arrestin recruitment to both CXCR4 and ACKR3 is reduced in the presence of RAMP3 due to complex formation at the cell surface. The effects on ACKR3 are observed for chemokine, small molecule, and peptide agonists as well as for a N-terminal truncated receptor variant, suggesting that RAMP regulation involves contacts with the transmembrane domain of the receptor. Taken together, our results show that RAMPs regulate the CXCL12 signaling axis by directly interfering with receptor function. These findings could have direct implications for the interplay between receptors in vivo as well as future drug design in the therapeutic targeting of the CXCL12 signaling axis.
Collapse
Affiliation(s)
- Fabian Pfersdorf
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Romanazzi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Gustavsson
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Lee S. Modulation of amylin and calcitonin receptor activation by hybrid peptides. Peptides 2024; 182:171314. [PMID: 39454962 DOI: 10.1016/j.peptides.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Calcitonin peptide hormone controls calcium homeostasis by activating the calcitonin receptor. When the calcitonin receptor forms a complex with an accessory protein, the complex functions as the receptors for another peptide hormone amylin. The amylin receptors are the drug target for diabetes and obesity treatment. Since human amylin can produce aggregates, rat amylin that does not form aggregates has been commonly used for research. Interestingly, calcitonin originated from salmons was reported to interact with human amylin receptors with higher affinity/potency than endogenous rat amylin. Here, the peptide hybrid was made of a rat amylin N-terminal fragment and a salmon calcitonin C-terminal fragment. This novel hybrid peptide showed higher potency for human amylin receptor 1/2 activation by 6- to 8-fold than endogenous rat amylin. To further examine the role of the peptide C-terminal fragment in receptor activation, another hybrid peptide was made where salmon calcitonin N-terminal 21 amino acids were fused with rat amylin C-terminal 11 amino acids. The rat amylin C-terminal fragment was previously reported to have relatively low affinity for calcitonin receptor extracellular domain. As expected, this calcitonin-amylin hybrid peptide decreased the potency for calcitonin receptor activation by 3-fold compared to salmon calcitonin. The hybrid strategy used in this study significantly changed the peptide potency for amylin and calcitonin receptor activation. These results provide insight into the role of peptide C-terminal fragments in modulating amylin and calcitonin receptor activation.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
9
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Garelja M, Alexander T, Walker C, Hay D. Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. Biosci Rep 2024; 44:BSR20240449. [PMID: 39361899 PMCID: PMC11499381 DOI: 10.1042/bsr20240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
12
|
Babych M, Garelja ML, Nguyen PT, Hay DL, Bourgault S. Converting the Amyloidogenic Islet Amyloid Polypeptide into a Potent Nonaggregating Peptide Ligand by Side Chain-to-Side Chain Macrocyclization. J Am Chem Soc 2024; 146:25513-25526. [PMID: 39225636 DOI: 10.1021/jacs.4c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The islet amyloid polypeptide (IAPP), also known as amylin, is a hormone playing key physiological roles. However, its aggregation and deposition in the pancreatic islets are associated with type 2 diabetes. While this peptide adopts mainly a random coil structure in solution, its secondary conformational conversion into α-helix represents a critical step for receptor activation and contributes to amyloid formation and associated cytotoxicity. Considering the large conformational landscape and high amyloidogenicity of the peptide, as well as the complexity of the self-assembly process, it is challenging to delineate the delicate interplay between helical folding, peptide aggregation, and receptor activation. In the present study, we probed the roles of helical folding on the function-toxicity duality of IAPP by restricting its conformational ensemble through side chain-to-side chain stapling via azide-alkyne cycloaddition. Intramolecular macrocyclization (i; i + 4) constrained IAPP into α-helix and inhibited its aggregation into amyloid fibrils. These helical derivatives slowed down the self-assembly of unmodified IAPP. Site-specific macrocyclization modulated the capacity of IAPP to perturb lipid bilayers and cell plasma membrane and reduced, or even fully inhibited, the cytotoxicity associated with aggregation. Furthermore, the α-helical IAPP analogs showed moderate to high potency toward cognate G protein-coupled receptors. Overall, these results indicate that macrocyclization represents a promising strategy to protect an amyloidogenic peptide hormone from aggregation and associated toxicity, while maintaining high receptor activity.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 3A Symonds Street, Auckland 92019, New Zealand
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| |
Collapse
|
13
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhlén M, Svenningsson P, Schwenk JM, Sakmar TP. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. SCIENCE ADVANCES 2024; 10:eado9959. [PMID: 39083597 PMCID: PMC11290489 DOI: 10.1126/sciadv.ado9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Receptor activity-modifying proteins (RAMPs) form complexes with G protein-coupled receptors (GPCRs) and may regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a comprehensive GPCR-RAMP interactome, we created a library of 215 dual epitope-tagged (DuET) GPCRs representing all GPCR subfamilies and coexpressed each GPCR with each of the three RAMPs. Screening the GPCR-RAMP pairs with customized multiplexed suspension bead array (SBA) immunoassays, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for interactions in three cell lines and found 23 endogenously expressed GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective therapeutics targeting GPCR-RAMP complexes.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Dahl K, Raun K, Hansen JL, Poulsen C, de la Cour CD, Clausen TR, Hansen AMK, John LM, Plesner A, Sun G, Schlein M, Skyggebjerg RB, Kruse T. NN1213 - A Potent, Long-Acting, and Selective Analog of Human Amylin. J Med Chem 2024; 67:11688-11700. [PMID: 38960379 PMCID: PMC11284788 DOI: 10.1021/acs.jmedchem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Amylin, a member of the calcitonin family, acts via amylin receptors in the hindbrain and hypothalamus to suppress appetite. Native ligands of these receptors are peptides with short half-lives. Conjugating fatty acids to these peptides can increase their half-lives. The long-acting human amylin analog, NN1213, was generated from structure-activity efforts optimizing solubility, stability, receptor affinity, and selectivity, as well as in vivo potency and clearance. In both rats and dogs, a single dose of NN1213 reduced appetite in a dose-dependent manner and with a long duration of action. Consistent with the effect on appetite, studies in obese rats demonstrated that daily NN1213 dosing resulted in a dose-dependent reduction in body weight over a 21-day period. Magnetic resonance imaging indicated that this was primarily driven by loss of fat mass. Based on these data, NN1213 could be considered an attractive option for weight management in the clinical setting.
Collapse
Affiliation(s)
- Kirsten Dahl
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Kirsten Raun
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | | | | | | | | | - Linu M. John
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Annette Plesner
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Gao Sun
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Morten Schlein
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | - Thomas Kruse
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
15
|
Shihoya W, Iwama A, Sano FK, Nureki O. Cryo-EM advances in GPCR structure determination. J Biochem 2024; 176:1-10. [PMID: 38498911 DOI: 10.1093/jb/mvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute a prominent superfamily in humans and are categorized into six classes (A-F) that play indispensable roles in cellular communication and therapeutics. Nonetheless, their structural comprehension has been limited by challenges in high-resolution data acquisition. This review highlights the transformative impact of cryogenic electron microscopy (cryo-EM) on the structural determinations of GPCR-G-protein complexes. Specific technologies, such as nanobodies and mini-G-proteins, stabilize complexes and facilitate structural determination. We discuss the structural alterations upon receptor activation in different GPCR classes, revealing their diverse mechanisms. This review highlights the robust foundation for comprehending GPCR function and pave the way for future breakthroughs in drug discovery and therapeutic targeting.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Cao J, Belousoff MJ, Danev R, Christopoulos A, Wootten D, Sexton PM. Cryo-EM Structure of the Human Amylin 1 Receptor in Complex with CGRP and Gs Protein. Biochemistry 2024; 63:1089-1096. [PMID: 38603770 PMCID: PMC11080994 DOI: 10.1021/acs.biochem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Arthur Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Mazzini G, Le Foll C, Boyle CN, Garelja ML, Zhyvoloup A, Miller MET, Hay DL, Raleigh DP, Lutz TA. The processing intermediate of human amylin, pro-amylin(1-48), has in vivo and in vitro bioactivity. Biophys Chem 2024; 308:107201. [PMID: 38452520 PMCID: PMC11223094 DOI: 10.1016/j.bpc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Amylin is released by pancreatic beta-cells in response to a meal and its major soluble mature form (37 amino acid-peptide) produces its biological effects by activating amylin receptors. Amylin is derived from larger propeptides that are processed within the synthesizing beta-cell. There are suggestions that a partially processed form, pro-amylin(1-48) is also secreted. We tested the hypothesis that pro-amylin(1-48) has biological activity and that human pro-amylin(1-48) may also form toxic pre-amyloid species. Amyloid formation, the ability to cross-seed and in vitro toxicity were similar between human pro-amylin(1-48) and amylin. Human pro-amylin(1-48) was active at amylin-responsive receptors, though its potency was reduced at rat, but not human amylin receptors. Pro-amylin(1-48) was able to promote anorexia by activating neurons of the area postrema, amylin's primary site of action, indicating that amylin can tolerate significant additions at the N-terminus without losing bioactivity. Our studies help to shed light on the possible roles of pro-amylin(1-48) which may be relevant for the development of future amylin-based drugs.
Collapse
Affiliation(s)
- Giulia Mazzini
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, New Zealand
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, UK
| | | | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, New Zealand.
| | - Daniel P Raleigh
- Research Department of Structural and Molecular Biology, University College London, UK; Department of Chemistry, Stony Brook University, USA; Laufer Center for Quantitative Biology Stony Brook University, USA.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Keov P, Christopoulos G, Hick CA, Glendorf T, Ballarín-González B, Wootten D, Sexton PM. Development of a Novel Assay for Direct Assessment of Selective Amylin Receptor Activation Reveals Novel Differences in Behavior of Selective and Nonselective Peptide Agonists. Mol Pharmacol 2024; 105:359-373. [PMID: 38458773 DOI: 10.1124/molpharm.123.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Peter Keov
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - George Christopoulos
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Caroline A Hick
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Tine Glendorf
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Borja Ballarín-González
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Denise Wootten
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| |
Collapse
|
19
|
Zhantleuova A, Leese C, Andreou AP, Karimova A, Carpenter G, Davletov B. Recent Developments in Engineering Non-Paralytic Botulinum Molecules for Therapeutic Applications. Toxins (Basel) 2024; 16:175. [PMID: 38668600 PMCID: PMC11054698 DOI: 10.3390/toxins16040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
This review discusses the expanding application of botulinum neurotoxin in treating neurological conditions. The article specifically explores novel approaches to using non-paralytic botulinum molecules. These new molecules, such as BiTox or el-iBoNT, offer an alternative for patients who face limitations in using paralytic forms of botulinum neurotoxin due to concerns about muscle function loss. We highlight the research findings that confirm not only the effectiveness of these molecules but also their reduced paralytic effect. We also discuss a potential cause for the diminished paralytic action of these molecules, specifically changes in the spatial parameters of the new botulinum molecules. In summary, this article reviews the current research that enhances our understanding of the application of new botulinum neurotoxins in the context of common conditions and suggests new avenues for developing more efficient molecules.
Collapse
Affiliation(s)
- Aisha Zhantleuova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty A15E3C7, Kazakhstan; (A.Z.); (A.K.)
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2JA, UK;
| | - Anna P. Andreou
- Headache Research, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK;
- Neuresta, Inc., San Diego, CA 91991, USA
| | - Altynay Karimova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty A15E3C7, Kazakhstan; (A.Z.); (A.K.)
| | - Guy Carpenter
- Salivary Research, Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 1UL, UK;
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2JA, UK;
- Neuresta, Inc., San Diego, CA 91991, USA
| |
Collapse
|
20
|
Brown HG, Smith D, Wardle BC, Hanssen E. Square condenser apertures for square cameras in low-dose transmission electron microscopy. Nat Methods 2024; 21:566-568. [PMID: 38459386 DOI: 10.1038/s41592-024-02206-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
In transmission electron microscopy (TEM), cameras are square or rectangular but beams are round so the circular lobes irradiate adjacent areas, precluding further neighboring acquisition for beam-sensitive samples. We present condenser aperture plates with square and rectangular shapes that improve the efficiency of area usage by 70% and enhance montage imaging for beam-sensitive specimens. We demonstrate the compatibility of these condenser aperture plates with high-resolution cryogenic TEM by reconstructing a 1.8-Å map of equine apo-ferritin.
Collapse
Affiliation(s)
- Hamish G Brown
- Ian Holmes Imaging Centre and ARC Industrial Training Centre for Cryo Electron Microscopy of Membrane Proteins, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Dan Smith
- Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, Victoria, Australia
| | | | - Eric Hanssen
- Ian Holmes Imaging Centre and ARC Industrial Training Centre for Cryo Electron Microscopy of Membrane Proteins, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Cao J, Belousoff MJ, Gerrard E, Danev R, Fletcher MM, Dal Maso E, Schreuder H, Lorenz K, Evers A, Tiwari G, Besenius M, Li Z, Johnson RM, Wootten D, Sexton PM. Structural insight into selectivity of amylin and calcitonin receptor agonists. Nat Chem Biol 2024; 20:162-169. [PMID: 37537379 DOI: 10.1038/s41589-023-01393-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a 'bypass' secondary structural motif (residues S19-P25). This study explored potential tuning of peptide selectivity through modification to residues 19-22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elliot Gerrard
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Emma Dal Maso
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Herman Schreuder
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Katrin Lorenz
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
- Merck Healthcare KGaA, Darmstadt, Germany
| | - Garima Tiwari
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Melissa Besenius
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Ziyu Li
- Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- OMass Therapeutics, Oxford, UK
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhle’n M, Svenningsson P, Schwenk JM, Sakmar TP. Expanding the GPCR-RAMP interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568247. [PMID: 38045268 PMCID: PMC10690247 DOI: 10.1101/2023.11.22.568247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Receptor activity-modifying proteins (RAMPs) can form complexes with G protein-coupled receptors (GPCRs) and regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a complete interactome between GPCRs and the three RAMPs, we developed a customized library of 215 Dual Epitope-Tagged (DuET) GPCRs representing all GPCR subfamilies. Using a multiplexed suspension bead array (SBA) assay, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for native interactions in three cell lines and found 23 GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective GPCR-targeted therapeutics.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Mathias Uhle’n
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology; Solna, 171 65, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; 1230 York Ave., New York, 10065, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet; Solna, 171 64, Sweden
| |
Collapse
|
23
|
Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC 1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci 2023; 44:651-663. [PMID: 37543479 PMCID: PMC10529278 DOI: 10.1016/j.tips.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/07/2023]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) and their receptors are linked to migraine neurobiology. Recent antimigraine therapeutics targeting the signaling of these neuropeptides are effective; however, some patients respond suboptimally, indicating an incomplete understanding of migraine pathophysiology. The CGRP- and PACAP-responsive receptors can be differentially spliced. It is known that receptor splice variants can have different pathophysiological effects in other receptor-mediated pain pathways. Despite considerable knowledge on the structural and pharmacological differences of the CGRP- and PACAP-responsive receptor splice variants and their expression in migraine-relevant tissues, their role in migraine is rarely considered. Here we shine a spotlight on the calcitonin and PACAP (PAC1) receptor splice variants and examine what implications they may have for drug activity and design.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Alejandro Labastida-Ramírez
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eloisa Rubio-Beltrán
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. J Biol Chem 2023:104785. [PMID: 37146967 DOI: 10.1016/j.jbc.2023.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have signaling functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprised of the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively non-selective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a much slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C-terminus. These two strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.
Collapse
Affiliation(s)
- Katie M Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824.
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
26
|
Kotliar IB, Ceraudo E, Kemelmakher-Liben K, Oren DA, Lorenzen E, Dodig-Crnković T, Horioka-Duplix M, Huber T, Schwenk JM, Sakmar TP. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J Biol Chem 2023; 299:104664. [PMID: 37003505 PMCID: PMC10165273 DOI: 10.1016/j.jbc.2023.104664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Kevin Kemelmakher-Liben
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
27
|
Cary BP, Gerrard EJ, Belousoff MJ, Fletcher MM, Jiang Y, Russell IC, Piper SJ, Wootten D, Sexton PM. Molecular insights into peptide agonist engagement with the PTH receptor. Structure 2023:S0969-2126(23)00125-9. [PMID: 37148874 DOI: 10.1016/j.str.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
The parathyroid hormone (PTH) 1 receptor (PTH1R) is a G protein-coupled receptor (GPCR) that regulates skeletal development and calcium homeostasis. Here, we describe cryo-EM structures of the PTH1R in complex with fragments of the two hormones, PTH and PTH-related protein, the drug abaloparatide, as well as the engineered tool compounds, long-acting PTH (LA-PTH) and the truncated peptide, M-PTH(1-14). We found that the critical N terminus of each agonist engages the transmembrane bundle in a topologically similar fashion, reflecting similarities in measures of Gαs activation. The full-length peptides induce subtly different extracellular domain (ECD) orientations relative to the transmembrane domain. In the structure bound to M-PTH, the ECD is unresolved, demonstrating that the ECD is highly dynamic when unconstrained by a peptide. High resolutions enabled identification of water molecules near peptide and G protein binding sites. Our results illuminate the action of orthosteric agonists of the PTH1R.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Elliot J Gerrard
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Yan Jiang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Isabella C Russell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Sarah J Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
28
|
Krishna Kumar K, O'Brien ES, Habrian CH, Latorraca NR, Wang H, Tuneew I, Montabana E, Marqusee S, Hilger D, Isacoff EY, Mathiesen JM, Kobilka BK. Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 2023; 186:1465-1477.e18. [PMID: 37001505 PMCID: PMC10144504 DOI: 10.1016/j.cell.2023.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023]
Abstract
Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Chris H Habrian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Inga Tuneew
- Zealand Pharma A/S, Sydmarken 11, Soborg 2860, Denmark
| | - Elizabeth Montabana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley CA 94720, USA
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, Marburg 35037, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | | | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Manathunga L, Akter R, Zhyvoloup A, Simmerling C, Raleigh DP. On the plasticity of amyloid formation: The impact of destabilizing small to large substitutions on islet amyloid polypeptide amyloid formation. Protein Sci 2023; 32:e4539. [PMID: 36484106 PMCID: PMC9847078 DOI: 10.1002/pro.4539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Amyloids are partially ordered, proteinaceous, β-sheet rich deposits that have been implicated in a wide range of diseases. An even larger set of proteins that do not normally form amyloid in vivo can be induced to do so in vitro. A growing number of structures of amyloid fibrils have been reported and a common feature is the presence of a tightly packed core region in which adjacent monomers pack together in extremely tight interfaces, often referred to as steric zippers. A second common feature of many amyloid fibrils is their polymorphous nature. We examine the consequences of disrupting the tight packing in amyloid fibrils on the kinetics of their formation using the 37 residue polypeptide hormone islet amyloid polypeptide (IAPP, amylin) as a model system. IAPP forms islet amyloid in vivo and is aggressively amyloidogenic in vitro. Six Cryo-EM structures of IAPP amyloid fibrils are available and in all Gly24 is in the core of the structured region and makes tight contacts with other residues. Calculations using the ff14SBonlysc forcefield in Amber20 show that substitutions with larger amino acids significantly disrupt close packing and are predicted to destabilize the various fibril structures. However, Gly to 2-amino butyric acid (2-carbon side chain) and Gly to Leu substitutions actually enhance the rate of amyloid formation. A Pro substitution slows, but does not prevent amyloid formation.
Collapse
Affiliation(s)
- Lakshan Manathunga
- Department of ChemistryStony Brook UniversityStony BrookNew YorkUSA
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookNew YorkUSA
| | - Rehana Akter
- Department of ChemistryStony Brook UniversityStony BrookNew YorkUSA
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Carlos Simmerling
- Department of ChemistryStony Brook UniversityStony BrookNew YorkUSA
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookNew YorkUSA
| | - Daniel P. Raleigh
- Department of ChemistryStony Brook UniversityStony BrookNew YorkUSA
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookNew YorkUSA
- Research Department of Structural and Molecular BiologyUniversity College LondonLondonUK
| |
Collapse
|
30
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
31
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523955. [PMID: 36711519 PMCID: PMC9882245 DOI: 10.1101/2023.01.13.523955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The signaling peptides adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and CGRP have overlapping and distinct functions in the cardiovascular, lymphatic, and nervous systems by activating three shared receptors comprised of the class B GPCR CLR in complex with a RAMP1, -2, or -3 modulatory subunit. Here, we report that AM2/IMD, which is thought to be a non-selective agonist, is kinetically selective for CLR-RAMP3, known as the AM 2 R. AM2/IMD-AM 2 R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations due to AM2/IMD slow off-rate binding kinetics. The regions responsible for the slow off-rate were mapped to the AM2/IMD mid-region and the RAMP3 extracellular domain. MD simulations revealed how these bestow enhanced stability to the complex. Our results uncover AM2/IMD-AM 2 R as a cognate pair with unique temporal features, define the mechanism of kinetic selectivity, and explain how AM2/IMD and RAMP3 collaborate to shape the signaling output of a clinically important GPCR.
Collapse
Affiliation(s)
- Katie M. Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A. Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H. Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Augen A. Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Lead contact
| |
Collapse
|
32
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
33
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
34
|
Luo P, Feng W, Ma S, Dai A, Wu K, Chen X, Yuan Q, Cai X, Yang D, Wang MW, Eric Xu H, Jiang Y. Structural basis of signaling regulation of the human melanocortin-2 receptor by MRAP1. Cell Res 2023; 33:46-54. [PMID: 36588120 PMCID: PMC9810661 DOI: 10.1038/s41422-022-00751-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/08/2022] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by various downstream proteins, of which the melanocortin receptor accessory protein 1 (MRAP1) is closely involved in the regulation of melanocortin receptor 2 (MC2R). Assisted by MRAP1, MC2R responds to adrenocorticotropic hormone (ACTH) and stimulates glucocorticoid biogenesis and cortisol secretion. MC2R activation plays an essential role in the hypothalamic-pituitary-adrenal (HPA) axis that regulates stress response, while its dysfunction causes glucocorticoid insufficiency- or cortisol excess-associated disorders. Here, we present a cryo-electron microscopy (cryo-EM) structure of the ACTH-bound MC2R-Gs-MRAP1 complex. Our structure, together with mutagenesis analysis, reveals a unique sharp kink at the extracellular region of MRAP1 and the 'seat-belt' effect of MRAP1 on stabilizing ACTH binding and MC2R activation. Mechanisms of ACTH recognition by MC2R and receptor activation are also demonstrated. These findings deepen our understanding of GPCR regulation by accessory proteins and provide valuable insights into the ab initio design of therapeutic agents targeting MC2R.
Collapse
Affiliation(s)
- Ping Luo
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanshan Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| |
Collapse
|
35
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
36
|
Does receptor balance matter? – Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother 2022; 156:113842. [DOI: 10.1016/j.biopha.2022.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
37
|
Lu Y, You L, Chen C. A phosphine-based redox method for direct conjugation of disulfides. Chem Commun (Camb) 2022; 58:12439-12442. [PMID: 36278800 PMCID: PMC9661873 DOI: 10.1039/d2cc04967h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Technologies for cysteine disulfide detection and conjugation are pivotal to understanding protein functions and developing disulfide-derived therapeutic agents. Currently, disulfide modification requires reductive cleavage prior to functionalization, posing challenges to differentiating disulfides from free thiols. We describe herein Redox-assisted Disulfide Direct Conjugation (RDDC) as a new method to enable disulfide rebridging without cross-reacting with free thiols.
Collapse
Affiliation(s)
- Yong Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Lin You
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
38
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
39
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|