1
|
Kuroki H, Tsunoda M. Quantification of amino acids in small volumes of human sweat collected from fingertips of healthy subjects at rest. J Pharm Biomed Anal 2025; 257:116718. [PMID: 39908828 DOI: 10.1016/j.jpba.2025.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Sweat is a body fluid that can be collected noninvasively. Sweat can be utilized as a biofluid for quantification of amino acids for clinical applications, such as disease screening. Amino acids are essential for many biological processes in the human body. Hence, the development of analytical methods for determining the concentrations of amino acids in human sweat can offer valuable insights into the health status of an individual. Sweat analysis can further be utilized as a tool for screening various pathological conditions. In this study, the concentrations of amino acids in small volumes of human sweat collected from fingertips of healthy subjects at rest were investigated. Reliable sweat collection was achieved by optimizing the sample collection procedure. The amino acids in human sweat were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole, followed by analysis using high-performance liquid chromatography with fluorescence detection. The amino acid concentrations in sweat were quantified. The temporal variability and sex-specific differences in the concentrations of amino acids were evaluated. The results of both intra- and inter-day sweat analyses revealed that except for citrulline and arginine, the concentrations of other amino acids in sweat are relatively stable. This study proposes that the concentrations of amino acids in sweat can be determined with high accuracy, regardless of sweat collection timing. The findings of this study provide useful information that can help develop disease screening methods based on sweat analysis.
Collapse
Affiliation(s)
- Hiroshi Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Al-Qahtani SD, Al-Senani GM, Aldoghaim M. Development of cellulose aerogel as a colorimetric swab imprinted with betalain-extracted beetroot (Beta vulgaris L.) for sweat monitoring. Int J Biol Macromol 2025; 309:143001. [PMID: 40210041 DOI: 10.1016/j.ijbiomac.2025.143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/01/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
A new biochromic aerogel was developed by embedding a biomolecular probe of betalain (BTA) within a microporous cellulose swab. In response to the biochemical alterations in perspiration, the aerogel detector resembling a biochromic sponge changed its color from red to yellow due to the pH-induced intramolecular charge delocalization on the betalain molecule. As the pH of a perspiration mimic solution was raised, the betalain sensor showed colorimetric changes in the absorbance spectra, demonstrating a hypsochromic shift from 565 nm to 423 nm. The betalain chromophore, derived from beetroot (Beta vulgaris L.), was encapsulated into microporous cellulose. After being activated with phosphoric acid, the wood pulp was freeze-dried to produce the microporous sponge-like cellulose swab. Because of the high-water solubility of betalain, a mordant (M) was applied to produce M/BTA coordination complex nanoparticles (10-25 nm) within the freeze-dried aerogel by adding potash alum. The aerogel morphology showed porous architectures of microfibrillated alignments with a width of 5-20 μm and a pore size of 10-55 μm. The cytotoxicity of the microporous cellulose swab was assessed. The changes in colorimetric intensity, absorption spectra, and color space coordinates were investigated.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Maryam Aldoghaim
- Department of Chemistry, College of science, King Faisal University, Al-ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Guo X, Zhang C, Wang Y, Li Z, Tan Y, Zhu D, Song W, Kong Y, Du J, Huang Y, Liang L, Li J, Zhang M, Hou L, Liu Q, Tian F, Yu B, Kong Y, Zhou Z, Fu X, Huang S. Hypoxia-Driven Neurovascular Impairment Underlies Structural-Functional Dissociation in Diabetic Sudomotor Dysfunction. MedComm (Beijing) 2025; 6:e70173. [PMID: 40276644 PMCID: PMC12019874 DOI: 10.1002/mco2.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025] Open
Abstract
Sudomotor dysfunction in diabetic patients increases the risk of fissures, infections, and diabetic foot ulcers (DFUs), thereby reducing the quality of life. Despite its clinical importance, the mechanisms underlying this dysfunction remain inadequately elucidated. This study addresses this gap by demonstrating that despite structural integrity, sweat glands (SGs) in diabetic individuals with DFUs, and a murine model of diabetic neuropathy (DN), exhibit functional impairments, as confirmed by histological and functional assays. Integrated transcriptome and proteome analysis revealed significant upregulation of the SG microenvironment in response to hypoxia, highlighting potential underlying pathways involved. In addition, histological staining and tissue clearing techniques provided evidence of impaired neurovascular networks adjacent to SGs. Single-cell RNA sequencing unveiled intricate intercellular communication networks among endothelial cells (ECs), neural cells (NCs), and sweat gland cells (SGCs), emphasizing intricate cellular interactions within the SG microenvironment. Furthermore, an in vitro SGC-NC interaction model (SNIM) was employed to validate the supportive role of NCs in regulating SGC functions, highlighting the neurovascular-SG axis in diabetic pathophysiology. These findings confirm the hypoxia-driven upregulation of the SG microenvironment and underscore the critical role of the neurovascular-SG axis in diabetic pathophysiology, providing insights into potential therapeutic targets for managing diabetic complications and improving patient outcomes.
Collapse
Affiliation(s)
- Xu Guo
- College of GraduateTianjin Medical UniversityTianjinPeople's Republic of China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Chao Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
- School of MedicineNankai UniversityTianjinPeople's Republic of China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Yaxin Tan
- College of GraduateTianjin Medical UniversityTianjinPeople's Republic of China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Dongzhen Zhu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jinpeng Du
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Yuyan Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Liting Liang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Mengde Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Linhao Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Qinhua Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Feng Tian
- College of GraduateTianjin Medical UniversityTianjinPeople's Republic of China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Bingyang Yu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Yue Kong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Zhenyu Zhou
- Department of OrthopedicsThe 960th Hospital of the PLA Joint Logistics Support ForceJinanPeople's Republic of China
| | - Xiaobing Fu
- College of GraduateTianjin Medical UniversityTianjinPeople's Republic of China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
- School of MedicineNankai UniversityTianjinPeople's Republic of China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationBeijingPeople's Republic of China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingPeople's Republic of China
- Research Unit of Trauma Care, Tissue Repair and RegenerationChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
4
|
Pan SF, Tian XD, Lu Y, Liao YQ, Liu MQ, Meng LY, Zhou L, Zhang Y. Wearable SERS-Microfluidic Patch for Real-Time in Situ Monitoring of Chiral Metabolites in Sweat. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500770. [PMID: 40296372 DOI: 10.1002/smll.202500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Small chiral metabolic molecules are increasingly recognized as pivotal biomarkers for disease monitoring and treatment. Here, a wearable microfluidic patch is presented that integrates chiral 3D plasmonic nanostructures with surface-enhanced Raman spectroscopy (SERS) sensing activity for the in situ and real-time metabolic profiling of chiral molecules in sweat. The microfluidic patch is designed for the direct, in situ capture and storage of microliter volumes of sweat. By exploiting the 3D chiral plasmonic coupling interactions within the nanostructures, the integrated SERS sensor on the patch allows for highly sensitive and quantitative enantiomer detection through their unique fingerprint SERS spectra. In a proof-of-concept demonstration, the first in situ, real-time quantitative detection of chiral drug metabolite and pH in human sweat using this device is successfully conducted. This capability enables the capturing of an individual's dynamic metabolic profile. Leveraging this solution, pharmacokinetic correlations are established, showcasing the potential application of the device in assessing human health.
Collapse
Affiliation(s)
- Shuang-Feng Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350025, P. R. China
| | - Xiang-Dong Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Ying Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350025, P. R. China
| | - Yu-Qin Liao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350025, P. R. China
| | - Mei-Qing Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Ling-Yi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Lei Zhou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350025, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| |
Collapse
|
5
|
Brasier N, Niederberger C, Zanella M, Othman A, Schlapbach R, Kunz L, Dittmann A, Reeve K, Prummer M, Goldhahn J. The molecular signature of heat stress in sweat reveals non-invasive biomarker candidates for health monitoring. Commun Biol 2025; 8:650. [PMID: 40269247 PMCID: PMC12019370 DOI: 10.1038/s42003-025-08080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Heat stress is a significant public health challenge that leads to an increased risk of serious health deterioration, injuries, and loss of economic productivity. While the gold standard for monitoring heat stress continues to remain with population-based measurements, a straight-forward person-centered approach is lacking. Sweat can supply a wealth of molecular information, ranging from protein levels to levels of metabolites; it is thus a promising monitoring biofluid. A thorough investigation of sweat's molecular signature during heat stress is called for. We conducted a cross-over study on healthy participants with personalized heat-stress visits to investigate heat stress's proteomic and molecular signatures in sweat. Through mass-spectrometry analysis, we identified multiple candidate biomarkers ranging from amino acids to microbiome metabolites and proteins. To the best of our knowledge, these biomarker candidates represent the first successful approach to metabolically differentiate between various heat stressors thereby enabling their acute monitoring. While these biomarker candidates need further investigation to confirm their clinical value, many have already been identified as directly associated with heat stress in animals and plants. Once further investigated, next-generation wearable devices for person-centered, on-skin sweat-analysing platforms could be developed that would transform health management during exposure to heat stress.
Collapse
Affiliation(s)
- Noé Brasier
- Institute of Translational Medicine, Department Health Science and Technology, ETH Zurich, Zurich, Switzerland.
- Collegium Helveticum, Zürich, Switzerland.
- Department of Digitalization & ICT, University Hospital Basel, Basel, Switzerland.
| | - Carmela Niederberger
- Institute of Translational Medicine, Department Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Martina Zanella
- Functional Genomics Center Zurich, UZH & ETH, Zurich, Switzerland
| | - Alaa Othman
- Functional Genomics Center Zurich, UZH & ETH, Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, UZH & ETH, Zurich, Switzerland
| | - Laura Kunz
- Functional Genomics Center Zurich, UZH & ETH, Zurich, Switzerland
| | - Antje Dittmann
- Functional Genomics Center Zurich, UZH & ETH, Zurich, Switzerland
| | - Kelly Reeve
- NEXUS Personalized Health Technologies, ETH Zurich, and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Prummer
- NEXUS Personalized Health Technologies, ETH Zurich, and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Jörg Goldhahn
- Institute of Translational Medicine, Department Health Science and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Bolliger M, Wasinger D, Brunmair J, Hagn G, Wolf M, Preindl K, Reiter B, Bileck A, Gerner C, Fitzal F, Meier-Menches SM. Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria. EPMA J 2025; 16:165-182. [PMID: 39991101 PMCID: PMC11842658 DOI: 10.1007/s13167-025-00396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025]
Abstract
Objective Metabolomics measurements of eccrine sweat may provide novel and relevant biomedical information to support predictive, preventive and personalised medicine (3PM). However, only limited data is available regarding metabolic alterations accompanying chemotherapy of breast cancer patients related to residual cancer burden (RCB) or therapy response. Here, we have applied Metabo-Tip, a non-invasive metabolomics assay based on the analysis of eccrine sweat from the fingertips, to investigate the feasibility of such an approach, especially with respect to drug monitoring, assessing lifestyle parameters and stratification of breast cancer patients. Methods Eccrine sweat samples were collected from breast cancer patients (n = 9) during the first cycle of neoadjuvant chemotherapy at four time points in this proof-of-concept study at a Tertiary University Hospital. Metabolites in eccrine sweat were analysed using mass spectrometry. Blood plasma samples from the same timepoints were also collected and analysed using a validated targeted metabolomics kit, in addition to proteomics and fatty acids/oxylipin analysis. Results A total of 247 exogenous small molecules and endogenous metabolites were identified in eccrine sweat of the breast cancer patients. Cyclophosphamide and ondansetron were successfully detected and monitored in eccrine sweat of individual patients and accurately reflected the administration schedule. The non-essential amino acids asparagine, serine and proline, as well as ornithine were significantly regulated in eccrine sweat and blood plasma over the therapy cycle. However, their distinct time-dependent profiles indicated compartment-specific distributions. Indeed, the metabolite composition of eccrine sweat seems to largely resemble the composition of the interstitial fluid. Plasma proteins and fatty acids/oxylipins were not affected by the first treatment cycle. Individual smoking habit was revealed by the simultaneous detection of nicotine and its primary metabolite cotinine in eccrine sweat. Stratification according to RCB revealed pronounced differences in the metabolic composition of eccrine sweat in these patients at baseline, e.g., essential amino acids, possibly due to the systemic contribution of breast cancer and its impact on metabolic turnover. Conclusion Mass spectrometry-based analysis of metabolites from eccrine sweat of breast cancer patients successfully qualified lifestyle parameters for risk assessment and allowed us to monitor drug treatment and systemic response to therapy. Moreover, eccrine sweat revealed a potentially predictive metabolic pattern stratifying patients by the extent of the metabolic activity of breast cancer tissue at baseline. Eccrine sweat is derived from the otherwise hardly accessible interstitial fluid and, thus, opens up a new dimension for biomonitoring of breast cancer in secondary and tertiary care. The simple sample collection without the need for trained personnel could also enable decentralised long-term biomonitoring to assess stable disease or disease progression. Eccrine sweat analysis may indeed significantly advance 3PM for the benefit of breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-025-00396-6.
Collapse
Affiliation(s)
- Michael Bolliger
- Department of General Surgery (Division of Visceral Surgery), Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Surgery, St. Francis Hospital, Nikolsdorfergasse 32, 1050 Vienna, Austria
| | - Daniel Wasinger
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Julia Brunmair
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Gerhard Hagn
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Michael Wolf
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Karin Preindl
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Andrea Bileck
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Florian Fitzal
- Department of Surgery and Vascular Surgery, Hanusch Hospital, Heinrich-Collin-Str. 30, 1140 Vienna, Austria
| | - Samuel M. Meier-Menches
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Guo J, Sun L, Zhang H, Zhao Y. Frog tongue-inspired wettable microfibers for particles capture. Sci Bull (Beijing) 2025; 70:383-389. [PMID: 39645469 DOI: 10.1016/j.scib.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Fibers have been of great significance in our daily lives, especially in the industrial production of masks. Research in this area has been focused on developing microfibers with superior functions to enhance the filtration performances of the masks. Herein, inspired by the frog's predation mechanism using its tongues to swiftly grab flying insects, we propose novel porous wettable microfibers from microfluidics to efficiently capture particles in the air for filtration. Upon pre-dispersing LP emulsions into polyurethane (PU), porous microfibers dispersed with oil droplets could be continuously spun from a co-flow microfluidic device based on the quick phase inversion of PU. To design an optimal system with frog-tongue-like interfacial adhesion properties, the wettability performances of the porous microfibers are investigated under full, partial, and no oil coverage conditions. When implemented in a mask, the 3D patterned networks based on the frog-tongue-inspired microfibers have been proven with remarkable particle capture performances while maintaining good air permeability. Based on these features, we believe that frog-tongue-inspired microfibers and their derived masks are of practical significance in multiple applications.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518071, China; Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Spinelli JC, Suleski BJ, Wright DE, Grow JL, Fagans GR, Buckley MJ, Yang DS, Yang K, Beil SM, Wallace JC, DiZoglio TS, Model JB, Love S, Macintosh DE, Scarth AP, Marrapode MT, Serviente C, Avila R, Alahmad BK, Busa MA, Wright JA, Li W, Casa DJ, Rogers JA, Lee SP, Ghaffari R, Aranyosi AJ. Wearable microfluidic biosensors with haptic feedback for continuous monitoring of hydration biomarkers in workers. NPJ Digit Med 2025; 8:76. [PMID: 39893305 PMCID: PMC11787291 DOI: 10.1038/s41746-025-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Real-time monitoring of hydration biomarkers in tandem with biophysical markers can offer valuable physiological insights about heat stress and related thermoregulatory response. These metrics have been challenging to achieve with wearable sensors. Here we present a closed-loop electrochemical/biophysical wearable sensing device and algorithms that directly measure whole-body sweat loss, sweating rate, sodium concentration, and sodium loss with electrode arrays embedded in a microfluidic channel. The device contains two temperature sensors for skin temperature and thermal flux recordings, and an accelerometer for real-time monitoring of activity level. An onboard haptic module enables vibratory feedback cues to the wearer once critical sweat loss thresholds are reached. Data is stored onboard in memory and autonomously transmitted via Bluetooth to a smartphone and cloud portal. Field studies conducted in physically demanding activities demonstrate the key capabilities of this platform to inform hydration interventions in highly challenging real-world settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Da Som Yang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | | | | | | | - Jeffrey B Model
- Epicore Biosystems, Inc, Cambridge, MA, USA
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | | | | | | | - Corinna Serviente
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Barrak K Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Michael A Busa
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - John A Wright
- Epicore Biosystems, Inc, Cambridge, MA, USA
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Weihua Li
- Epicore Biosystems, Inc, Cambridge, MA, USA
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Douglas J Casa
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - John A Rogers
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Departments of Neurological Surgery, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA.
| | - Stephen P Lee
- Epicore Biosystems, Inc, Cambridge, MA, USA.
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| | - Roozbeh Ghaffari
- Epicore Biosystems, Inc, Cambridge, MA, USA.
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Alexander J Aranyosi
- Epicore Biosystems, Inc, Cambridge, MA, USA.
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Jiang D, Liu X, Zhan W, Fu M, Liu J, He J, Li Y, Li Y, Chen X, Yu C. Skin-Interfaced Wearable Sensor for Long-Term Reliable Monitoring of Uric Acid and pH in Sweat. NANO LETTERS 2025; 25:1427-1435. [PMID: 39818914 DOI: 10.1021/acs.nanolett.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Wearable sweat sensors offering real-time monitoring of biomarker levels suffer from stability and accuracy issues, primarily due to low biomarker concentrations, fluctuating sweat pH, and material detachment from sensor deformation. Here, we developed a wearable sensing system integrated with two advanced electrodes and a flexible microchannel for long-term reliable monitoring of sweat pH and uric acid (UA). By printing the ink doped with nanomaterials (Co3O4@CuCo2O4 and polyaniline), we achieved highly stable electrodes for the direct analysis of perspiration, without additional surface modification. Additionally, real-time pH analysis provided a means for sensitivity calibration, reducing the effect of individual metabolism and exercise intensity. As a result, the wearable sensing system for effective gout management was validated by accurately tracking the UA fluctuations in serum and sweat of hyperuricemia patients and healthy individuals. These findings offer a reliable method for tracking biomarkers to assess personal health.
Collapse
Affiliation(s)
- Danfeng Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| | - Wenjun Zhan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Mengmeng Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jiacheng Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yunlong Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yingguo Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| |
Collapse
|
10
|
Zhi H, Qin Y, Li Y, Wang F, Feng L. A flexible, water anchoring, and colorimetric ionogel for sweat monitoring. Biomater Sci 2025; 13:677-687. [PMID: 39699242 DOI: 10.1039/d4bm01482k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
As water-saturated polymer networks, the easy water loss of hydrogels directly affects their end-use applications. Minimizing the ratio of free water and increasing the ratio of bound water in the gel system has become key to extending the service life. In this work, an ionogel is prepared that effectively regulates the proportion of free water and bound water through the formation of wrinkle angles by the hydrophilic and hydrophobic chains in the gel system and the non-volatile nature of the ionic liquid. Acrylamide and N-acryloyl phenylalanine are used as free radical comonomers, and phenol red is used as an acid-base indicator. The ionic liquid is used as a dispersant to stabilize the whole framework. Due to the hydrogen bonding interactions, electrostatic interactions, and ion-ion interactions, the ionogel exhibits good stretchability, adhesion, pH sensitivity, and stability. The ionogel can be stretched in multiple directions without cracking and can be bent 180° after being left in air for 45 days. Assembling the ionogel into a wearable device can effectively monitor the pH value of sweat during exercise. The detection results are displayed in the form of RGB values, providing a preliminary diagnosis of the health of the human body.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Yingxi Qin
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Yang Li
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Fengya Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| |
Collapse
|
11
|
Qian Y, Wang H, Qu Z, Li Q, Wang D, Yang X, Qin H, Wei H, Zhang F, Qing G. Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. MATERIALS HORIZONS 2025; 12:499-511. [PMID: 39485285 DOI: 10.1039/d4mh01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m-3) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.
Collapse
Affiliation(s)
- Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Hao Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zhen Qu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300000, P. R. China
| | - Haijie Wei
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Cai J, Cao M, Bai J, Sun M, Ma C, Emran MY, Kotb A, Bo X, Zhou M. Flexible epidermal wearable sensor for Athlete's sweat biomarkers monitoring. Talanta 2025; 282:126986. [PMID: 39383716 DOI: 10.1016/j.talanta.2024.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Wearable sweat sensors hold great promise for the monitoring of athletic sweat biomarkers that are reflective of physical status and the inimitable feature of wearable sensors to conduct dynamic sweat analysis in situ. However, the preparative methods of wearable patches for monitoring athlete's biomarkers are often complicated. Here, we demonstrate the first example of "sports lab-on-skin" as a fully integrated epidermal sweat sensor through simple laser engraving and laser cutting methods, which enables on-body and wirelessly measuring sweat Na+, sweat K+, sweat lactate, and initial sweat rate for physical status assessment. We test the performance of the "sports lab-on-skin" in both physically trained and un-trained groups under the same exercise intensity. We also validate the influence of different scenarios (water intake, breakfast, and exercise intensity) on dehydration time, sweat K+ level, sweat lactate level, and initial sweat rate.
Collapse
Affiliation(s)
- Jian Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
13
|
Ling W, Shang X, Liu J, Tang T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens Bioelectron 2025; 267:116852. [PMID: 39426278 DOI: 10.1016/j.bios.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Continuous monitoring of sweat nutrients offers valuable insights into metabolic cycling and health levels. However, existing methods often lack adaptability and real-time capabilities. Here, we propose a skin-mountable flexible biosensor integrated with metal-organic framework (MOF)-derived composites for real-time monitoring of sweat ascorbic acid (AA) levels. The biosensor features a miniaturized, highly integrated system capable of an imperceptible, stretchable skin patch with dimensions of 16.9 × 9.9 × 0.1 mm3, ensuring conformal integration with curvilinear skin contours. The introduction of a copper-based MOF anchored with poly(3,4-ethylenedioxythiophene) (Cu-MOF/PEDOT) significantly enhances sensing performance toward AA, achieving a detection limit of 0.76 μM and a sensitivity of 725.7 μA/(mM·cm2). Moreover, a miniaturized flexible circuit enables wireless communication, resulting in a lightweight, wearable platform weighing only 1.3 g. Structural and electrochemical analyses confirm the favorable sensitivity, reversibility, and stability of the biosensor, while in-vivo validation in human subjects further reveals the capability to track sweat AA variations during nutrient intake and sustained exercise, showcasing its potential in metabolic cycle assessment and health management. The biosensor presents a promising avenue for scalable health monitoring using adaptable and user-friendly technologies.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China; Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| | - Xue Shang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Junchen Liu
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tao Tang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
14
|
Aerathupalathu
Janardhanan J, She JW, Yu HH. Easy-to-Engineer Flexible Nanoelectrode Sensor from an Inexpensive Overhead Projector Sheet for Sweat Neuropeptide-Y Detection. ACS APPLIED BIO MATERIALS 2024; 7:8423-8433. [PMID: 39548983 PMCID: PMC11653399 DOI: 10.1021/acsabm.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
In this paper, we report an inexpensive and easy-to-engineer flexible nanobiosensor electrode platform by exploring a nonconductive overhead projector (OHP) sheet for sweat Neuropeptide-Y (NPY) detection, a potential biomarker for stress, cardiovascular regulation, appetite, etc. We converted a nonconductive OHP sheet into a conductive nanobiosensor electrode platform with a hybrid polymerization method, which consists of interfacial polymerization of pyrrole and a template-free electropolymerization technique to decorate the electrode platform with poly(EDOT-COOH-co-EDOT-EG3) nanotubes. The selection of poly(EDOT-COOH) features an easy conjugation of NPY antibody (NPY-Ab) through EDC/Sulfo-NHS coupling chemistry, while poly(EDOT-EG3) is best known to reduce nonspecific binding of biomolecules. The antibody conjugation on the polymer surface was characterized by a quartz crystal microbalance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and chronoamperometry techniques. The OHP nanosensor platform exhibited the successful detection of NPY analyte through a chronoamperometry method in phosphate-buffered saline with a wide range of concentrations from 1 pg/mL to 1 μg/mL with a limit of detection of 0.68 pg/mL having good linearity (R2 = 0.9841). The sensor platform exhibited excellent stability, reproducibility, repeatability, and a shelf-life of 13 days. Furthermore, the sensor showed superior selectivity to a 100 pg/mL NPY analyte among other interfering compounds such as tumor necrosis factor α, cortisol, and Interleukin-6. The clinical practicality of the sensor was confirmed through the detection of 100 pg/mL NPY spiked artificial perspiration, highlighting the possibility of integrating the sensor platform to wearable healthcare applications.
Collapse
Affiliation(s)
- Jayakrishnan Aerathupalathu
Janardhanan
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Sustainable Chemical Science
and Technology, Academia Sinica, Taipei City 115201, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Wei She
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Nano Science and Technology
Program, Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiao-hua Yu
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Sustainable Chemical Science
and Technology, Academia Sinica, Taipei City 115201, Taiwan
| |
Collapse
|
15
|
Li G, Zhao X, Tang X, Yao L, Li W, Wang J, Liu X, Han B, Fan X, Qiu T, Hao Q. Wearable Hydrogel SERS Chip Utilizing Plasmonic Trimers for Uric Acid Analysis in Sweat. NANO LETTERS 2024; 24:13447-13454. [PMID: 39392787 DOI: 10.1021/acs.nanolett.4c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Uric acid is typically measured through blood tests, which can be inconvenient and uncomfortable for patients. Herein, we propose a wearable surface-enhanced Raman scattering (SERS) chip, incorporating a hydrogel membrane with integrated plasmonic trimers, for noninvasive monitoring of uric acid in sweat. The plasmonic trimers feature sub 5 nm nanogaps, generating strong electromagnetic fields to boost the Raman signal of surrounding molecules. Simultaneously, the hydrogel membrane pumps sweat through these gaps, efficiently capturing sweat biomarkers for SERS detection. The chip can achieve saturation adsorption of sweat within 5 min, eliminating variations in individual sweat production rates. Dynamic SERS tracking of uric acid and lactic acid levels during anaerobic exercise reveals a temporary suppression of uric acid metabolism, likely due to metabolic competition with lactic acid. Furthermore, long-term monitoring correlates well with blood test results, confirming that regular exercise helps reduce serum uric acid levels and supporting its potential in managing hyperuricemia.
Collapse
Affiliation(s)
- Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Weiyi Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Jiawei Wang
- State Key Laboratory on Tunable Laser Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Xiaojing Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| |
Collapse
|
16
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
17
|
Tan SCL, Ning Y, Yu Y, Goh WP, Jiang C, Liu L, Zheng XT, Yang L. Stretchable Sweat Lactate Sensor with Dual-Signal Read-Outs. Chem Asian J 2024; 19:e202400496. [PMID: 39037569 DOI: 10.1002/asia.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Innovations in wearable sweat sensors hold great promise to provide deeper insights into molecular level health information non-invasively. Lactate, a key metabolite present in sweat, holds immense significance in assessing physiological conditions and performance in sports physiology and health sensing. This paper presents the development and characterization of stretchable electrodes with ultrahigh active surface area of 648 % for lactate sensing. The as-printed stretchable electrodes were functionalized with an electron transfer layer comprising Toluidine Blue O and multi-walled carbon nanotubes (MWCNTs), and an enzymatic layer consisting of lactate dehydrogenase with β-Nicotinamide adenine dinucleotide as the cofactor for lactate selectivity. This sensor achieves a dual-signal read-out in which both electrochemical and fluorescence signals were obtained during lactate detection, demonstrating promising sensor performance in terms of sensitivity and reliability. We demonstrate the robustness of the dual-signal sensor under simulated conditions of physical deformation and shifted excitation. Under these compromised conditions, the performance of the stretchable electrodes remained largely unaffected, showcasing their potential for robust and adaptable sensing platforms in wearable health monitoring applications.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuetong Ning
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Liyuan Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Republic of Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
18
|
Rovira M, Lafaye C, Demuru S, Kunnel BP, Aymerich J, Cuenca J, Serra-Graells F, Margarit-Taulé JM, Haque R, Saubade M, Fernández-Sánchez C, Jimenez-Jorquera C. Assessing the performance of a robust multiparametric wearable patch integrating silicon-based sensors for real-time continuous monitoring of sweat biomarkers. Biosens Bioelectron 2024; 262:116560. [PMID: 39018979 DOI: 10.1016/j.bios.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
The development of wearable devices for sweat analysis has experienced significant growth in the last two decades, being the main focus the monitoring of athletes health during workouts. One of the main challenges of these approaches has been to attain the continuous monitoring of sweat for time periods over 1 h. This is the main challenge addressed in this work by designing an analytical platform that combines the high performance of potentiometric sensors and a fluidic structure made of a plastic fabric into a multiplexed wearable device. The platform comprises Ion-Sensitive Field-Effect Transistors (ISFETs) manufactured on silicon, a tailor-made solid-state reference electrode, and a temperature sensor integrated into a patch-like polymeric substrate, together with the component that easily collects and drives samples under continuous capillary flow to the sensor areas. ISFET sensors for measuring pH, sodium, and potassium ions were fully characterized in artificial sweat solutions, providing reproducible and stable responses. Then, the real-time and continuous monitoring of the biomarkers in sweat with the wearable platform was assessed by comparing the ISFETs responses recorded during an 85-min continuous exercise session with the concentration values measured using commercial Ion-Selective Electrodes (ISEs) in samples collected at certain times during the session. The developed sensing platform enables the continuous monitoring of biomarkers and facilitates the study of the effects of various real working conditions, such as cycling power and skin temperature, on the target biomarker concentration levels.
Collapse
Affiliation(s)
- Meritxell Rovira
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain
| | - Céline Lafaye
- Swiss Olympic Medical Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Silvia Demuru
- École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | | | - Joan Aymerich
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain
| | - Javier Cuenca
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain
| | - Francesc Serra-Graells
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain; Dept. of Microelectronics and Electronic Systems, Universitat Autònoma de Barcelona, Spain
| | | | - Rubaiyet Haque
- École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Mathieu Saubade
- Swiss Olympic Medical Center, Lausanne University Hospital, Lausanne, Switzerland; Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | |
Collapse
|
19
|
Tsunoda M, Tsuda T. Quantification of amino acids in small volumes of palm sweat samples. Heliyon 2024; 10:e36286. [PMID: 39263123 PMCID: PMC11387235 DOI: 10.1016/j.heliyon.2024.e36286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
This study investigates the significance of quantifying amino acids in minute sweat volumes using high-performance liquid chromatography with fluorescence detection. Sweat, a valuable biofluid for non-invasive health monitoring, provides real-time insights into physiological changes. Amino acids, which are critical for various physiological processes, are key to protein synthesis and cellular regulation. Therefore, analyzing sweat's amino acid profiles can offer insights into metabolic states, exercise-induced stress, and potential biomarkers for health conditions. For sensitive analysis, amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), followed by liquid chromatographic separation on an octadecylsilyl column and fluorescence detection. The developed method was validated and applied to human sweat samples, enabling the quantification of 14 amino acids. The most abundant amino acids in the samples were serine, glycine, and alanine, which aligns with prior studies. This method offers a non-invasive and efficient way to screen for diseases by detecting amino acids in sweat, even with minimal sweat volumes. The approach could also be used to analyze other biomolecules in sweat, expanding its potential applications.
Collapse
Affiliation(s)
- Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
20
|
Xing Y, Yang K, Lu A, Mackie K, Guo F. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0160. [PMID: 39282019 PMCID: PMC11395709 DOI: 10.34133/cbsystems.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Personalized pain medicine aims to tailor pain treatment strategies for the specific needs and characteristics of an individual patient, holding the potential for improving treatment outcomes, reducing side effects, and enhancing patient satisfaction. Despite existing pain markers and treatments, challenges remain in understanding, detecting, and treating complex pain conditions. Here, we review recent engineering efforts in developing various sensors and devices for addressing challenges in the personalized treatment of pain. We summarize the basics of pain pathology and introduce various sensors and devices for pain monitoring, assessment, and relief. We also discuss advancements taking advantage of rapidly developing medical artificial intelligence (AI), such as AI-based analgesia devices, wearable sensors, and healthcare systems. We believe that these innovative technologies may lead to more precise and responsive personalized medicine, greatly improved patient quality of life, increased efficiency of medical systems, and reducing the incidence of addiction and substance use disorders.
Collapse
Affiliation(s)
- Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Albert Lu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
- Culver Academies High School, Culver, IN 46511, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Childs A, Mayol B, Lasalde-Ramírez JA, Song Y, Sempionatto JR, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS NANO 2024; 18:24605-24616. [PMID: 39185844 DOI: 10.1021/acsnano.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.
Collapse
Affiliation(s)
- Andre Childs
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Beatriz Mayol
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Juliane R Sempionatto
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Baker LB, Ozga M, Merritt JR, Alfred S, De Chavez PJD, Hinkley JM. Mild dehydration does not alter acute changes in sweat electrolyte concentrations during exercise. Physiol Rep 2024; 12:e16174. [PMID: 39294847 PMCID: PMC11410553 DOI: 10.14814/phy2.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024] Open
Abstract
The purpose of this study was to determine the effect of hydration status on the change in sweat sodium (Na+), chloride (Cl-), and potassium (K+) concentrations during exercise-heat stress. Fifteen subjects (Six female, nine male; 29 ± 9 y; 71 ± 14 kg) completed 90 min of cycling (81% HRmax) in the heat (~33°C, 42% rh) with fluid replacement to maintain euhydration (EUH) or without fluid to dehydrate to 2.4 ± 0.4% body mass loss (DEH). Sweat was collected from the forehead (FH), right scapula (SCAP), and left (LVFA) and right (RVFA) ventral forearms using the absorbent pad technique at the beginning (0-30 min) and end of exercise (60-90 min). Sweat was analyzed for Na+, Cl-, and K+ concentrations using ion chromatography. Data are reported as mean ± SD or median ± IQR. There were no differences (Paired t-tests or Wilcoxon signed-rank tests) between EUH and DEH in the change in sweat Na+ (FH: 24.3 ± 21.5 vs. 30.8 ± 22.4 mmol/L; SCAP: 9.7 ± 6.2 vs. 9.6 ± 8.2 mmol/L; LVFA: 7.5 ± 6.0 vs. 5.6 ± 5.9 mmol/L; RVFA: 8.2 ± 8.6 vs. 7.8 ± 5.2 mmol/L), sweat Cl-, or sweat K+ at any site (p = 0.07-0.99). The change in sweat electrolyte concentrations during 90 min of exercise in the heat was not significantly influenced by mild dehydration in recreational to moderately-trained male and female athletes.
Collapse
Affiliation(s)
- Lindsay B. Baker
- PepsiCo R&D Life SciencesGatorade Sports Science InstituteValhallaNew YorkUSA
| | - Michal Ozga
- PepsiCo R&D Life SciencesGatorade Sports Science InstituteValhallaNew YorkUSA
| | - James R. Merritt
- PepsiCo R&D Life SciencesGatorade Sports Science InstituteValhallaNew YorkUSA
| | - Shelby Alfred
- PepsiCo R&D Life SciencesGatorade Sports Science InstituteValhallaNew YorkUSA
| | | | - J. Matthew Hinkley
- PepsiCo R&D Life SciencesGatorade Sports Science InstituteValhallaNew YorkUSA
| |
Collapse
|
23
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
24
|
Hu R, Yao B, Geng Y, Zhou S, Li M, Zhong W, Sun F, Zhao H, Wang J, Ge J, Wei R, Liu T, Jin J, Xu J, Fu J. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403111. [PMID: 38934213 DOI: 10.1002/adma.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.
Collapse
Affiliation(s)
- Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Jiahao Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Ran Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
25
|
Ding H, Yang H, Tsujimura S. Nature-Inspired Superhydrophilic Biosponge as Structural Beneficial Platform for Sweating Analysis Patch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401947. [PMID: 38868908 PMCID: PMC11321618 DOI: 10.1002/advs.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Perspiration plays a pivotal role not only in thermoregulation but also in reflecting the body's internal state and its response to external stimuli. The up-to-date skin-based wearable platforms have facilitated the monitoring and simultaneous analysis of sweat, offering valuable physiological insights. Unlike conventional passive sweating, dynamic normal perspiration, which occurs during various activities and rest periods, necessitates a more reliable method of collection to accurately capture its real-time fluctuations. An innovative microfluidic patch incorporating a hierarchical superhydrophilic biosponge, poise to significantly improve the efficiency capture of dynamic sweat is introduced. The seamlessly integrated biosponge microchannel showcases exceptional absorption capabilities, efficiently capturing non-sensitive sweat exuding from the skin surface, mitigating sample loss and minimizing sweat volatilization. Furthermore, the incorporation of sweat-rate sensors alongside a suite of functional electrochemical sensors endows the patch of uninterrupted monitoring and analysis of dynamic sweat during various activities, stress events, high-energy intake, and other scenarios.
Collapse
Affiliation(s)
- Hanlin Ding
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Hao Yang
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Seiya Tsujimura
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| |
Collapse
|
26
|
Zhao X, Zou H, Wang M, Wang J, Wang T, Wang L, Chen X. Conformal Neuromorphic Bioelectronics for Sense Digitalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403444. [PMID: 38934554 DOI: 10.1002/adma.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haochen Zou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
27
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
28
|
Yin Y, Tan Z, Zhu W, Pu Z, Yu H, Wang R, Li D. A wearable microfluidic system for efficient sweat collection and real-time detection. Talanta 2024; 274:125967. [PMID: 38537349 DOI: 10.1016/j.talanta.2024.125967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
Sweat is an important biofluid with rich physiological information that can evaluate human health condition. Wearable sweat sensors have received widespread attention in recent years due to the benefits of non-invasive, continuous, and real-time monitoring. Currently, an efficient device integrating sweat collection and detection is still needed. Here, a wearable sweat microfluidic system was fabricated for real-time collection and analysis of sweat. The fabricated microfluidic system consisted of four layers, including a skin adhesive layer, a microfluidic layer, an electrode layer, and a capping layer. The sweat collection rate was around 0.79 μL/min, which demonstrated efficient sweat sampling, storage, and refreshing capabilities. Simultaneous detection of multiple sweat biomarkers was achieved with a screen-printed sweat sensing array, which could realize high-precision detection of Na+, K+, and glucose. Moreover, the sensing array also showed good repeatability and stability, with a relative standard deviation of sensitivity of less than 5%. Additionally, human testing was conducted to demonstrate that this microfluidic system can continuously monitor Na+, K+, and glucose in subjects' sweat during exercise, which showed high potential for non-invasive human health monitoring.
Collapse
Affiliation(s)
- Yingda Yin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Tan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Wangwang Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Haixia Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Ridong Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
29
|
Chen C, Fu Y, Sparks SS, Lyu Z, Pradhan A, Ding S, Boddeti N, Liu Y, Lin Y, Du D, Qiu K. 3D-Printed Flexible Microfluidic Health Monitor for In Situ Sweat Analysis and Biomarker Detection. ACS Sens 2024; 9:3212-3223. [PMID: 38820602 PMCID: PMC12009136 DOI: 10.1021/acssensors.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Sonja S Sparks
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Arijit Pradhan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Narasimha Boddeti
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
30
|
Zhao S, Luo Z, Wang Y, Gao X, Tao J, Cui Y, Chen A, Cai D, Ding Y, Gu H, Gu J, Ji C, Kang X, Lu Q, Lv C, Li M, Li W, Liu W, Li X, Li Y, Man X, Qiao J, Sun L, Shi Y, Wu W, Xia J, Xiao R, Yang B, Kuang Y, Chen Z, Fang J, Kang J, Yang M, Zhang M, Su J, Zhang X, Chen X. Expert Consensus on Big Data Collection of Skin and Appendage Disease Phenotypes in Chinese. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:269-292. [PMID: 39398426 PMCID: PMC11466921 DOI: 10.1007/s43657-023-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 10/15/2024]
Abstract
The collection of big data on skin and appendage phenotypes has revolutionized the field of personalized diagnosis and treatment by enabling the evaluation of individual characteristics and early detection of abnormalities. To establish a standardized system for collecting and measuring big data on phenotypes, a systematic categorization of measurement entries has been undertaken, accompanied by recommendations on measurement entries, environmental equipment requirements, and collection processes, tailored to the needs of different usage scenarios. Specific collection sites have also been recommended based on different index characteristics. A multi-center, multi-regional collaboration has been initiated to collect big date on phenotypes of healthy and diseased skin in the Chinese population. This data will be correlated with patient disease information, exploring the factors influencing skin phenotype, analyzing the phenotypic data features that can predict prognosis, and ultimately promoting the exploration of the pathophysiology and pathogenesis of skin diseases and therapeutic approaches. Non-invasive skin measurement robots are also in development. This consensus aims to provide a reference for the study of phenomics and the standardization of phenotypic measurements of skin and appendages in China.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, 110001 China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430022 China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100000 China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Daxing Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250000 China
| | - Yan Ding
- Department of Dermatology, Hainan General Hospital, Haikou, 570102 China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, 210042 China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000 China
| | - Xiaojing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001 China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210000 China
| | - Chengzhi Lv
- Department of Dermatology, Dalian Skin Disease Hospital, Liaoning, 116021 China
| | - Min Li
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou, 215000 China
| | - Wei Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610000 China
| | - Wei Liu
- Department of Dermatology, General Hospital of Air Force, Beijing, 100000 China
| | - Xia Li
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000 China
| | - Xiaoyong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000 China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200443 China
| | - Jianxin Xia
- Department of Dermatology, The Second Affiliated Hospital of JiLin University, Changchun, 130000 China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Zeyu Chen
- School of Materials Science and Engineering, Central South University, Changsha, 410083 China
| | - Jingyue Fang
- School of Physics and Electronics, Central South University, Changsha, 410083 China
| | - Jian Kang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, 410083 China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Mi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Xuejun Zhang
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou, 215000 China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| |
Collapse
|
31
|
Jalal NR, Madrakian T, Ahmadi M, Afkhami A, Khalili S, Bahrami M, Roshanaei M. Wireless wearable potentiometric sensor for simultaneous determination of pH, sodium and potassium in human sweat. Sci Rep 2024; 14:11526. [PMID: 38773136 PMCID: PMC11109153 DOI: 10.1038/s41598-024-62236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
This paper reports on the development of a flexible-wearable potentiometric sensor for real-time monitoring of sodium ion (Na+), potassium ion (K+), and pH in human sweat. Na0.44MnO2, polyaniline, and K2Co[Fe(CN)6] were used as sensing materials for Na+, H+ and K+ monitoring, respectively. The simultaneous potentiometric Na+, K+, and pH sensing were carried out by the developed sensor, which enables signal collection and transmission in real-time to the smartphone via a Wi-Fi access point. Then, the potentiometric responses were evaluated by a designed android application. Na+, K+, and pH sensors illustrated high sensitivity (59.7 ± 0.8 mV/decade for Na+, 57.8 ± 0.9 mV/decade for K+, and 54.7 ± 0.6 mV/pH for pH), excellent stability, and good batch-to-batch reproducibility. The results of on-body experiments demonstrated that the proposed platform is capable of real-time monitoring of the investigated ions.
Collapse
Affiliation(s)
- Nahid Rezvani Jalal
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Sina Khalili
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Morteza Bahrami
- Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
32
|
Fu X, Qiu Y, Zhang H, Tian Y, Liu A, Wu H. Microfluidic sweat patch based on capillary force and evaporation pump for real-time continuous sweat analysis. BIOMICROFLUIDICS 2024; 18:034106. [PMID: 38841318 PMCID: PMC11149117 DOI: 10.1063/5.0208075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In addition to the common blood and urine, fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body's state. Wearable sweat sensors are crucial for understanding human physiological health; however, real-time in situ measurement of multiple biomarkers in sweat remains a significant challenge. Here, we propose a wearable microfluidic patch featuring an integrated microfluidic channel and evaporation pump for accelerated and continuous sweat collection, eliminating the need for additional sweat storage cavities that typically impede real-time detection. Capillary forces are harnessed to facilitate the rapid flow of sweat through the detection area, while an evaporation pump based on porous laser-induced graphene enhances sweat evaporation. The synergistic integration of these two components enables an uninterrupted flow of fresh sweat within the patch, ensuring real-time monitoring. The influence of channel size parameters on sweat flow velocity is analyzed, and the optimal width-to-height ratio for achieving the desired flow velocity is determined. By implementing a multi-channel parallel design with chamfering, liquid flow resistance is effectively reduced. Furthermore, the patch integrates sensor modules for sodium ion, chloride ion, glucose, and pH value measurements, ensuring excellent sealing and stability of the assembled system. This work presents a simplified approach to developing wearable sweat sensors that hold the potential for health monitoring and disease diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Huaping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
33
|
Shi Z, Deng P, Zhou LA, Jin M, Fang F, Chen T, Liu G, Wen H, An Z, Liang H, Lu Y, Liu J, Liu Q. Wireless and battery-free wearable biosensing of riboflavin in sweat for precision nutrition. Biosens Bioelectron 2024; 251:116136. [PMID: 38377637 DOI: 10.1016/j.bios.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Nutrition assessment is crucial for dietary guidance and prevention of malnutrition. Recent endeavors in wearable biochemical sensors have enabled real-time, in situ analysis of nutrients in sweat. However, the monitoring of riboflavin, an indispensable vitamin B involved in energy metabolism, remains challenging due to its trace level and variations in the sweat matrix. Herein, we report a wireless, battery-free, and flexible wearable biosensing system for the in situ monitoring of sweat riboflavin. Highly sensitive and selective electrochemical voltammetric detection is realized based on the synergistic effect of electrodeposited reduced graphene oxide (rGO) and platinum nanoparticles (PtNPs) with a low detection limit of 1.2 nM. The fully integrated system is capable of sweat sampling with the microfluidic patch, real-time riboflavin analysis and pH calibration with the flexible electrode array, as well as wirelessly simultaneous near field communication (NFC) energy harvesting and data transmission with the flexible circuit and a smartphone. On-body human sweat analysis demonstrates high accuracy cross-validated with gold-standard measurements, and reveals a strong correlation between sweat and urine riboflavin levels. The proposed wearable platform opens up attractive possibilities for noninvasive nutrient tracking, providing strong potential for personalized dietary guidance towards precision nutrition.
Collapse
Affiliation(s)
- Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Li-Ang Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Meng Jin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Feiyue Fang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Tao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Hao Wen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Hao Liang
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China.
| |
Collapse
|
34
|
Luan Y, Zhou Y, Li C, Wang H, Zhou Y, Wang Q, He X, Huang J, Liu J, Yang X, Wang K. Wearable Sensing Device Integrated with Prestored Reagents for Cortisol Detection in Sweat. ACS Sens 2024; 9:2075-2082. [PMID: 38557006 DOI: 10.1021/acssensors.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wearable sweat sensors have achieved rapid development since they hold great potential in personalized health monitoring. However, a typical difficulty in practical processes is the control of working conditions for biorecognition elements, e.g., pH level and ionic strength in sweat may decrease the affinity between analytes and recognition elements. Here, we developed a wearable sensing device for cortisol detection in sweat using an aptamer as the recognition element. The device integrated functions of sweat collection, reagent prestorage, and signal conversion. Especially, the components of prestored reagents were optimized according to the inherent characteristics of sweat samples and electrodes, which allowed us to keep optimal conditions for aptamers. The sweat samples were transferred from the inlet of the device to the reagent prestored chamber, and the dry preserved reagents were rehydrated with sweat and then arrived at the aptamer-modified electrodes. Sweat samples of volunteers were analyzed by the wearable sensing device, and the results showed a good correlation with those of the ELISA kit. We believe that this convenient and reliable wearable sensing device has significant potential in self-health monitoring.
Collapse
Affiliation(s)
- Yanan Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuting Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Canjuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Liu M, Liu S, Zhang T, Zhou D, Li L, Gao Q, Liu Y, Ge C, Wang Y, Wang M, Wen F, Xiong Z, Zhou Z, Wang S, Zhang T. Adaptively resettable microfluidic patch for sweat rate and electrolytes detection. Biosens Bioelectron 2024; 257:116299. [PMID: 38636318 DOI: 10.1016/j.bios.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 μL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 μL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Siyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Tong Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Dengfeng Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Lianhui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qiang Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yujie Liu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yongfeng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Mingxu Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Feng Wen
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Zuoping Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Zhen Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
36
|
Beigtan M, Gonçalves M, Weon BM. Heat Transfer by Sweat Droplet Evaporation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6532-6539. [PMID: 38538556 PMCID: PMC11025549 DOI: 10.1021/acs.est.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Sweating regulates the body temperature in extreme environments or during exercise. Here, we investigate the evaporative heat transfer of a sweat droplet at the microscale to unveil how the evaporation complexity of a sweat droplet would affect the body's ability to cool under specific environmental conditions. Our findings reveal that, depending on the relative humidity and temperature levels, sweat droplets experience imperfect evaporation dynamics, whereas water droplets evaporate perfectly at equivalent ambient conditions. At low humidity, the sweat droplet fully evaporates and leaves a solid deposit, while at high humidity, the droplet never reaches a solid deposit and maintains a liquid phase residue for both low and high temperatures. This unprecedented evaporation mechanism of a sweat droplet is attributed to the intricate physicochemical properties of sweat as a biofluid. We suppose that the sweat residue deposited on the surface by evaporation is continuously absorbing the surrounding moisture. This route leads to reduced evaporative heat transfer, increased heat index, and potential impairment of the body's thermoregulation capacity. The insights into the evaporative heat transfer dynamics at the microscale would help us to improve the knowledge of the body's natural cooling mechanism with practical applications in healthcare, materials science, and sports science.
Collapse
Affiliation(s)
- Mohadese Beigtan
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Marta Gonçalves
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Byung Mook Weon
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
37
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
38
|
Wu S, Liu S, Li T, Li J, Wang L, Wang T. Molecular intelligent perception on soft interfaces. Sci Bull (Beijing) 2024; 69:578-582. [PMID: 38238206 DOI: 10.1016/j.scib.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Affiliation(s)
- Shuangshuang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Songrui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ting Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jinxing Li
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing MI 48823, USA
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
39
|
Yang B, Wang H, Kong J, Fang X. Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles. Nat Commun 2024; 15:1936. [PMID: 38431675 PMCID: PMC10908814 DOI: 10.1038/s41467-024-46215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Real-time and continuous monitoring of nucleic acid biomarkers with wearable devices holds potential for personal health management, especially in the context of pandemic surveillance or intensive care unit disease. However, achieving high sensitivity and long-term stability remains challenging. Here, we report a tetrahedral nanostructure-based Natronobacterium gregoryi Argonaute (NgAgo) for long-term stable monitoring of ultratrace unamplified nucleic acids (cell-free DNAs and RNAs) in vivo for sepsis on wearable device. This integrated wireless wearable consists of a flexible circuit board, a microneedle biosensor, and a stretchable epidermis patch with enrichment capability. We comprehensively investigate the recognition mechanism of nucleic acids by NgAgo/guide DNA and signal transformation within the Debye distance. In vivo experiments demonstrate the suitability for real-time monitoring of cell-free DNA and RNA with a sensitivity of 0.3 fM up to 14 days. These results provide a strategy for highly sensitive molecular recognition in vivo and for on-body detection of nucleic acid.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Haonan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
40
|
Niu J, Lin S, Chen D, Wang Z, Cao C, Gao A, Cui S, Liu Y, Hong Y, Zhi X, Cui D. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306769. [PMID: 37932007 DOI: 10.1002/smll.202306769] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuping Hong
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
41
|
Ye C, Wang M, Min J, Tay RY, Lukas H, Sempionatto JR, Li J, Xu C, Gao W. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. NATURE NANOTECHNOLOGY 2024; 19:330-337. [PMID: 37770648 PMCID: PMC10954395 DOI: 10.1038/s41565-023-01513-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Personalized monitoring of female hormones (for example, oestradiol) is of great interest in fertility and women's health. However, existing approaches usually require invasive blood draws and/or bulky analytical laboratory equipment, making them hard to implement at home. Here we report a skin-interfaced wearable aptamer nanobiosensor based on target-induced strand displacement for automatic and non-invasive monitoring of oestradiol via in situ sweat analysis. The reagentless, amplification-free and 'signal-on' detection approach coupled with a gold nanoparticle-MXene-based detection electrode offers extraordinary sensitivity with an ultra-low limit of detection of 0.14 pM. This fully integrated system is capable of autonomous sweat induction at rest via iontophoresis, precise microfluidic sweat sampling controlled via capillary bursting valves, real-time oestradiol analysis and calibration with simultaneously collected multivariate information (that is, temperature, pH and ionic strength), as well as signal processing and wireless communication with a user interface (for example, smartphone). We validated the technology in human participants. Our data indicate a cyclical fluctuation in sweat oestradiol during menstrual cycles, and a high correlation between sweat and blood oestradiol was identified. Our study opens up the potential for wearable sensors for non-invasive, personalized reproductive hormone monitoring.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Roland Yingjie Tay
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
42
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
43
|
Luo J, Zhang H, Sun C, Jing Y, Li K, Li Y, Zhang Q, Wang H, Luo Y, Hou C. Topological MXene Network Enabled Mixed Ion-Electron Conductive Hydrogel Bioelectronics. ACS NANO 2024; 18:4008-4018. [PMID: 38277229 DOI: 10.1021/acsnano.3c06209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.
Collapse
Affiliation(s)
- Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033 Jinan, Shandong, People's Republic of China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yangmin Jing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
44
|
Zhong B, Qin X, Xu H, Liu L, Li L, Li Z, Cao L, Lou Z, Jackman JA, Cho NJ, Wang L. Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat Commun 2024; 15:624. [PMID: 38245507 PMCID: PMC10799919 DOI: 10.1038/s41467-024-44751-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
In situ monitoring of endogenous amino acid loss through sweat can provide physiological insights into health and metabolism. However, existing amino acid biosensors are unable to quantitatively assess metabolic status during exercise and are rarely used to establish blood-sweat correlations because they only detect a single concentration indicator and disregard sweat rate. Here, we present a wearable multimodal biochip integrated with advanced electrochemical electrodes and multipurpose microfluidic channels that enables simultaneous quantification of multiple sweat indicators, including phenylalanine and chloride, as well as sweat rate. This combined measurement approach reveals a negative correlation between sweat phenylalanine levels and sweat rates among individuals, which further enables identification of individuals at high metabolic risk. By tracking phenylalanine fluctuations induced by protein intake during exercise and normalizing the concentration indicator by sweat rates to reduce interindividual variability, we demonstrate a reliable method to correlate and analyze sweat-blood phenylalanine levels for personal health monitoring.
Collapse
Affiliation(s)
- Bowen Zhong
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaokun Qin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Xu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingchen Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore, Singapore
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
McGinnis EW, Cherian J, McGinnis RS. The State of Digital Biomarkers in Mental Health. Digit Biomark 2024; 8:210-217. [PMID: 39582576 PMCID: PMC11584197 DOI: 10.1159/000542320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Ellen W. McGinnis
- Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Remote Health Monitoring, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Josh Cherian
- Center for Remote Health Monitoring, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan S. McGinnis
- Center for Remote Health Monitoring, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
47
|
Ali N, Rahat ST, Mäkelä M, Nasserinejad M, Jaako T, Kinnunen M, Schroderus J, Tulppo M, Nieminen AI, Vainio S. Metabolic patterns of sweat-extracellular vesicles during exercise and recovery states using clinical grade patches. Front Physiol 2023; 14:1295852. [PMID: 38143912 PMCID: PMC10748597 DOI: 10.3389/fphys.2023.1295852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Metabolite-based sensors are attractive and highly valued for monitoring physiological parameters during rest and/or during physical activities. Owing to their molecular composition consisting of nucleic acids, proteins, and metabolites, extracellular vesicles (EVs) have become acknowledged as a novel tool for disease diagnosis. However, the evidence for sweat related EVs delivering information of physical and recovery states remains to be addressed. Methods: Taking advantage of our recently published methodology allowing the enrichment and isolation of sweat EVs from clinical patches, we investigated the metabolic load of sweat EVs in healthy participants exposed to exercise test or recovery condition. -Ten healthy volunteers (-three females and -seven males) were recruited to participate in this study. During exercise test and recovery condition, clinical patches were attached to participants' skin, on their back. Following exercise test or recovery condition, the patches were carefully removed and proceed for sweat EVs isolation. To explore the metabolic composition of sweat EVs, a targeted global metabolomics profiling of 41 metabolites was performed. Results: Our results identified seventeen metabolites in sweat EVs. These are associated with amino acids, glutamate, glutathione, fatty acids, creatine, and glycolysis pathways. Furthermore, when comparing the metabolites' levels in sweat EVs isolated during exercise to the metabolite levels in sweat EVs collected after recovery, our findings revealed a distinct metabolic profiling of sweat EVs. Furthermore, the level of these metabolites, mainly myristate, may reflect an inverse correlation with blood glucose, heart rate, and respiratory rate levels. Conclusion: Our data demonstrated that sweat EVs can be purified using routinely used clinical patches during physical activity, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant sport performance biomarkers. This study thus provides proof-of-concept towards a novel methodology that will focus on the use of sweat EVs and their metabolic composition as a non-invasive approach for developing the next-generation of sport wearable sensors.
Collapse
Affiliation(s)
- Nsrein Ali
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
- Infotech Oulu, Oulu, Finland
- Flagship GeneCellNano, University of Oulu, Oulu, Finland
- Netskinmodels Cost Action CA21108, Oulu, Finland
| | - Syeda Tayyiba Rahat
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Mira Mäkelä
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maryam Nasserinejad
- Infotech Oulu, Oulu, Finland
- Research Unit of Population Health Research, Research Center, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | | | - Mikko Tulppo
- Edical Research Center Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland
- Resaerch Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anni I. Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Oulu, Finland
| | - Seppo Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
- Infotech Oulu, Oulu, Finland
- Flagship GeneCellNano, University of Oulu, Oulu, Finland
- Netskinmodels Cost Action CA21108, Oulu, Finland
- Kvantum Institute, University of Oulu, Oulu, Finland
| |
Collapse
|
48
|
Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9498. [PMID: 38067871 PMCID: PMC10708748 DOI: 10.3390/s23239498] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
- Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA
| | - Kirankumar Kuruvinashetti
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amin Komeili
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
| |
Collapse
|
49
|
Aguilar-Torán J, Rabost-Garcia G, Toinga-Villafuerte S, Álvarez-Carulla A, Colmena-Rubil V, Fajardo-Garcia A, Cardona-Bonet A, Casals-Terré J, Muñoz-Pascual X, Miribel-Català P, Punter-Villagrasa J. Novel Sweat-Based Wearable Device for Advanced Monitoring of Athletic Physiological Biometrics. SENSORS (BASEL, SWITZERLAND) 2023; 23:9473. [PMID: 38067846 PMCID: PMC10708619 DOI: 10.3390/s23239473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
Blood testing has traditionally been the gold standard for the physiological analysis and monitoring of professional athletes. In recent years, blood testing has moved out of the laboratory thanks to portable handheld devices, such as lactate meters. However, despite its usefulness and widespread use, blood testing has several drawbacks and limitations, such as the need for the athlete to stop exercising for blood extraction and the inability to have data continuously collected. In this scenario, sweat has become an alternative to blood testing because of its rich content of electrolytes and metabolites, as well as small quantities of sugars, proteins, and ions. Nevertheless, there are few devices capable of analyzing this biofluid and providing useful information to users. In this paper, an electronic system designed for the autonomous analysis of sweat electrolytes and metabolites along with heart rate dynamics is presented. This system is part of a novel wearable device tailored for athletes that offers to the user a real-time assessment of their physiological status and performance.
Collapse
Affiliation(s)
- Javier Aguilar-Torán
- Onalabs Inno-Hub SL, 08290 Cerdanyola del Vallès, Spain
- Department of Electronics and Biomedical Engineering, Barcelona University, 08028 Barcelona, Spain
| | - Genis Rabost-Garcia
- Onalabs Inno-Hub SL, 08290 Cerdanyola del Vallès, Spain
- Department of Mechanical Engineering, Polytechnic University of Catalonia, 08222 Terrassa, Spain
| | | | | | - Valeria Colmena-Rubil
- Onalabs Inno-Hub SL, 08290 Cerdanyola del Vallès, Spain
- Department of Chemistry, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Jasmina Casals-Terré
- Department of Mechanical Engineering, Polytechnic University of Catalonia, 08222 Terrassa, Spain
| | | | - Pere Miribel-Català
- Department of Electronics and Biomedical Engineering, Barcelona University, 08028 Barcelona, Spain
| | | |
Collapse
|
50
|
Crivillé-Tena L, Colomer-Farrarons J, Miribel-Català PL. Fully Autonomous Active Self-Powered Point-of-Care Devices: The Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9453. [PMID: 38067826 PMCID: PMC10708618 DOI: 10.3390/s23239453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Quick and effective point-of-care (POC) devices have the chance to revolutionize healthcare in developed and developing countries since they can operate anywhere the patient is, with the possibility of obtaining and sending the results to the doctor without delay. In recent years, significant efforts have focused on developing new POC systems that can screen for biomarkers continuously and non-invasively in body fluids to prevent, diagnose, and manage diseases. However, one of the critical challenges left to address is how to power them effectively and sufficiently. In developing countries and rural and remote areas, where there are usually no well-established electricity grids or nearby medical facilities, and using batteries is unreliable or not cost-effective, alternative power sources are the most challenging issue for stand-alone and self-sustained POC devices. Here, we provide an overview of the techniques for used self-powering POC devices, where the sample is used to detect and simultaneously generate energy to power the system. Likewise, this paper introduced the state-of-the-art with a review of different research projects, patents, and commercial products for self-powered POCs from the mid-2010s until present day.
Collapse
Affiliation(s)
| | - Jordi Colomer-Farrarons
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| | - Pere Ll. Miribel-Català
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| |
Collapse
|