1
|
Waltz F, Righetto RD, Lamm L, Salinas-Giegé T, Kelley R, Zhang X, Obr M, Khavnekar S, Kotecha A, Engel BD. In-cell architecture of the mitochondrial respiratory chain. Science 2025; 387:1296-1301. [PMID: 40112058 DOI: 10.1126/science.ads8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria regenerate adenosine triphosphate (ATP) through oxidative phosphorylation. This process is carried out by five membrane-bound complexes collectively known as the respiratory chain, working in concert to transfer electrons and pump protons. The precise organization of these complexes in native cells is debated. We used in situ cryo-electron tomography to visualize the native structures and organization of several major mitochondrial complexes in Chlamydomonas reinhardtii cells. ATP synthases and respiratory complexes segregate into curved and flat crista membrane domains, respectively. Respiratory complexes I, III, and IV assemble into a respirasome supercomplex, from which we determined a native 5-angstrom (Å) resolution structure showing binding of electron carrier cytochrome c. Combined with single-particle cryo-electron microscopy at 2.4-Å resolution, we model how the respiratory complexes organize inside native mitochondria.
Collapse
Affiliation(s)
| | | | - Lorenz Lamm
- Biozentrum, University of Basel, Basel, Switzerland
- HelmholtzAI, Helmholtz Munich, Neuherberg, Germany
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ron Kelley
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Xianjun Zhang
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Martin Obr
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Sagar Khavnekar
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
- Center of Excellence for Structural Cell Biology, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
2
|
Gupta P, Chakroborty S, Rathod AK, Kumar KR, Bhat S, Ghosh S, Rao T P, Yele K, Bakthisaran R, Nagaraj R, Manna M, Raychaudhuri S. Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes. Nat Commun 2025; 16:2044. [PMID: 40016208 PMCID: PMC11868549 DOI: 10.1038/s41467-025-57295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Sequence evolution of protein complexes (PCs) is constrained by protein-protein interactions (PPIs). PPI-interfaces are predominantly conserved and hotspots for disease-related mutations. How do lipid-protein interactions (LPIs) constrain sequence evolution of membrane-PCs? We explore Respiratory Complexes (RCs) as a case study as these allow to compare sequence evolution in subunits exposed to both lipids in inner-mitochondrial membrane (IMM) and lipid-free aqueous matrix. We find that lipid-exposed surfaces of the IMM-subunits but not of the matrix subunits are populated with non-PPI disease-causing mutations signifying LPIs in stabilizing RCs. Further, IMM-subunits including their exposed surfaces show high intra-kingdom sequence conservation but remarkably diverge beyond. Molecular Dynamics simulation suggests contrasting LPIs of structurally superimposable but sequence-wise diverged IMM-exposed helices of Complex I (CI) subunit Ndufa1 from human and Arabidopsis depending on kingdom-specific unsaturation of cardiolipin fatty acyl chains. in cellulo assays consolidate inter-kingdom incompatibility of Ndufa1-helices due to the lipid-exposed amino acids. Plant-specific unsaturated fatty acids in human cells also trigger CI-instability. Taken together, we posit that altered LPIs calibrate sequence evolution at the IMM-arms of eukaryotic RCs.
Collapse
Affiliation(s)
- Pooja Gupta
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sristi Chakroborty
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Arun K Rathod
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - K Ranjith Kumar
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Shreya Bhat
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Suparna Ghosh
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Pallavi Rao T
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Kameshwari Yele
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Raman Bakthisaran
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - R Nagaraj
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Moutusi Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - Swasti Raychaudhuri
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
3
|
Zhang J, Cheng X, Hu A, Zhang X, Zhang M, Zhang L, Dai J, Yan G, Shen H, Fei G. A comprehensive view of the molecular features within the serum and serum EV of Alzheimer's disease. Analyst 2025; 150:922-935. [PMID: 39895359 DOI: 10.1039/d4an01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Conventional Alzheimer's disease research mainly focuses on cerebrospinal fluid, which requires an invasive sampling procedure. This method carries inherent risks for patients and could potentially lower patient compliance. EVs (Extracellular Vesicles) and blood are two emerging noninvasive mediators reflecting the pathological changes of Alzheimer's disease. Integrating the two serum proteomic information based on DIA (Data Independent Acquisition) is conducive to the comparison of serological research strategies, mining pathological information of AD, and evaluating the potential of EVs and blood in the diagnosis of AD. We generated a combined proteomic data resource of 39 serum samples derived from patients with AD and from age-matched controls (AMC) and identified 639 PGs (protein groups) in serum samples and 714 PGs in serum EV samples. The differentially expressed protein groups identified in both serum and serum EV provide a reflective profile of the pathological characteristics associated with AD. The combined strategy performed well, identifying 40 potential diagnostic markers with AUC values above 0.85, including two molecular diagnostic models that achieved an effectiveness score of 0.991.
Collapse
Affiliation(s)
- Jiayi Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Anqi Hu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xin Zhang
- Art school, Jiangsu University, Jiangsu, 212000, China
| | - Meng Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jiawei Dai
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Guoquan Yan
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China.
| |
Collapse
|
4
|
Sottatipreedawong M, Kazmi AA, Vercellino I. How Cryo-EM Revolutionized the Field of Bioenergetics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae089. [PMID: 39298136 DOI: 10.1093/mam/ozae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/31/2024] [Indexed: 02/19/2025]
Abstract
Ten years ago, the term "resolution revolution" was used for the first time to describe how cryogenic electron microscopy (cryo-EM) marked the beginning of a new era in the field of structural biology, enabling the investigation of previously unsolvable protein targets. The success of cryo-EM was recognized with the 2017 Chemistry Nobel Prize and has become a widely used method for the structural characterization of biological macromolecules, quickly catching up to x-ray crystallography. Bioenergetics is the division of biochemistry that studies the mechanisms of energy conversion in living organisms, strongly focused on the molecular machines (enzymes) that carry out these processes in cells. As bioenergetic enzymes can be arranged in complexes characterized by conformational heterogeneity/flexibility, they represent challenging targets for structural investigation by crystallography. Over the last decade, cryo-EM has therefore become a powerful tool to investigate the structure and function of bioenergetic complexes; here, we provide an overview of the main achievements enabled by the technique. We first summarize the features of cryo-EM and compare them to x-ray crystallography, and then, we present the exciting discoveries brought about by cryo-EM, particularly but not exclusively focusing on the oxidative phosphorylation system, which is a crucial energy-converting mechanism in humans.
Collapse
Affiliation(s)
- Muratha Sottatipreedawong
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Ahad Ali Kazmi
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Irene Vercellino
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| |
Collapse
|
5
|
Mallik S, Venezian J, Lobov A, Heidenreich M, Garcia-Seisdedos H, Yeates TO, Shiber A, Levy ED. Structural determinants of co-translational protein complex assembly. Cell 2025; 188:764-777.e22. [PMID: 39708808 DOI: 10.1016/j.cell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Protein assembly into functional complexes is critical to life's processes. While complex assembly is classically described as occurring between fully synthesized proteins, recent work showed that co-translational assembly is prevalent in human cells. However, the biological basis for the existence of this process and the identity of protein pairs that assemble co-translationally remain unknown. We show that co-translational assembly is governed by structural characteristics of complexes and involves mutually stabilized subunits. Accordingly, co-translationally assembling subunits are unstable in isolation and exhibit synchronized proteostasis with their partner. By leveraging structural signatures and AlphaFold2-based predictions, we accurately predicted co-translational assembly, including pair identities, at proteome scale and across species. We validated our predictions by ribosome profiling, stoichiometry perturbations, and single-molecule RNA-fluorescence in situ hybridization (smFISH) experiments that revealed co-localized mRNAs. This work establishes a fundamental connection between protein structure and the translation process, highlighting the overarching impact of three-dimensional structure on gene expression, mRNA localization, and proteostasis.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel.
| | - Johannes Venezian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Arseniy Lobov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Hector Garcia-Seisdedos
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ayala Shiber
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Wheeler MA, Quintana FJ. The neuroimmune connectome in health and disease. Nature 2025; 638:333-342. [PMID: 39939792 PMCID: PMC12039074 DOI: 10.1038/s41586-024-08474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/02/2024] [Indexed: 02/14/2025]
Abstract
The nervous and immune systems have complementary roles in the adaptation of organisms to environmental changes. However, the mechanisms that mediate cross-talk between the nervous and immune systems, called neuroimmune interactions, are poorly understood. In this Review, we summarize advances in the understanding of neuroimmune communication, with a principal focus on the central nervous system (CNS): its response to immune signals and the immunological consequences of CNS activity. We highlight these themes primarily as they relate to neurological diseases, the control of immunity, and the regulation of complex behaviours. We also consider the importance and challenges linked to the study of the neuroimmune connectome, which is defined as the totality of neuroimmune interactions in the body, because this provides a conceptual framework to identify mechanisms of disease pathogenesis and therapeutic approaches. Finally, we discuss how the latest techniques can advance our understanding of the neuroimmune connectome, and highlight the outstanding questions in the field.
Collapse
Affiliation(s)
- Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham & Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Paulo JA, Gygi SP, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complex adaptation to cold temperatures. Cell 2024; 187:6584-6598.e17. [PMID: 39395414 PMCID: PMC11601890 DOI: 10.1016/j.cell.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | | | - Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki 00014, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Maofu Liao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Ivanov BS, Bridges HR, Jarman OD, Hirst J. Structure of the turnover-ready state of an ancestral respiratory complex I. Nat Commun 2024; 15:9340. [PMID: 39472559 PMCID: PMC11522691 DOI: 10.1038/s41467-024-53679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory complex I is pivotal for cellular energy conversion, harnessing energy from NADH:ubiquinone oxidoreduction to drive protons across energy-transducing membranes for ATP synthesis. Despite detailed structural information on complex I, its mechanism of catalysis remains elusive due to lack of accompanying functional data for comprehensive structure-function analyses. Here, we present the 2.3-Å resolution structure of complex I from the α-proteobacterium Paracoccus denitrificans, a close relative of the mitochondrial progenitor, in phospholipid-bilayer nanodiscs. Three eukaryotic-type supernumerary subunits (NDUFS4, NDUFS6 and NDUFA12) plus a novel L-isoaspartyl-O-methyltransferase are bound to the core complex. Importantly, the enzyme is in a single, homogeneous resting state that matches the closed, turnover-ready (active) state of mammalian complex I. Our structure reveals the elements that stabilise the closed state and completes P. denitrificans complex I as a unified platform for combining structure, function and genetics in mechanistic studies.
Collapse
Affiliation(s)
- Bozhidar S Ivanov
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Structura Biotechnology Inc., Toronto, Canada
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
9
|
Chen B, Wang J, Huang M, Gui Y, Wei Q, Wang L, Tan BC. C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis. PLoS Genet 2024; 20:e1011419. [PMID: 39356718 PMCID: PMC11446459 DOI: 10.1371/journal.pgen.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai’an, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Qingqing Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Maldonado M. Plant supercomplex I + III2 structure and function: implications for the growing field. Biochem Soc Trans 2024; 52:1647-1659. [PMID: 39177070 PMCID: PMC11668291 DOI: 10.1042/bst20230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Plant Biology, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
11
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
12
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Jones SA, Ruprecht JJ, Crichton PG, Kunji ERS. Structural mechanisms of mitochondrial uncoupling protein 1 regulation in thermogenesis. Trends Biochem Sci 2024; 49:506-519. [PMID: 38565497 DOI: 10.1016/j.tibs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
14
|
Pyrihová E, King MS, King AC, Toleco MR, van der Giezen M, Kunji ERS. A mitochondrial carrier transports glycolytic intermediates to link cytosolic and mitochondrial glycolysis in the human gut parasite Blastocystis. eLife 2024; 13:RP94187. [PMID: 38780415 PMCID: PMC11115451 DOI: 10.7554/elife.94187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.
Collapse
Affiliation(s)
- Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - Alannah C King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - M Rey Toleco
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Mark van der Giezen
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
- Research Department Stavanger University HospitalStavangerNorway
| | - Edmund RS Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| |
Collapse
|
15
|
Laube E, Schiller J, Zickermann V, Vonck J. Using cryo-EM to understand the assembly pathway of respiratory complex I. Acta Crystallogr D Struct Biol 2024; 80:159-173. [PMID: 38372588 PMCID: PMC10910544 DOI: 10.1107/s205979832400086x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
Collapse
Affiliation(s)
- Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. Euglena's atypical respiratory chain adapts to the discoidal cristae and flexible metabolism. Nat Commun 2024; 15:1628. [PMID: 38388527 PMCID: PMC10884005 DOI: 10.1038/s41467-024-46018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.
Collapse
Affiliation(s)
- Zhaoxiang He
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengchen Wu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongtao Tian
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Hu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fangzhu Han
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complexes adaptation to cold temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575914. [PMID: 38293190 PMCID: PMC10827213 DOI: 10.1101/2024.01.16.575914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.
Collapse
|
18
|
Braun HP, Klusch N. Promotion of oxidative phosphorylation by complex I-anchored carbonic anhydrases? TRENDS IN PLANT SCIENCE 2024; 29:64-71. [PMID: 37599162 DOI: 10.1016/j.tplants.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
The mitochondrial NADH-dehydrogenase complex of the respiratory chain, known as complex I, includes a carbonic anhydrase (CA) module attached to its membrane arm on the matrix side in protozoans, algae, and plants. Its physiological role is so far unclear. Recent electron cryo-microscopy (cryo-EM) structures show that the CA module may directly provide protons for translocation across the inner mitochondrial membrane at complex I. CAs can have a central role in adjusting the proton concentration in the mitochondrial matrix. We suggest that CA anchoring in complex I represents the original configuration to secure oxidative phosphorylation (OXPHOS) in the context of early endosymbiosis. After development of 'modern mitochondria' with pronounced cristae structures, this anchoring became dispensable, but has been retained in protozoans, algae, and plants.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Niklas Klusch
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt, Germany.
| |
Collapse
|
19
|
Zhang T, Vďačný P. Deciphering phylogenetic relationships of and delimiting species boundaries within the controversial ciliate genus Conchophthirus using an integrative morpho-evo approach. Mol Phylogenet Evol 2024; 190:107931. [PMID: 37742881 DOI: 10.1016/j.ympev.2023.107931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The phylum Ciliophora (ciliates) comprises about 2600 symbiotic and over 5500 free-living species. The inclusion of symbiotic ciliates in phylogenetic analyses often challenges traditional classification frameworks due to their morphological adaptions to the symbiotic lifestyle. Conchophthirus is such a controversial obligate endocommensal genus whose affinities to other symbiotic and free-living scuticociliates are still poorly understood. Using uni- and multivariate morphometrics as well as 2D-based molecular and phylogenetic analyses, we attempted to test for the monophyly of Conchophthirus, study the boundaries of Conchophthirus species isolated from various bivalves at mesoscale, and reveal the phylogenetic relationships of Conchophthirus to other scuticociliates. Multidimensional analyses of morphometric and cell geometric data generated the same homogenous clusters, as did phylogenetic analyses based on 144 new sequences of two mitochondrial and five nuclear molecular markers. Conchophthirus is not closely related to 'core' scuticociliates represented by the orders Pleuronematida and Philasterida, as assumed in the past using morphological data. Nuclear and mitochondrial markers consistently showed the free-living Dexiotricha and the mouthless endosymbiotic Haptophrya to be the nearest relatives of Conchophthirus. These three highly morphologically and ecologically dissimilar genera represent an orphan clade from the early radiation of scuticociliates in molecular phylogenies.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
20
|
Silva MF, Douglas K, Sandalli S, Maclean AE, Sheiner L. Functional and biochemical characterization of the Toxoplasma gondii succinate dehydrogenase complex. PLoS Pathog 2023; 19:e1011867. [PMID: 38079448 PMCID: PMC10735183 DOI: 10.1371/journal.ppat.1011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The mitochondrial electron transport chain (mETC) is a series of membrane embedded enzymatic complexes critical for energy conversion and mitochondrial metabolism. In commonly studied eukaryotes, including humans and animals, complex II, also known as succinate dehydrogenase (SDH), is an essential four-subunit enzyme that acts as an entry point to the mETC, by harvesting electrons from the TCA cycle. Apicomplexa are pathogenic parasites with significant impact on human and animal health. The phylum includes Toxoplasma gondii which can cause fatal infections in immunocompromised people. Most apicomplexans, including Toxoplasma, rely on their mETC for survival, yet SDH remains largely understudied. Previous studies pointed to a divergent apicomplexan SDH with nine subunits proposed for the Toxoplasma complex, compared to four in humans. While two of the nine are homologs of the well-studied SDHA and B, the other seven have no homologs in SDHs of other systems. Moreover, SDHC and D, that anchor SDH to the membrane and participate in substrate bindings, have no homologs in Apicomplexa. Here, we validated five of the seven proposed subunits as bona fide SDH components and demonstrated their importance for SDH assembly and activity. We further find that all five subunits are important for parasite growth, and that disruption of SDH impairs mitochondrial respiration and results in spontaneous initiation of differentiation into bradyzoites. Finally, we provide evidence that the five subunits are membrane bound, consistent with their potential role in membrane anchoring, and we demonstrate that a DY motif in one of them, SDH10, is essential for complex formation and function. Our study confirms the divergent composition of Toxoplasma SDH compared to human, and starts exploring the role of the lineage-specific subunits in SDH function, paving the way for future mechanistic studies.
Collapse
Affiliation(s)
- Mariana F. Silva
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Kiera Douglas
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Sofia Sandalli
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
21
|
Moe A, Dimogkioka AR, Rapaport D, Öjemyr LN, Brzezinski P. Structure and function of the S. pombe III-IV-cyt c supercomplex. Proc Natl Acad Sci U S A 2023; 120:e2307697120. [PMID: 37939086 PMCID: PMC10655221 DOI: 10.1073/pnas.2307697120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023] Open
Abstract
The respiratory chain in aerobic organisms is composed of a number of membrane-bound protein complexes that link electron transfer to proton translocation across the membrane. In mitochondria, the final electron acceptor, complex IV (CIV), receives electrons from dimeric complex III (CIII2), via a mobile electron carrier, cytochrome c. In the present study, we isolated the CIII2CIV supercomplex from the fission yeast Schizosaccharomyces pombe and determined its structure with bound cyt. c using single-particle electron cryomicroscopy. A respiratory supercomplex factor 2 was found to be bound at CIV distally positioned in the supercomplex. In addition to the redox-active metal sites, we found a metal ion, presumably Zn2+, coordinated in the CIII subunit Cor1, which is encoded by the same gene (qcr1) as the mitochondrial-processing peptidase subunit β. Our data show that the isolated CIII2CIV supercomplex displays proteolytic activity suggesting a dual role of CIII2 in S. pombe. As in the supercomplex from S. cerevisiae, subunit Cox5 of CIV faces towards one CIII monomer, but in S. pombe, the two complexes are rotated relative to each other by ~45°. This orientation yields equal distances between the cyt. c binding sites at CIV and at each of the two CIII monomers. The structure shows cyt. c bound at four positions, but only along one of the two symmetrical branches. Overall, this combined structural and functional study reveals the integration of peptidase activity with the CIII2 respiratory system and indicates a two-dimensional cyt. c diffusion mechanism within the CIII2-CIV supercomplex.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Anna-Roza Dimogkioka
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| |
Collapse
|
22
|
Kohler A, Barrientos A, Fontanesi F, Ott M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep 2023; 24:e57092. [PMID: 37828827 PMCID: PMC10626428 DOI: 10.15252/embr.202357092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Antoni Barrientos
- Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
23
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
24
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
25
|
Gahan JM, Cartwright P, Nicotra ML, Schnitzler CE, Steinmetz PRH, Juliano CE. Cnidofest 2022: hot topics in cnidarian research. EvoDevo 2023; 14:13. [PMID: 37620964 PMCID: PMC10463417 DOI: 10.1186/s13227-023-00217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.
Collapse
Affiliation(s)
- James M Gahan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, 5008, Bergen, Norway
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL, 32080, USA
| | | | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
26
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
27
|
Geiger O, Sanchez-Flores A, Padilla-Gomez J, Degli Esposti M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. SCIENCE ADVANCES 2023; 9:eadh0066. [PMID: 37556552 PMCID: PMC10411912 DOI: 10.1126/sciadv.adh0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
We breathe at the molecular level when mitochondria in our cells consume oxygen to extract energy from nutrients. Mitochondria are characteristic cellular organelles that derive from aerobic bacteria and carry out oxidative phosphorylation and other key metabolic pathways in eukaryotic cells. The precise bacterial origin of mitochondria and, consequently, the ancestry of the aerobic metabolism of our cells remain controversial despite the vast genomic information that is now available. Here, we use multiple approaches to define the most likely living relatives of the ancestral bacteria from which mitochondria originated. These bacteria live in marine environments and exhibit the highest frequency of aerobic traits and genes for the metabolism of fundamental lipids that are present in the membranes of eukaryotes, sphingolipids, and cardiolipin.
Collapse
Affiliation(s)
- Otto Geiger
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformatica, Institute of Biotechnology, UNAM, Cuernavaca, México
| | | | | |
Collapse
|
28
|
Azinas S, Carroni M. Cryo-EM uniqueness in structure determination of macromolecular complexes: A selected structural anthology. Curr Opin Struct Biol 2023; 81:102621. [PMID: 37315343 DOI: 10.1016/j.sbi.2023.102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has become in the past 10 years one of the major tools for the structure determination of proteins. Nowadays, the structure prediction field is experiencing the same revolution and, using AlphaFold2, it is possible to have high-confidence atomic models for virtually any polypeptide chain, smaller than 4000 amino acids, in a simple click. Even in a scenario where all polypeptide chain folding were to be known, cryo-EM retains specific characteristics that make it a unique tool for the structure determination of macromolecular complexes. Using cryo-EM, it is possible to obtain near-atomic structures of large and flexible mega-complexes, describe conformational panoramas, and potentially develop a structural proteomic approach from fully ex vivo specimens.
Collapse
Affiliation(s)
- Stavros Azinas
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23A, Solna, 17165, Sweden. https://twitter.com/@stav____
| | - Marta Carroni
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23A, Solna, 17165, Sweden.
| |
Collapse
|
29
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
30
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
31
|
Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat Commun 2023; 14:2542. [PMID: 37248254 DOI: 10.1038/s41467-023-38158-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Tetrahymena thermophila, a classic ciliate model organism, has been shown to possess tubular mitochondrial cristae and highly divergent electron transport chain involving four transmembrane protein complexes (I-IV). Here we report cryo-EM structures of its ~8 MDa megacomplex IV2 + (I + III2 + II)2, as well as a ~ 10.6 MDa megacomplex (IV2 + I + III2 + II)2 at lower resolution. In megacomplex IV2 + (I + III2 + II)2, each CIV2 protomer associates one copy of supercomplex I + III2 and one copy of CII, forming a half ring-shaped architecture that adapts to the membrane curvature of mitochondrial cristae. Megacomplex (IV2 + I + III2 + II)2 defines the relative position between neighbouring half rings and maintains the proximity between CIV2 and CIII2 cytochrome c binding sites. Our findings expand the current understanding of divergence in eukaryotic electron transport chain organization and how it is related to mitochondrial morphology.
Collapse
Affiliation(s)
- Fangzhu Han
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Yiqi Hu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Mengchen Wu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhaoxiang He
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Hongtao Tian
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Long Zhou
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
32
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
33
|
Gagelin A, Largeau C, Masscheleyn S, Piel MS, Calderón-Mora D, Bouillaud F, Hénin J, Miroux B. Molecular determinants of inhibition of UCP1-mediated respiratory uncoupling. Nat Commun 2023; 14:2594. [PMID: 37147287 PMCID: PMC10162991 DOI: 10.1038/s41467-023-38219-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023] Open
Abstract
Brown adipose tissue expresses uncoupling protein 1 (UCP1), which dissipates energy as heat, making it a target for treating metabolic disorders. Here, we investigate how purine nucleotides inhibit respiration uncoupling by UCP1. Our molecular simulations predict that GDP and GTP bind UCP1 in the common substrate binding site in an upright orientation, where the base moiety interacts with conserved residues R92 and E191. We identify a triplet of uncharged residues, F88/I187/W281, forming hydrophobic contacts with nucleotides. In yeast spheroplast respiration assays, both I187A and W281A mutants increase the fatty acid-induced uncoupling activity of UCP1 and partially suppress the inhibition of UCP1 activity by nucleotides. The F88A/I187A/W281A triple mutant is overactivated by fatty acids even at high concentrations of purine nucleotides. In simulations, E191 and W281 interact with purine but not pyrimidine bases. These results provide a molecular understanding of the selective inhibition of UCP1 by purine nucleotides.
Collapse
Affiliation(s)
- Antoine Gagelin
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
| | - Corentin Largeau
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Sandrine Masscheleyn
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Mathilde S Piel
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Daniel Calderón-Mora
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France
| | - Frédéric Bouillaud
- Université Paris Cité, Institut Cochin, Inserm U1016, CNRS UMR8104, Paris, 75014, France
| | - Jérôme Hénin
- Université Paris Cité, Laboratoire de Biochimie Théorique CNRS UPR9080, Paris, 75005, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France.
| | - Bruno Miroux
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, 75005, France.
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires CNRS UMR7099, Paris, 75005, France.
| |
Collapse
|
34
|
Röhricht H, Przybyla-Toscano J, Forner J, Boussardon C, Keech O, Rouhier N, Meyer EH. Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:2170-2184. [PMID: 36695030 PMCID: PMC10069907 DOI: 10.1093/plphys/kiad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/11/2023] [Indexed: 06/02/2023]
Abstract
In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.
Collapse
Affiliation(s)
| | - Jonathan Przybyla-Toscano
- Present address: Laboratoire Physiologie Cellulaire & Végétale, Institut de Recherche Interdisciplinaire de Grenoble, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Commissariat à l’Energie Atomique et aux Energie Alternatives, Centre National de la Recherche Scientifique, F-38000 Grenoble, France
| | - Joachim Forner
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Nicolas Rouhier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Interactions Arbres-Microorganismes (IAM), Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
35
|
Liang Y, Plourde A, Bueler SA, Liu J, Brzezinski P, Vahidi S, Rubinstein JL. Structure of mycobacterial respiratory complex I. Proc Natl Acad Sci U S A 2023; 120:e2214949120. [PMID: 36952383 PMCID: PMC10068793 DOI: 10.1073/pnas.2214949120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activity of the electron transport chain (ETC) and adenosine triphosphate synthase, has emerged as a valuable target for the treatment of infection by Mycobacterium tuberculosis and other mycobacteria. The mycobacterial ETC is highly branched with multiple dehydrogenases transferring electrons to a membrane-bound pool of menaquinone and multiple oxidases transferring electrons from the pool. The proton-pumping type I nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I) is found in low abundance in the plasma membranes of mycobacteria in typical in vitro culture conditions and is often considered dispensable. We found that growth of Mycobacterium smegmatis in carbon-limited conditions greatly increased the abundance of Complex I and allowed isolation of a rotenone-sensitive preparation of the enzyme. Determination of the structure of the complex by cryoEM revealed the "orphan" two-component response regulator protein MSMEG_2064 as a subunit of the assembly. MSMEG_2064 in the complex occupies a site similar to the proposed redox-sensing subunit NDUFA9 in eukaryotic Complex I. An apparent purine nucleoside triphosphate within the NuoG subunit resembles the GTP-derived molybdenum cofactor in homologous formate dehydrogenase enzymes. The membrane region of the complex binds acyl phosphatidylinositol dimannoside, a characteristic three-tailed lipid from the mycobacterial membrane. The structure also shows menaquinone, which is preferentially used over ubiquinone by gram-positive bacteria, in two different positions along the quinone channel, comparable to ubiquinone in other structures and suggesting a conserved quinone binding mechanism.
Collapse
Affiliation(s)
- Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, TorontoM5S 1A8, Canada
| | - Alicia Plourde
- Department of Molecular and Cellular Biology, University of Guelph, TorontoN1G 2W1, Canada
| | - Stephanie A. Bueler
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, TorontoM5S 1A8, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91Stockholm, Sweden
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, TorontoN1G 2W1, Canada
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, TorontoM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoM5G 1L7, Canada
| |
Collapse
|
36
|
Sazanov LA. From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I. Biochem J 2023; 480:319-333. [PMID: 36920092 PMCID: PMC10212512 DOI: 10.1042/bcj20210285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.
Collapse
Affiliation(s)
- Leonid A. Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
37
|
Mühleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Maréchal A, Sharma V, Amunts A. Structural basis of mitochondrial membrane bending by the I-II-III 2-IV 2 supercomplex. Nature 2023; 615:934-938. [PMID: 36949187 PMCID: PMC10060162 DOI: 10.1038/s41586-023-05817-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- School of Infection and Immunity, University of Glasgow, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Rozbeh Baradaran
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Thomas Gruhl
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, USA
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
38
|
Agip ANA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J. Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. eLife 2023; 12:e84424. [PMID: 36622099 PMCID: PMC9977279 DOI: 10.7554/elife.84424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Injae Chung
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alvaro Sanchez-Martinez
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alexander J Whitworth
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
39
|
Maldonado M, Fan Z, Abe KM, Letts JA. Plant-specific features of respiratory supercomplex I + III 2 from Vigna radiata. NATURE PLANTS 2023; 9:157-168. [PMID: 36581760 PMCID: PMC9873571 DOI: 10.1038/s41477-022-01306-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 05/07/2023]
Abstract
The last steps of cellular respiration-an essential metabolic process in plants-are carried out by mitochondrial oxidative phosphorylation. This process involves a chain of multi-subunit membrane protein complexes (complexes I-V) that form higher-order assemblies called supercomplexes. Although supercomplexes are the most physiologically relevant form of the oxidative phosphorylation complexes, their functions and structures remain mostly unknown. Here we present the cryogenic electron microscopy structure of the supercomplex I + III2 from Vigna radiata (mung bean). The structure contains the full subunit complement of complex I, including a newly assigned, plant-specific subunit. It also shows differences in the mitochondrial processing peptidase domain of complex III2 relative to a previously determined supercomplex with complex IV. The supercomplex interface, while reminiscent of that in other organisms, is plant specific, with a major interface involving complex III2's mitochondrial processing peptidase domain and no participation of complex I's bridge domain. The complex I structure suggests that the bridge domain sets the angle between the enzyme's two arms, limiting large-scale conformational changes. Moreover, complex I's catalytic loops and its response in active-to-deactive assays suggest that, in V. radiata, the resting complex adopts a non-canonical state and can sample deactive- or open-like conformations even in the presence of substrate. This study widens our understanding of the possible conformations and behaviour of complex I and supercomplex I + III2. Further studies of complex I and its supercomplexes in diverse organisms are needed to determine the universal and clade-specific mechanisms of respiration.
Collapse
Affiliation(s)
- M Maldonado
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
- Department of Plant Biology, University of California, Davis, CA, USA.
| | - Z Fan
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - K M Abe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - J A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
40
|
Klusch N, Dreimann M, Senkler J, Rugen N, Kühlbrandt W, Braun HP. Cryo-EM structure of the respiratory I + III 2 supercomplex from Arabidopsis thaliana at 2 Å resolution. NATURE PLANTS 2023; 9:142-156. [PMID: 36585502 PMCID: PMC9873573 DOI: 10.1038/s41477-022-01308-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 05/15/2023]
Abstract
Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III2 with a co-purified ubiquinone in the QO site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane.
Collapse
Affiliation(s)
- Niklas Klusch
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany.
| | - Maximilian Dreimann
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
41
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Abstract
Variation in complex composition provides clues about the function of individual subunits.
Collapse
Affiliation(s)
| | - Dei M Elurbe
- Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|